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THE STURM–LIOUVILLE PROBLEM

WITH SINGULAR POTENTIAL

AND THE EXTREMA OF THE FIRST EIGENVALUE

Elena S. Karulina—Anton A. Vladimirov

ABSTRACT. We get the infima and suprema of the first eigenvalue of the prob-
lem

−y′′+ qy = λy,{
y′(0)− k20y(0) = 0,

y′(1) + k21y(1) = 0,

where q belongs to the set of constant-sign summable functions on [0, 1] such that

1∫
0

q dx = 1 or

1∫
0

q dx = −1.

1. Introduction

1.1. Consider the Sturm–Liouville problem

−y′′+ (q − λ)y = 0, (1){
y′(0)− k20y(0) = 0,

y′(1) + k21y(1) = 0,
(2)

where the real coefficients k0 ≥ 0 and k1 ≥ k0 are fixed, the solution y belongs to
the space W 2

1 [0, 1], the equality (1) is considered as holding almost everywhere
at [0, 1], and the potential q ∈ L1[0, 1] is a constant-sign function such that one
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of the integral conditions holds:

1∫
0

q dx = 1 or

1∫
0

q dx = −1. (3)

The aim of this paper is to get the infima and suprema of the first eigenvalue
of the problem (1)–(3).

1.2. The problem (1)–(3) is a partial case of the problem (1), (2) with q ∈ Aγ

or −q ∈ Aγ , where γ ∈ R \ {0} and

Aγ �

⎧⎨
⎩q ∈ L1[0, 1] : q(x) ≥ 0 a.e. and

1∫
0

qγ dx = 1

⎫⎬
⎭ . (4)

Denote by λ1(q) the minimal eigenvalue of the problem (1) or

− y′′− λqy = 0 (5)

with some self-adjoint boundary conditions. Consider for each γ ∈ R \ {0} four
values m±

γ � infq∈Aγ
λ1(±q) and M±

γ � supq∈Aγ
λ1(±q). The estimates of

m+
γ and M+

γ for the equation (5) with the Dirichlet boundary conditions were
obtained in [1]. The analogous results about the Dirichlet problem for the equa-
tion (1) were obtained in [2], [3]. In [4] the problem (5), (2) was studied.

The values m+
γ and M+

γ for the problem (1), (2) with q ∈ Aγ were considered
by one of the authors in [5] for all γ �= 0. The most detailed and precise results
were obtained for the case γ �= 1.

The case γ = 1 is in some kind special. In [3] and [5], for (1) with various
boundary conditions, the precise results for M+

1 were obtained by the method
quite different from used for γ �= 1. In [5] for m+

1 only inequality m+
1 ≥ 1/4

was obtained. In [3] for m−
1 it was proved that this infimum is attained at the

non-summable potential q∗ = −δ1/2.

In this paper we extend the class of considered potentials from L1[0, 1] to the
space W−1

2 [0, 1] (see [6] and 2.1 later). The space W−1
2 [0, 1], in particular, con-

tains a Dirac delta function δζ with support located at an arbitrary point
ζ ∈ [0, 1]. This generalization of the problem lets us to get the precise description
of M−

1 and m±
1 and to prove that they are attained at the potentials from the

extended class.

1.3. The main results of the paper are the following four theorems:

1.3.1. �������� By definition, put

αμ � 1√
μ
arctan

k20√
μ
, βμ � 1√

μ
arctan

k21√
μ
. (6)
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Then M+
1 is a unique solution to the equation

1− αμ − βμ = μ−1 (7)

and is attained at the potential q∗ ∈ L1[0, 1] such that

q∗(x) =

{
M+

1 for x ∈ [αM+
1
, 1− βM+

1

]
,

0 otherwise.

1.3.2. �������� If k20 + k21 ≤ 1, then M−
1 = k20 + k21 − 1 and is attained at the

potential
q∗ � −k20δ0 − k21δ1 −

(
1− k20 − k21

)
.

If k20 + k21 ≥ 1 and k21 − k20 ≤ 1, then M−
1 is the minimal eigenvalue of the

problem
−y′′ =λy, (8)

2y′(0)− (k20 + k21 − 1
)
y(0) =2y′(1) +

(
k20 + k21 − 1

)
y(1) = 0 (9)

and is attained at the potential

q∗ � −(1 + k20 − k21
)
δ0/2−

(
1− k20 + k21

)
δ1/2.

If k21 − k20 ≥ 1, then M−
1 is the minimal eigenvalue of the problem (8) with

y′(0)− k20y(0) = y′(1) +
(
k21 − 1

)
y(1) = 0 (10)

and is attained at the potential q∗ � −δ1.

1.3.3. �������� m+
1 is the minimal eigenvalue of the problem (8) with

y′(0)− k20y(0) = y′(1) +
(
k21 + 1

)
y(1) = 0 (11)

and is attained at the potential q∗ � δ1.

1.3.4. �������� If for some μ ≥ −k40 and some ζ ∈ (0, 1) the problem

−y′′ =μy at (0, ζ) ∪ (ζ, 1), (12)

y′(0)− k20y(0) =2y′(ζ − 0)− y(ζ)

= 2y′(ζ + 0) + y(ζ) = y′(1) + k21y(1) = 0 (13)

has a continuous positive solution, then m−
1 = μ and m−

1 is attained at the
potential q∗ � −δζ . Otherwise m−

1 is the minimal eigenvalue of the problem (8)
with

y′(0)− (k20 − 1)y(0) = y′(1) + k21y(1) = 0

and is attained at the potential q∗ � −δ0.

Some additional remarks on solvability of the boundary problem (12), (13)
will be given in the subsection 3.6.
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1.4. Let us give some examples that illustrate the theorems from the previous
subsection. In the case k0 = k1 = 0 we get m+

1 = λ1(δ1) = 0.740174(±10−6).
In the case k20 = k21 > 1/2 we get m−

1 = λ1(−δ1/2). In the case k20 = k21 = 1/2

we have m−
1 = λ1(−δζ) = −1/4 for any ζ ∈ [0, 1]. In the case k20 = k21 < 1/2 we

have m−
1 = λ1(−δ0).

2. The set Γ1 and related topics

2.1. We suppose that all considered functional spaces are real.

By W−1
2 [0, 1] denote the Hilbert space that is a completion of L2[0, 1] in the

norm

‖y‖W−1
2 [0,1] � sup

‖z‖
W1

2
[0,1]

=1

1∫
0

yz dx.

When y ∈ W−1
2 [0, 1], by

∫ 1
0
yz dx we sometimes denote the result

〈y, z〉 � lim
n→∞

1∫
0

ynz dx, where y = lim
n→∞

yn, yn ∈ L2[0, 1],

of applying the linear functional y to the function z ∈W 1
2 [0, 1].

For any fixed q ∈ L1[0, 1] and λ ∈ R the map taking each y ∈ W 2
1 [0, 1]

satisfying (2) to
−y′′+ (q − λ)y ∈ L1[0, 1]

can be extended by continuity to the bounded operator Tq(λ) : W 1
2 [0, 1] →

W−1
2 [0, 1]. Using integration by part, we get

(∀y, z ∈ W 1
2 [0, 1])

〈
Tq(λ)y, z

〉
=

1∫
0

[
y′z′ + (q − λ) yz

]
dx+ k20 y(0)z(0) + k21 y(1)z(1). (14)

Consider the linear operator pencil1 Tq : R → B(W 1
2 [0, 1],W

−1
2 [0, 1]

)
that takes

any λ ∈ R to the operator Tq(λ) described by (14). The spectral problem for
Tq may be considered as a reformulation (or as a generalization in case when

q ∈ W−1
2 [0, 1] is not summable) of the boundary value problem (1), (2). We can

do this due to the following two facts.

1A linear operator pencil L is an operator-valued function such that L(λ) = A + λB, where

λ ∈ R, A and B are some operators not depending on λ.
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2.1.1. For all q ∈ L1[0, 1] and λ ∈ R the function y ∈ W 1
2 [0, 1] belongs to the

kernel of the operator Tq(λ), if and only if y ∈ W 2
1 [0, 1] and y is a solution

of the problem (1), (2).

P r o o f. It directly follows from the definition of the operator Tq(λ) that for any
solution y ∈W 2

1 [0, 1] of the problem (1), (2) the equality Tq(λ)y = 0 holds.

Let us prove the converse. Consider some y ∈ kerTq(λ), and put

w(x) � y′(x)−
x∫

0

(q − λ)y dt. (15)

For any z ∈ ◦
W 1

2 [0, 1], using (14), we have

0 =
〈
Tq(λ)y, z

〉
=

1∫
0

wz′ dx. (16)

Since the set of the derivatives of all functions z ∈ ◦
W 1

2 [0, 1] is an orthogonal
complement in L2[0, 1] of the set of all constants, from (16) it follows that the
function w ∈ L2[0, 1] is constant. Combining this with (15), we get that the
function y′ is absolutely continuous and its generalized derivative equals (q−λ)y.
Now, using (14), we see that for any z ∈W 1

2 [0, 1] we get

0 =
〈
Tq(λ)y, z

〉
=
[−y′(0) + k20y(0)

]
z(0) +

[
y′(1) + k21y(1)

]
z(1),

so y satisfies the conditions (2). �

2.1.2. For any q ∈ W−1
2 [0, 1] the spectrum of the linear operator pencil Tq is

purely discrete, simple and bounded from below.

P r o o f. Note that for any y ∈ W 1
2 [0, 1] we have

‖y2‖W 1
2 [0,1]

≤ sup
x∈[0,1]

|y(x)| ·

√√√√√
1∫

0

[
y2 + 4(y′)2

]
dx ≤ 2‖y‖C[0,1] · ‖y‖W 1

2 [0,1]
,

then, by the embedding theorem, we get

‖y2‖W 1
2 [0,1]

≤ C ‖y‖2W 1
2 [0,1]

, (17)

where C is some constant.

Since C[0, 1] is densely embedded in W−1
2 [0, 1], for any ε ∈ (0, 1) there exists

a function q̃ ∈ C[0, 1] such that

‖q̃ − q‖W−1
2 [0,1] ≤ ε/C.
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Using this and the inequality (17), for any y ∈W 1
2 [0, 1] we get∣∣∣∣∣∣

1∫
0

(q̃ − q) y2 dx

∣∣∣∣∣∣ ≤ ‖q̃ − q‖W−1
2 [0,1] · ‖y2‖W 1

2 [0,1]
≤ ε ‖y‖2W 1

2 [0,1]
. (18)

Further, for any κ > ‖q̃‖C[0,1]+1 we have
∫ 1
0
q̃y2 dx ≥ (1−κ) ∫ 1

0
y2 dx. Combining

this with (14) and (18), we obtain

ITq(−κ) ≥ 1− ε, (19)

where by I : W−1
2 [0, 1] →W 1

2 [0, 1] we denote an isometry that satisfies

(∀y ∈W−1
2 [0, 1]) (∀z ∈W 1

2 [0, 1]) 〈Iy, z〉W 1
2 [0,1]

= 〈y, z〉.
The existence and uniqueness of this isometry follows from the Riesz theorem
about the representation of a functional in a Hilbert space [7, § 30, § 99].

From the estimate (19) it follows [7, § 104] that the operator S � ITq(−κ) is
boundedly invertible. Taking into account (14), we have ITq(λ) ≡ S−(λ+κ)J∗J ,
where J : W 1

2 [0, 1] → L2[0, 1] is the embedding operator. So for any λ ∈ R the
existence of a bounded inverse of the operator Tq(λ) is equivalent to the existence

of a bounded inverse of the operator 1 − (λ + κ)S−1/2J∗JS−1/2. Since J is
compact, it follows that the spectrum of Tq is purely discrete, semi-simple and
bounded from below.

The spectrum of the pencil Tq is simple since (see [6], [8, Propositions 2, 10])
for any λ ∈ R the kernel of the operator Tq(λ) is formed by the first compo-
nents Y1 of the solutions to the boundary value problem(

Y1
Y2

)′
=

(
u 1

−u2 −u
)(

Y1
Y2

)
, (20)

Y2(0)− k20Y1(0) = Y2(1) +
[
k21 + ω

]
Y1(1) = 0. (21)

Here u ∈ L2[0, 1] and ω ∈ R are taken from the representation

(∀y ∈W 1
2 [0, 1])

1∫
0

(q − λ)y dx = −
1∫

0

uy′ dx+ ω y(1) (22)

of the potential q ∈W−1
2 [0, 1]. �

2.2. For the eigenvalues

λ1(q) < λ2(q) < · · · < λn(q) < · · ·
of the pencil Tq we have the following propositions.
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2.2.1. (See [8, Proposition 10].) For any n ≥ 1, q ∈ W−1
2 [0, 1] and λ ∈ R the

inequality λ > λn(q) is equivalent to the existence of n-dimentional subspace

N ⊂W 1
2 [0, 1] that satisfies

(∀y ∈ N \ {0}) 〈
Tq(λ)y, y

〉
< 0.

2.2.2. For any n ≥ 1 the function λn : W
−1
2 [0, 1] → R is continuous.

P r o o f. Consider some q ∈ W−1
2 [0, 1] and ε ∈ (0, 1/2). For any y ∈ W 1

2 [0, 1],

λ ∈ R and q̃ ∈ W−1
2 [0, 1] such that ‖q̃ − q‖W−1

2 [0,1] < ε/C, where C is the same

as in (17), we get〈
Tq̃(λ)y, y

〉 ≥ 〈Tq(λ)y, y〉− ε ‖y‖2W 1
2 [0,1]

≥ 〈Tq(λ)y, y〉− ε ‖y‖2W 1
2 [0,1]

− ε ·
〈
T2q
(
λ1(2q)

)
y, y
〉
− εk20y

2(0)− εk21y
2(1)

= (1− 2ε) ·
〈
Tq

(
λ+ ε · [1− λ1(2q)]

1− 2ε

)
y, y

〉
.

Consequently, from the variational principle 2.2.1 it follows that any λ > λn(q̃)
satisfies

λ+ ε · [1− λ1(2q)]

1− 2ε
> λn(q).

Since we can choose λ arbitrarily close to λn(q̃), we have

λn(q̃) ≥ (1− 2ε)λn(q)− ε · [1− λ1(2q)
]
.

By the same method we get

λn(q̃) ≤ (1 + 2ε)λn(q) + ε · [1− λ1(2q)
]
. �

2.3. Let Γ1 be the closure in W−1
2 [0, 1] of the set A1 defined by (4). Put by

definition
Λ(X) �

{
λ ∈ R : (∃q ∈ X) λ = λ1(q)

}
,

where X ⊆ W−1
2 [0, 1] is some set of generalized functions. The set Λ(X) is

formed by all the possible values of λ1(q) for all q ∈ X. By −X we, as usually,
denote the set {

q ∈W−1
2 [0, 1] : (∃r ∈ X) q = −r}.

2.3.1. Suppose X is a dense subset of Γ1, then the closures of Λ(±X) and
Λ(±Γ1) coincide.
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2.3.2. The extrema m±
1 � inf Λ(±A1) and M±

1 � supΛ(±A1), defined in 1.2,

satisfy the equalities m±
1 = inf Λ(±Γ1) and M

±
1 = supΛ(±Γ1).

The proposition 2.3.1 immediately follows from 2.2.2. The proposition 2.3.2
immediately follows from 2.3.1.

2.3.3. The set Γ1 consists of all non-negative2 distributions q ∈ W−1
2 [0, 1] such

that
∫ 1
0
q dx = 1.

P r o o f. Since for any q ∈ Γ1 there exists a sequence of functions from A1 such
that its limit equals q, it follows that the generalized function q is non-negative

and satisfies
∫ 1
0
q dx = 1.

Let us prove the converse. Suppose q ∈W−1
2 [0, 1] is a non-negative generalized

function and satisfies
∫ 1
0
q dx = 1. Then (see [6], [8, § 2.3]) there exists a function

u ∈ L2[0, 1] such that

(∀y ∈ W 1
2 [0, 1])

1∫
0

qy dx = −
1∫

0

uy′ dx+ y(1). (23)

Put by definition

Πγ,η,θ(x) �

⎧⎪⎨
⎪⎩

x−γ
η−γ for x ∈ [γ, η],

θ−x
θ−η for x ∈ [η, θ],

0 otherwise

for any reals γ < η < θ. Suppose 0 < a < b < c < d < 1. Substituting the
functions Π−1,0,a +Π0,a,b, Πa,b,c +Πb,c,d and Πc,d,1 +Πd,1,2 for y in (23), we get

0 ≤ 1

b− a

b∫
a

u dx ≤ 1

d− c

d∫
c

u dx ≤ 1.

From these inequalities it follows that the function u ∈ L2[0, 1] is non-decreasing
and satisfies vrai infx∈[0,1] u(x) ≥ 0 and vrai supx∈[0,1] u(x) ≤ 1.

Since there exists a sequence {un}∞n=0 of non-decreasing piecewise linear func-
tions such that un(0) = 0, un(1) = 1 and u = limn→∞ un, it follows that
q = limn→∞ u′n, where u

′
n ∈ A1. �

2.4. Consider the function F implicitely defined by the equation

λ1
(
F (μ, ζ)δζ

)
= μ, (24)

where μ ∈ R and ζ ∈ [0, 1]. The following three propositions give us some
information about this function.

2The generalized function q ∈ W−1
2 [0, 1] is called non-negative if for any non-negative function

y ∈ W 1
2 [0, 1] the inequality 〈q, y〉 ≥ 0 holds.
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2.4.1. For any ζ ∈ [0, 1] the function F (·, ζ) is single-valued, strictly increasing,
and its domain is the interval (−∞, f+) with some f+> 0.

P r o o f. For any a ∈ R there exists [8, Proposition 11] a positive eigenfunction
y ∈ kerTaδζ

(μ) corresponding to the eigenvalue μ � λ1(aδζ), so for any b < a
we have 〈

Tbδζ
(μ)y, y

〉
=
〈
Taδζ

(μ)y, y
〉
+ (b− a) · y2(ζ) < 0.

Using 2.2.1, we now get λ1(bδζ) < μ. So the function F (·, ζ) is the inverse
of the strictly increasing and, according to 2.2.2, continuous map a �→ λ1(aδζ).
Therefore, the function F (·, ζ) is single-valued and strictly increasing.

Further, for any a ∈ R from the equality〈
Taδζ

(
a+ k20 + k21

)
1, 1
〉
= a− (a+ k20 + k21

)
+ k20 + k21 = 0

and the proposition 2.2.1 it follows that λ1(aδζ) ≤ a+k20+k
2
1 . Therefore, the do-

main of F (·, ζ) is unbounded from below. Also for any a > 0 we have λ1(aδζ) > 0,
so the right bound of domF (·, ζ) is positive. �

2.4.2. The function F is continuous.

P r o o f. Consider an arbitrary point (μ0, ζ0) ∈ domF and suppose a± satisfy
a−< F (μ0, ζ0) < a+. For any point (μ, ζ) ∈ R× [0, 1] sufficiently close to (μ0, ζ0)
from 2.4.1 and 2.2.2 we obtain the inequalities λ1(a

−δζ) < μ < λ1(a
+δζ).

Hence there exists a ∈ (a−, a+) such that μ = λ1(aδζ), so for the point (μ, ζ)
the equation (24) has a solution F (μ, ζ) = a. �

2.4.3. A point (μ, ζ) ∈ (0,+∞) × [0, 1] belongs to domain of the function F
if and only if the following conditions hold:

√
μ · (ζ − αμ) ∈ (−π/2, π/2), √

μ · (1− βμ − ζ) ∈ (−π/2, π/2), (25)

where αμ and βμ are defined by (6). In this case the equality

F (μ, ζ) =
√
μ ·
{
tan
[√
μ · (ζ − αμ)

]
+ tan

[√
μ · (1− βμ − ζ)

]}
(26)

holds.

For any ζ ∈ [0, 1] the equality

F (0, ζ) = − k20
1 + k20ζ

− k21
1 + k21 (1− ζ)

(27)

holds.

For any μ < 0 and ζ ∈ [0, 1] the equality

F (μ, ζ) = −
√
|μ| ·
{
G
(√

|μ|, k20 , ζ
)
+G
(√

|μ|, k21 , 1− ζ
)}
, (28)
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where

G(ν, κ, x) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tanh

(
νx+ ln

√
ν + κ

ν − κ

)
for ν > κ,

1 for ν = κ,

coth

(
νx+ ln

√
κ + ν

κ − ν

)
for ν < κ,

holds.

P r o o f. Consider μ ∈ R and ζ ∈ (0, 1) such that (μ, ζ) ∈ domF. According to
(20)–(22), the equality Tq(μ)y = 0, where q � F (μ, ζ)δζ , is equivalent to the
boundary problem

−y′′ = μy at (0, ζ) ∪ (ζ, 1), (29)

y′(ζ + 0)− y′(ζ − 0) = F (μ, ζ)y(ζ), (30)

y′(0)− k20y(0) = y′(1) + k21y(1) = 0. (31)

From [8, Proposition 11] and (24) it follows that any non-trivial solution to the
problem (29)–(31) is constant-sign.

In the case μ > 0 any solution to the problem (29), (31) has the form

y(x) =

{
A · cos[√μ · (1− βμ − ζ)

] · cos[√μ · (x− αμ)
]

for x < ζ,

A · cos[√μ · (1− βμ − x)
] · cos[√μ · (ζ − αμ)

]
for x > ζ,

(32)

where A is some constant. This function is constant-sign if and only if the con-
ditions (25) hold. Using (30), we now get (26). The values ζ ∈ {0, 1} are finally
included in the consideration using the propositions 2.4.2 and 2.2.2.

The cases μ = 0 and μ < 0 are considered on the base of (29)–(31) by ana-
logous way using the solution

y(x) =

{
A · [1 + k21(1− ζ)

] · [1 + k20x
]

for x < ζ,

A · [1 + k21(1− x)
] · [1 + k20ζ

]
for x > ζ

(33)

in the case μ = 0, and the solution

y(x) =

⎧⎪⎨
⎪⎩
A · g

(√
|μ|, k21 , 1− ζ

)
· g
(√

|μ|, k20 , x
)

for x < ζ,

A · g
(√

|μ|, k21 , 1− x
)
· g
(√

|μ|, k20 , ζ
)

for x > ζ,
(34)

where

g(ν, κ, x) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh

(
νx+ ln

√
ν + κ

ν − κ

)
for ν > κ,

eνx for ν = κ,

sinh

(
νx+ ln

√
κ+ ν

κ− ν

)
for ν < κ,

in the case μ < 0. �
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3. Proofs of the main results

3.1. In this section we prove Theorems 1.3.1–1.3.4. We use the notation

Ω+(y) �
{
x ∈ [0, 1] : y(x) = supt∈[0,1] y(t)

}
,

Ω−(y) �
{
x ∈ [0, 1] : y(x) = inft∈[0,1] y(t)

}
,

where y ∈ W 1
2 [0, 1] is an arbitrary positive function. Also we take into account

proposition 2.3.2.

3.2. Proof of Theorem 1.3.1. Consider some potential q∗ ∈ Γ1, and some
positive eigenfunction y ∈ kerTq∗

(
λ1(q

∗)
)
. Suppose that the support of the

generalized function q∗ is a subset of Ω+(y). Then for any q ∈ Γ1 we, using
2.3.3, have

0 =
〈
Tq∗
(
λ1(q

∗)
)
y, y
〉

=

1∫
0

[
(y′)2 − λ1(q

∗) y2
]
dx+ sup

x∈[0,1]

y2(x) + k20 y
2(0) + k21 y

2(1)

≥
1∫

0

[
(y′)2 +

(
q − λ1(q

∗)
)
y2
]
dx+ k20 y

2(0) + k21 y
2(1),

hence 〈
Tq
(
λ1(q

∗)
)
y, y
〉
≤ 0.

It follows that λ1(q) ≤ λ1(q
∗), therefore λ1(q∗) = M+

1 . Thus we have proved
that M+

1 is attained at any potential q∗ such that supp q∗ ⊆ Ω+(y).

Suppose that Ω+(y) = [τ0, τ1], where τ0 �= τ1. Also suppose that the poten-
tial q∗ is summable and has the form

q∗(x) =

{
μ for x ∈ [τ0, τ1],

0 otherwise,

where μ is some positive constant. Since y′′(x) = 0 for all x ∈ (τ0, τ1), it follows
that μ = λ1(q

∗). Therefore, the eigenfunction y has the form

y(x) =

⎧⎪⎨
⎪⎩
A · cos[√μ · (x− αμ)

]
for x < τ0,

B for x ∈ [τ0, τ1],

C · cos[√μ · (1− βμ − x)
]

for x > τ1,

where A, B and C are some positive constants, and αμ, βμ are defined by (6).
From the continuity of y′ it follows that τ0 = αμ and τ1 = 1 − βμ, hence

A = B = C. Finally, from the condition
∫ 1
0
q∗ dx = 1 we have the equation (7).
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To conclude the proof, it remains to note that the equation (7) has a unique
solution, because αμ and βμ, considered as functions of μ > 0, are non-negative,
continuous, non-increasing and tend to zero as μ→ +∞.

3.3. Proof of Theorem 1.3.2. Consider some potential q∗ ∈ −Γ1, and some
positive eigenfunction y ∈ kerTq∗

(
λ1(q

∗)
)
. Suppose that supp q∗ ⊆ Ω−(y). Then

for any q ∈ −Γ1 we, using 2.3.3, have

0 =
〈
Tq∗
(
λ1(q

∗)
)
y, y
〉

=

1∫
0

[
(y′)2 − λ1(q

∗) y2
]
dx − inf

x∈[0,1]
y2(x) + k20 y

2(0) + k21 y
2(1)

≥
1∫

0

[
(y′)2 +

(
q − λ1(q

∗)
)
y2
]
dx+ k20 y

2(0) + k21 y
2(1),

hence 〈
Tq
(
λ1(q

∗)
)
y, y
〉
≤ 0.

It follows that λ1(q) ≤ λ1(q
∗), therefore λ1(q∗) = M−

1 . Thus we have proved
that M−

1 is attained at any potential q∗ such that supp q∗ ⊆ Ω−(y).
Suppose k20 + k21 ≤ 1. Consider the generalized function

q∗ � −k20δ0 − k21δ1 −
(
1− k20 − k21

)
,

which in this case belongs to −Γ1. Using (14), we get that the first eigenfunction
of the pencil Tq∗ is y ≡ const, so supp q∗ ⊆ Ω−(y). It follows thatM−

1 is attained
at the potential q∗ and is equal to the corresponding first eigenvalue

λ1(q
∗) = k20 + k21 − 1.

Suppose
k20 + k21 ≥ 1, (35)

k21 − k20 ≤ 1. (36)

Consider the generalized function q∗ � −(1+k20 −k21)δ0/2− (1−k20 +k21)δ1/2,
which, due to (36), belongs to −Γ1. For such q∗ the equation Tq∗(λ)y = 0 is
equivalent to the problem (8), (9). The first eigenvalue λ1(q

∗), due to (35) and
(9), is non-negative and the corresponding eigenfunction is

y(x) ≡ cos
[√

λ1(q∗) · (x− ζ)
]
, (37)

where ζ = 1/2. Hence supp q∗ ⊆ Ω−(y). It follows that M−
1 is attained at the

potential q∗ and is equal to the corresponding first eigenvalue λ1(q
∗).

Suppose k21 − k20 ≥ 1. Consider the generalized function q∗ � −δ1 ∈ −Γ1.
For such q∗ the equation Tq∗(λ)y = 0 is equivalent to the problem (8), (10).
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The corresponding first eigenfunction is defined by (37), where ζ∈ [0, 1/2], since
k21 − 1 ≥ k20 . Hence supp q∗ ⊆ Ω−(y). It follows that M−

1 is attained at the
potential q∗ and is equal to the corresponding first eigenvalue λ1(q

∗).

3.4. Proof of Theorem 1.3.3. Consider some potential q ∈ Γ1, and some
positive eigenfunction y ∈ kerTq

(
λ1(q)

)
. Then for any λ > λ1(q), according

to 2.3.3, we have

0 >

1∫
0

[
(y′)2 + (q − λ) y2

]
dx+ k20 y

2(0) + k21 y
2(1)

≥
1∫

0

[
(y′)2 − λy2

]
dx + inf

x∈[0,1]
y2(x) + k20 y

2(0) + k21 y
2(1).

It follows that there exists ζ ∈ [0, 1] such that
1∫

0

[
(y′)2 + (δζ − λ) y2

]
dx+ k20 y

2(0) + k21 y
2(1) < 0.

So for any λ > m+
1 there exists ζ ∈ [0, 1] such that λ1(δζ) < λ. Hence, us-

ing 2.3.3, we get m+
1 = infx∈[0,1] λ1(δx). This equality is equivalent, according

to 2.4.1, to the following fact: F (m+
1 , x) is defined for all x ∈ [0, 1] and satisfies

supx∈[0,1] F (m
+
1 , x) = 1.

Since m+
1 > 0, from 2.4.3 it follows that if μ = m+

1 , then for any ζ ∈ [0, 1] the
conditions (25) hold. According to (26), (25) and

∂F (μ, ζ)

∂ζ
≡ μ · cos

2[
√
μ · (1− βμ − ζ)]− cos2[

√
μ · (ζ − αμ)]

cos2[
√
μ · (ζ − αμ)] · cos2[√μ · (1− βμ − ζ)]

, (38)

it follows that the function F (μ, ·) can have at some point ζ ∈ (0, 1) a local
extremum satisfying F (μ, ζ) > 0 only if ζ = (1 − βμ + αμ)/2, ζ > αμ and
ζ < 1 − βμ. But this conditions imply, according to (38), that such ζ must be
a point of strict local minimum of the function F (μ, ·). Therefore, F (μ, ·) cannot
have a supremum in (0, 1), so we get m+

1 = inf
{
λ1(δ0), λ1(δ1)

}
. Note that for

the potential q∗ � δi, where i ∈ {0, 1}, the equation Tq∗(λ)y = 0 is equivalent
to the problem −y′′ = λy,

y′(0)− [k20 + (1− i)
]
y(0) = y′(1) +

[
k21 + i

]
y(1) = 0.

Therefore, we have

λ1(δi)− k20k
2
1 − k21−i

k20 + k21 + 1
=
√
λ1(δi) cot

√
λ1(δi),

so m+
1 = λ1(δ1).
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3.5. Proof of Theorem 1.3.4. Consider some potential q ∈ −Γ1, and some
positive eigenfunction y ∈ kerTq

(
λ1(q)

)
. Then for any λ > λ1(q), according

to 2.3.3, we have

0 >

1∫
0

[
(y′)2 + (q − λ) y2

]
dx+ k20 y

2(0) + k21 y
2(1)

≥
1∫

0

[
(y′)2 − λy2

]
dx − sup

x∈[0,1]

y2(x) + k20 y
2(0) + k21 y

2(1).

It follows that there exists ζ ∈ [0, 1] such that

1∫
0

[
(y′)2 + (−δζ − λ) y2

]
dx+ k20 y

2(0) + k21 y
2(1) < 0.

So for any λ > m−
1 there exists ζ ∈ [0, 1] such that λ1(−δζ) < λ. Hence, using

2.3.3, we get m−
1 = infx∈[0,1] λ1(−δx). This equality is equivalent, according

to 2.4.1, to the following fact: F (m−
1 , x) is defined for all x ∈ [0, 1] and satisfies

supx∈[0,1] F (m
−
1 , x) = −1.

For any fixed value μ ∈ R we consider the conditions

F (μ, ζ) < 0, (39)

∂F (μ, ζ)/∂ζ = 0. (40)

It is clear that some point ζ ∈ (0, 1) can satisfy the equalities F (μ, ζ) =
supx∈[0,1] F (μ, x) = −1 only if (39) and (40) hold.

Suppose μ > 0. Then, according to (38), (26), (32) and (30), for any point
ζ ∈ (0, 1) satisfying (39) the condition (40) holds if and only if the problem

−y′′ = μy at (0, ζ) ∪ (ζ, 1), (41)

y′(0)− k20y(0) = 2y′(ζ − 0) + F (μ, ζ)y(ζ)

= 2y′(ζ + 0)− F (μ, ζ)y(ζ) = y′(1) + k21y(1) = 0 (42)

has a continuous positive solution. Besides, for any point ζ ∈ (0, 1) satisfying
(39) and (40) we have

αμ > ζ > 1− βμ. (43)

Therefore, according to (38) and (25), this stationary point ζ is a strict maximum
of F (μ, ·). Since for any x ∈ [0, 1], using (43), we get

−π/2 < −√
μαμ ≤ √

μ · (x− αμ) <
√
μ · (x− 1 + βμ) ≤ √

μβμ < π/2,

it follows from the proposition 2.4.3 that the function F (μ, ·) is defined every-
where on [0, 1].
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Suppose μ = 0. Let us use the same method as in the previous case, changing
(26) to (27), and (32) to (33). Then we get that for any point ζ ∈ (0, 1) satisfying
(39) the condition (40) holds if and only if the problem (41), (42) has a continuous
positive solution. Using (27) we also get that the second derivative of F (0, ·) is
negative. Hence any stationary point ζ ∈ (0, 1) is a strict maximum of F (0, ·).

Suppose μ ∈ (−k40 , 0). Then, using (28), we get

∂F (μ, ζ)

∂ζ
≡ −μ

{
sinh−2

(√
|μ|ζ + αμ

)
− sinh−2

(√
|μ|(1− ζ) + βμ

)}
,

where

αμ � 1

2
ln
k20 +

√|μ|
k20 −

√|μ| , βμ � 1

2
ln
k21 +

√|μ|
k21 −

√|μ| .

Therefore, according to (34), for any point ζ ∈ (0, 1) satisfying (39) the condi-
tion (40) holds if and only if the problem (41), (42) has a continuous positive
solution. Since ∂2F (μ, ζ)/∂ζ2 < 0, it follows that any stationary point ζ ∈ (0, 1)
is a strict maximum of F (μ, ·).

Suppose 0 > μ = −k40 = −k41 . Then the function F (μ, ·) is a negative constant,
and for any point ζ ∈ (0, 1) problem (41), (42) has a continuous positive solution.

Suppose μ ∈ [−k41 ,−k40], also μ < 0 and k1 > k0. Then from (28) and (34)
it follows that ∂F (μ, ζ)/∂ζ < 0, and the problem (41), (42) has no positive
solutions for any ζ ∈ (0, 1).

Suppose μ < −k41 . Then, using (28), we get

∂F (μ, ζ)

∂ζ
≡ μ

{
cosh−2

(√
|μ|ζ + αμ

)
− cosh−2

(√
|μ|(1− ζ) + βμ

)}
,

where

αμ � 1

2
ln

√|μ|+ k20√|μ| − k20
, βμ � 1

2
ln

√|μ|+ k21√|μ| − k21
.

Therefore, according to (34), for any point ζ ∈ (0, 1) satisfying (39) the con-
dition (40) holds if and only if problem (41), (42) has a continuous positive
solution. Since ∂2F (μ, ζ)/∂ζ2 > 0, it follows that any stationary point ζ ∈ (0, 1)
is a strict minimum of F (μ, ·).

From the proposition 2.4.1 we also get that for any μ ≤ 0 the function F (μ, ·)
is defined everywhere on [0, 1].

Combining all this, we obtain the following: the existence of a continuous
positive solution to the problem (12), (13) for some μ ≥ −k40 and ζ ∈ (0, 1)
implies that F (μ, ζ) = −1, the function F (μ, ·) is defined everywhere on [0, 1],
and supx∈[0,1] F (μ, x) ≤ −1. Therefore, m−

1 = λ1(−δζ). In converse, if for any

μ ≥ −k40 and ζ ∈ (0, 1) the positive solution of (12), (13) does not exist, we get
m−

1 = inf
{
λ1(−δ0), λ1(−δ1)

}
. From the equation

λ1(−δi)− k20k
2
1 + k21−i =

(
k20 + k21 − 1

) · ψ(λ1(−δi)
)
,
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where i ∈ {0, 1} and

ψ(x) �

⎧⎪⎨
⎪⎩

√
x cot

√
x for x > 0,

1 for x = 0,√
|x| coth

√
|x| for x < 0,

we obtain that inf
{
λ1(−δ0), λ1(−δ1)

}
= λ1(−δ0).

3.6. Now we get some conditions for the existence of a continuous positive
solution to the problem (12), (13) considered in Theorem 1.3.4.

Suppose μ0(ζ), where ζ ∈ (0, 1], is the minimal eigenvalue of the problem

−y′′ = λy, (44)

y′(0)− k20y(0) = 2y′(ζ)− y(ζ) = 0, (45)

and suppose μ1(ζ), where ζ ∈ [0, 1), is the minimal eigenvalue of the problem
(44) and

2y′(ζ) + y(ζ) = y′(1) + k21y(1) = 0.

It is clear that for some μ ∈ R and ζ ∈ (0, 1) a continuous positive solution
to (12), (13) exists if and only if the equalities μ0(ζ) = μ1(ζ) = μ hold.

3.6.1. If k20 = 1/2, then μ0(ζ) ≡ −1/4.

If k20 > 1/2, then the function μ0 strictly decreases and satisfies

lim
ζ→0

μ0(ζ) = +∞ and μ0(1) > −1/4.

If k20 < 1/2, then for any ζ ∈ (0, 1] the inequality μ0(ζ) < −1/4 holds.

P r o o f. Suppose k20 = 1/2. Then for any ζ ∈ (0, 1] the problem (44), (45) has
the positive eigenfunction y(x) ≡ ex/2 corresponding to the eigenvalue −1/4.

Suppose k20 > 1/2. Since the eigenvalues of the problem (44), (45) increase
by k20 , it follows that μ0(ζ) > −1/4. Then let y0 ∈W 1

2 [0, ζ] be an eigenfunction
of the problem (44), (45) corresponding to the eigenvalue μ0(ζ). Continuing
the function y0 for any θ ∈ (ζ, 1] to the interval (ζ, θ] in the form y(x) �
y0(ζ)e

(x−ζ)/2, for the obtained function y ∈W 1
2 [0, θ] we get

θ∫
0

[
(y′)2 − μ0(ζ) y

2
]
dx+ k20 y

2(0)− y2(θ)

2

=
[−1/4− μ0(ζ)

] · [eθ−ζ − 1
] · y2(ζ) < 0,

hence μ0(θ) < μ0(ζ).
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Finally, for ζ → 0 we have uniform by y ∈ W 1
2 [0, ζ] asymptotic estimate

ζ∫
0

(y′)2 dx+ k20 y
2(0)− y2(ζ)

2

=

⎡
⎣ ζ∫

0

(y′)2

2
dx+ (k20 − 1/2) y2(0)

⎤
⎦+
⎡
⎣ ζ∫

0

(y′)2

2
dx+

y2(0)− y2(ζ)

2

⎤
⎦

≥ k20 − 1/2 + o(1)

ζ

ζ∫
0

y2 dx− 1

2

ζ∫
0

y2 dx,

therefore, μ0(ζ) ≥ [k20 − 1/2 + o(1)] · ζ−1.

The inequality μ0(ζ) < −1/4 for the case k20 < 1/2 is proved likewise the
inequality μ0(ζ) > −1/4 for the case k20 > 1/2. �

3.6.2. If k21 = 1/2, then μ1(ζ) ≡ −1/4.

If k21 > 1/2, then the function μ1 strictly increases and satisfies

lim
ζ→1

μ1(ζ) = +∞ and μ1(0) > −1/4.

If k21 < 1/2, then for any ζ ∈ [0, 1) the inequality μ1(ζ) < −1/4 holds.

The proposition 3.6.2 is proved likewise 3.6.1.

Combining 3.6.1 and 3.6.2, we get the last proposition:

3.6.3. The problem (12), (13) has a continuous positive solution for some
μ ≥ −k40 and ζ ∈ (0, 1) if and only if this condition holds:

k20 > 1/2 or k20 = k21 = 1/2.
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