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PARTIAL COVERING OF A SPHERE

WITH RANDOM NUMBER OF SPHERICAL CAPS

Tomasz Gronek — Ewa Schmeidel

ABSTRACT. In this paper we study sphere coverage issue. A sphere of radius

one in a 3-dimensional Euclidean space is given. We consider random location
of N spherical caps on a sphere, assuming that N is a discrete stochastic variable
with a Poisson distribution. Using suitable difference equation, the expected area
of the covered region is investigated.

1. Introduction

Since the 1930s there appear in the literature works on stochastic models
of geometric problems, such as random arrangement of elements (points, lines,
segments, arcs, circles, etc.) on the sections of straight, curves (e.g., districts),
flat shapes, second degree surfaces (e.g., sphere in R

3) and the associated ran-
dom distribution of the respective areas. Most of them has discrete character.
More details can be found in the papers by H o l s t [10], K o s c h i t z k i [14],
M a ć k o w i a k- �L y b a c k a [15], M a n n i o n [19], M o r a n and F a z e k a s [20],
and monographs of K e n d a l l and M o r a n [13], M a d r i a [18], and S a n t a -
l o [21]. The topic of randomly covered surface area was considered by many
authors, for example, by D v o r e t z k i [2], F l a t t o [5] and [6], G i l b e r t [7],
S t e v e n s [22], and Y a d i n and Z a k s [24]. Proper mathematical models
of such processes could be difference equations.

The background for difference equations can be found in the well-known
monograph [1] by A g a r w a l, as well as in E l a y d i [4], and K e l l e y and
P e t e r s o n [12].

Recently, in [3], D u m e r studied covering of a given sphere of any radius in
an n-dimensional Euclidean space with solid spheres of radius one. The author’s
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objective was to design a covering of the lowest covering density, which defines
the average number of solid spheres covering a point in a bigger sphere.

In [16] and [17], M a e h a r a considered N spherical caps, each of area 4πp(N),
randomly distributed on the surface of a unit sphere Sn in the (n+1)-dimensional
Euclidean space. The author investigated the intersection graphs of these random
caps. For a simple graph GE with edge set E, he considered independent random
points on Sn, and studied the minimum value of the spherical distance between
them.

The sphere coverage problem was also studied by S u g i m o t o and T a n e -
m u r a, see [23]. The authors considered the sequential covering of identical
spherical caps, so that none of them contains the center of another one.

The aim of this work is to obtain the probability characteristics of the random
covering sphere areas by spherical caps. Sphere covering is considered according
to the number of spherical caps. The expected area EA of union of n spherical
caps randomly distributed on the sphere is studied. This process is here described
by the following difference equation

ΔEA(N = n) = 4π sin2 α

2
cos2n

α

2
,

where Δ denotes the forward difference operator defined in the usually way, i.e.,
Δxn = xn+1 − xn for x : N → R.

There are numerous uses that constitute motivation for this research. For in-
stance, the results are applicable in biology. Influenza virus can be considered
as a sphere of radius 50μμ. This virus is attacked by antibodies, which are un-
derstood as the cylinders of radii 37μμ and heights that can be skipped. The
antibodies attach themselves perpendicularly to the virus surface. Suppose that
n such antibodies are attached to the surface of the virus, and the points of con-
tact are randomly and independently placed on the sphere. The question is to
find probability of sphere coverage by spherical caps, which allows the evolution
of the likelihood of the virus destruction by the antibodies. Another example
of application can be found in astronomy. Let Xi be the position of observa-
tories on the surface of the Earth and α be the angle of observations of these
observatories. The sphere coverage area corresponds to the covering of the ob-
servation area on the sphere (in the sky).

Let S2 be a sphere of radius one in R
3 and points Xi, i ∈ {1, 2, . . . , n} are

randomly distributed over S2. A spherical cap is a portion of a sphere cut off by
a plane. By D(Xi, α) we mean a spherical cap of the angular radius α ∈ (0, π)
with center at point Xi with no boundary (see Fig. 2 in [23]).

The probability space
(
M (S2), B(M ), P

)
is an appropriate model of distri-

bution of random number N of spherical caps on sphere. Here M (S2) is a space
of Lebesgue measurable subsets on S2 ⊂ R

3 with finite Lebesgue measure μ
of its subsets. An outcome is the result of a single execution of the model.
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Since individual outcomes might be of little practical use, more complex events
are used to characterize groups of outcomes. The collection of all such events is
a σ-algebra. We consider Borel algebra B(M ) of the class of all Lebesgue mea-
surable sets on M (S2). There is a need to specify likelihood of occurrence of each
event. This can be done using the probability measure function P. Here P is the
assignment of geometrical probabilities to the events A, that is, a function from
events to probability levels defined as follows

P (A) =
μ(A)

μ(S2)
. (1)

Note that stochastic geometry emphasizes the random geometrical objects them-
selves. For instance, there are different models for random lines, for random
tessellations of the plane, and for random sets of points of a spatial Poisson
process that can be centers of discs. So, the Poisson distribution can be ap-
plied to systems with a large number of possible events, each of which is rare.
Such distribution is used in this paper. The Poisson distribution arises as the
distribution of counts of occurrences of events in multidimensional intervals.

In Poisson point processes the probability that random value ξ : M (S2) → R

equals i is given by the following formula

P
(
ξ(A) = i

)
=

(λμ(A))ie−λμ(A)

i!
, (2)

where μ(A) is the area of the region A. The positive real number λμ(A) is equal
to the expected value of E

(
ξ(A)

)
. So, we have

E
(
ξ(A)

)
= λμ(A). (3)

The following law of total probability is explored in our investigations.

����� 1� The event A in the probability space is given. Hence

P (A) =

∞∑
i=0

P (A/ξ = i)P (ξ = i), (4)

where P (A/ξ = i) is conditional probability and P (ξ = i) is probability of event
ξ = i.

For discrete random variable ξ the expected value E
(
ξ(A)

)
can be found using

the following formula

E
(
ξ(A)

)
=

∞∑
i=1

E
(
ξ(A)/ξ = i

)
P (ξ = i). (5)

Let Xi �= Xj where i, j ∈ {1, 2, . . . , n} and D(Xi, α) ∩ D(Xj , α) �= ∅. We call
the points which belong to the boundary of both spherical caps the boundary
intersection points. Any two spherical caps have either two boundary intersection
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points or none. Boundary intersection point is not covered by any of these caps.
Such point could be covered only by another spherical cap. Sphere S2 is covered
by spherical caps if each boundary intersection point is covered by a spherical
cap.

By a random variable ξ : M (S2) → R of event A we mean a number of bound-
ary intersection points in a fixed region A ⊂ S2 (ξ(A) < ∞).

2. Covering a sphere with caps

We will investigate the expected value of the covered area by spherical caps
randomly and independently distributed on the sphere. We assume that the
Lebesgue measure of the cap is its area. Curved surface area of each spherical
cap denoted by μ

(
D(Xi, α)

)
equals

μ
(
D(Xi, α)

)
= 2π(1 − cosα) = 4π sin2 α

2
. (6)

����� 2� Let Y be any point on S2. Probability p of the event A that
Y ∈ D(Xi, α) for exactly one i where i ∈ {1, 2, 3, . . . , N} is

p = P (A) = sin2 α

2
. (7)

P r o o f. Utilizing (6) and μ(S2) = 4π in (1), we get the thesis. �

����� 3� Probability P (C) of event C that point Y is covered by at least one
of n spherical caps is

P (C) = 1 − (1 − p)n and P (Cc) = (1 − p)n. (8)

P r o o f. Let Ac be complement event of A. Since P (A) = p is probability that
point Y is covered by one cap then P (Ac) = 1 − p is probability that Y is not
covered by a cap. Thus P (Cc) = (1 − p)n is probability that Y is not covered
by any cap. This implies that P (C) = 1 − (1 − p)n is probability of the event
that Y is covered by at least one of n caps. �

Let us assume that N spherical caps are on S2. The Poisson distribution
of number of spherical caps will be used in the following lemma.

����� 4� Probability of the event that given point is not covered by any of N
spherical caps is

P (Cc) = e−4λπp.
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P r o o f. From (4), we obtain

P (Cc) =

∞∑
n=0

P (Cc/N = n)P (N = n).

By (8), (2) and Maclaurin expansion of ex, using μ(S2) = 4π, we get

=

∞∑
n=0

(1 − p)n
e−4λπ(4λπ)n

n!
= e−4λπe4λπ−4λπp = e−4λπp.

�

Remark 1�

P (C) = 1 − e−4λπp.

Let Y1, Y2, . . . , Yk where k ∈ {1, 2, 3, . . . , N} be given k points on S2. Let B
be an event that such k points are not covered by any spherical cap D(Xi, α),
i ∈ {1, 2, 3, . . . , N} where distance YiYj, i �= j, is greater than or equal to 2α.
We will find conditional probability P (B/N = n) of the event B that
Yk /∈ D(Xi, α) for i ∈ {1, 2, 3, . . . , N} when the number of caps N equals n.
By (4) and (2), we have

P (B) =

∞∑
n=0

P (B/N = n)
(4λπ)ne−4λπ

n!
. (9)

On the other hand, using Remark 1 and independence of events, we get

P (B) =
(
1 − e−4λπp

)n
.

Hence, by Binomial Formula, we obtain

P (B) =

k∑
r=0

(
k

r

)
(−1)re−4rλπp = e−4λπ

k∑
r=0

(
k

r

)
(−1)re4λπ(1−rp),

and Maclaurin expansion of ex implies that

P (B) = e−4λπ
k∑

r=0

(
k

r

)
(−1)r

∞∑
n=0

(4λπ(1 − rp))n

n!

= e−4λπ
∞∑

n=0

(4λπ)n

n!

k∑
r=0

(
k

r

)
(−1)r(1 − rp)n.

Comparing the above formula with (9), it yields

P (B/N = n) =

k∑
r=0

(
k

r

)
(−1)r(1 − rp)n.

Note that S t e v e n s, in [22], proved the above formula in a different way.
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Let us assume that exactly N spherical caps are distributed on the unit sphere.
If the maximal area of N caps equal to 4Nπ sin2 α

2 is smaller than the area of the

sphere S2 then probability of the event that sphere S2 is covered by N spherical
caps D(Xi, α) where i = 1, 2, . . .N equals zero. It means that 4Nπ sin2 α

2 should
be greater than or equal to the sphere area for possible covering.

Let us consider one spherical cap D(Xi, α). If Xj ∈ D(Xi, 2α), where i �= j,
then cap D(Xj , α) has boundary intersection points with cap D(Xi, α).
By ND(Xi,2α) we denote the number of spherical caps which have boundary
intersection points with spherical cap D(Xi, α). By k we denote the number
of boundary intersection points of cap D(Xi, α) and other caps. We consider
the event Ai that i different points Xj , j ∈ {1, 2, 3, . . . , N}, are distributed on
spherical cap D(Xi, 2α). By a random variable ξ : M (S2) → R of this event, we
mean the number of boundary intersection points in spherical cap D(Xi, 2α).
So, ξ(Ai) = i and i = 2ND(Xi,2α). Hence, the expected value of the number

of boundary intersection points of one spherical cap is E
(
ξ(Ai) = i

)
. We have

E
(
ξ(Ai) = i

)
= 2E

(
ND(Xi,2α)

)
.

From above and (3), we get

E
(
ξ(Ai) = i

)
= 8λπ sin2 α

independently of i.

Let K be a number of all boundary intersection points on the unit sphere S2.
Due to double counting of each boundary intersection point

K =
1

2

N∑
i=0

ki.

Firstly, we assume that any point of unit sphere S2 is covered by spherical
caps. We will find the expected value EK(λ) of K. Independence of events and (3)
implies that

EK(λ) =
1

2
E
(
ξ(Ai) = i

)
E(S2) = 4λπ sin2 α4λπ = 16π2λ2 sin2 α.

By (7), we have

EK(λ) = 16 π2 λ2 4 sin2 α

2

(
1 − sin2 α

2

)
= 4π2λ2p(1 − p). (10)

Next, we will find the expected value E(K/N = n) of all boundary intersection
points under condition that N is fixed. Set N = n. Using (5), we get

EK(λ) =

∞∑
n=0

E(K/N = n)
(4λπ)ne−λ4π)

n!
. (11)
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On the other hand, by (10), we have

EK(λ) = 4π2λ2p(1 − p)e−4λπe4λπ.

Using Maclaurin expansion of ex, we obtain

EK(λ) = 4p(1 − p)e−4λπ
∞∑

n=0

λn+2(4π)n+2

n!
.

It follows

EK(λ) = 4p(1 − p)e−4λπ
∞∑

n=2

λn(4π)n(n− 1)n

n!
.

Due to the property of Poisson process, we get

EK(λ) = 4p(1 − p)e−4λπ
∞∑

n=0

λn(4π)n(n− 1)n

n!
. (12)

Comparing (11) and (12) we have

E(K/N = n) = 4p(1 − p)n(n− 1).

3. Main result

The expected value EA(N = n) of area of a part of unit sphere S2, which is
covered by N = n randomly distributed spherical caps D(Xi, α), i ∈ {1, . . . , n},
is studied.

����	�� 1� The expected value EA(N = n) is given by difference equation

ΔEA(N = n) = 4π sin2 α

2
cos2n

α

2
. (13)

P r o o f. Probability of the event Cc means that a given point on unit sphere is
not covered by any spherical cap. From Remark 1 we have P (C) = 1 − e−4λπp.
Hence, the expected value of covered area of a part of unit sphere S2, denoted
by EA(λ), is

EA(λ) = 4π
(
1 − e−4λπp

)
. (14)

On the other hand, by (10), we have

EA(λ) =

∞∑
n=0

EA(N = n)
λn(4π)n

n!
. (15)
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Hence, by (14), we get

EA(λ) = e−4λπe4λπ4π
(
1 − e−4λπp

)
= e−4λπ4π

(
e4λπ − e4λπ(1−p)

)
.

Using Maclaurin expansion of ex, we obtain

EA(λ) = e−4λπ4π

( ∞∑
n=0

λn(4π)n

n!
− λn(4π)n(1 − p)n

n

)

= e−4λπ4π

∞∑
n=0

λn(4π)n

n!

(
1 − (1 − p)n

)
.

Comparing the above with (15), we get the equation

EA(N = n) = 4π
(
1 − (1 − p)n

)
,

and, by (7), we have

EA(N = n) = 4π

(
1 −

(
1 − sin2 α

2

)n)
.

Hence

EA(N = n) = 4π
(

1 − cos2n
α

2

)
. (16)

It is easy to check that sequence (16) fulfills difference equation (13). �

Remark 2� Letting n go to ∞ we get

lim
n→∞EA(N = n) = 4π. (17)

P r o o f. Equality (17) follows directly from (16). �

Example 1. The following graph shows changes of covered area of unit sphere
depending on number of spherical caps N and α. For small values α the covering
of the sphere is small, even for large values of N.
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The above results are closely connected to those presented by G r o n e k in [8]
and [9]. In [8], the random configuration of three spherical caps of constant radii
on the unit sphere is considered. In [9], the author studied the case of random
configuration of three spherical caps of different radii.
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