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1. THE PROBLÉM OUTLINE

The introduction remark: Due to briefness in the text the topographic or terrain 
surface of georelief will be signed as TSG, the diserete points field of altitudes 
DPFA, the primary triangel net PTN and digital terrain model DTM.

Georelief is specific subsystém of landscapc sphere that considerable influences 
the spatial differentiation of individual landscape components, the spadal differentia- 
tion of geoecological processes in landscape as well as landscape as entirety. Howe- 
ver, it also considerable influences the individual spheres of human acdvides in 
space mainly in agricultural and forest spheres as well as the ones of transportation, 
industrial and settlement.

Therefore georelief from various wievpoints is not only the subject of study and 
modelling in many scientifíc disciplines but in the projection and technical praxes 
including militaiy and management praxes as well. Due to this various digital geore­
lief models (Digital Terrain Models - DTM) were developed that model georelief 
and its geometrie structure mainly without dme parameter in various dimensions and 
on various levels of spadal accuracy.

It means that georelief is modellcd on the basis of geodedcally, cartometrically or 
photogrametrically measured input data by the approximing funedons of two variab- 
les without dme parameter as static spatially flifferendat^ systém in the selected 
scale 1 : M; and in the adequate distinedve level Ui from what the dme interval of 
spadal actuality of input as well as calculated output data is derived.

Using DTM the resulting accuracy of georelief and its geometrie structure model­
ling depends on:

- propertics of input diserete points field of altitudes
- properties of approximing functions used in DTM.
The various different results during georelief modelling using DTM can be got 

when the selected region of georelief is modelled using DTM as follows:
1. from the sanic input rcprcscntativc diserete points field of altitudes (DPFA), 

however using various approximing functions (the differences in results are caused 
by the difíerent properties of the used individual approximing functions),

2. using the same approximing funedon used in DTM however from various input 
representative diserete points field of altitudes (DPFA), while in this čase the diffe­
rences are caused by the different properties of individual input diserete points fields 
despite the Iňct that all of them fullfill the conditions of representativeness.

In the contribudon the problém (2) of positional accuracy of georelief modelling 
and the set of its morphometric quantities from wievpoint of the properdes of input 
representative diserete points field of altitudes (DPFA) is discussed. It is showed that 
the input representative diserete points field of aldtudes (DPFA) must fullfill two 
basic conditions:

2a. the condition of representativeness
2b. the condition of correct configuration of points of diserete points field of 

aldtudes (DPFA) from which the primary triangel net (PTN) is derived.
So, the subject of the contribudon are the properties of input data and their 

influence on the calculation of numcric and positional accuraces of calculated data
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that in our čase is the set of moq^hometric quantities of georelief that characterizes 
georelief geometrie structure.

In the following parts of contribution in the sense of introduction remark we will 
use the abbreviations for the most frequent terms TSG, DPFA, PTN and DTM.

The total problém is outlined in the contributions of Kalak and Krcho (1983), 
Krcho (1964a, 1964b, 1973, 1975, 1977, 1990, 1992, 1993) where the problém was 
systematically solved, beginning by the mathematic formulation of the morphometric 
quantities set even with physical significance and ending by the modelling of total 
georelief geometrie stmeture using the digital models. The part of solved problém 
was the problém of properties of input DPFA and its PTN in relation to the geometrie 
structure of TSG and so to the positional and numeric accuraces of TSG modelling 
using DTM. This is important from wievpoint of interdisciplinary DTM applications 
in many scientifíc disciplines including civil and military pracúce. It has the signifi­
cance during the modelling of dynamics and spatial differentiaúon of erosion-denu- 
daúon and transport processes on georelief and on TSG resp. In relaúon to this we 
shall demonstrate that there exist considerable relaúons between spatial points distri- 
buúon of input DPFA and its PTN and the geometrie structure of TSG.

The resulting accuracy of modelling in the sense of the above menúoned depends 
on the properúes of input set DPFN and its PTN and on the properúes of approxi­
ming funcúons used in DTM. According to the density of points and their distribu- 
úon the set of points DPFA must fullfill the eriteria of representativeness and mutual 
configuration influencing PTN triangels.

The menúoned problém in relation to the contributions Krcho (1973 to 1991) is 
briefly documented from the selected modelled region of Ružiná at Lučenec (Inner 
Western Carpathians) in the form of Computer outputs.

2. GEORELIEF AND ITS TSG - GEOMETRIC STRUCTURE OF TSG 
AND MODELLED SET OF MORPHOMETRIC QUANTITIES AS 

GEORELIEF PARAMETERS

We consider TPG in the Carthesian coordinates systém < 0, x, y, z > as smooth 
surface deseribed by the function in generál form

z = ÄX, y), resp. z = z{x, y), (1)
that is formed by the set of points

Eh/.-= (2)

where I is the index set and i is appropriatelly selected identification mark for 
ordered triple xi, yi, Zi. Simultaneously, the l^nction (1) is the function of continuous 
scalar field of altitudes formed in the scalar basis (x, y) by the set

Eri’' - \Ai {xi, yi), Zíj /€ I (3)

where / is the index set and i is appropriatelly selected identification mark for 
ordered couple (x/, yi) and coordinated scalar zj of altitude. In the scalar basis the set 
(3) eorresponds with the set (2) on TSG.
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Note 1: In the set (2) zi means the coordinate expressed in linear measures while 
in the set (3) it means the scalar; the scalar z, in each point A, (x,, yi) of scalar basis is 
converted to the coordinate so that the unit of length Ui is coordinated to the scalar 
unit Zi, so the coordinate zi = ui. Zi and it is vertical to the piane (x, 3^). If the end
points of coordinates Zi are signed as points Af (x/, y,-, z,) ^ ^RF (2) then the points 
form the smooth TSG in Carthesian systém.

About the function (1) that analytical form of which is not known we suppose 
that it is continually differentiable at least up to second order, so it has at least up to 
second order the continual and partial derivations expressed briefly in the form Zv, Zy,
Zxxí Z.xyí Zyy •

Even if the analytic form of the function (1) is not known its required properties 
are essentially important so that the approximing functions z = Pi (x, y) (i = l, 2, ....) 
must be adequate and they substitute in DTM the function (1) where TSG and its 
geometrie structure is modelled on the basis of input DPFA and using DTM.

The geometrie stmeture of TSG is characterized by the set of morphometric 
quantities

Grf= {z, äz, Sn, y N. An, (KnU ^ CO. (KNh. (Kvh, Kr, N„F, NtF KrF F,...} (4)

that are considered as morphometric parameters of georelief while
z - altitudes expressed in < 0, x, y, z > as the basic quantity that carries the 
information about TSG and it is considered the basic parameter in many quantitative 
relations not only in geography but in otber scientifíc disciplines as well,
A Z - relative heights considered in the direction of slope eurves (of orthogonal 
eurves to contour lines) - are the basic parameters for calculation of mathematic - 
physical understood heights configuration of georelief in the gravitation field of the 
Earth,
Sn - the slope length of georelief in the direction of slope eurves (of orthogonal 
eurves to contour lines) according the mark ± {KN)n divided into
(í«)x - the length of slope on convex forms NnFx in the direction of orthogonal 
eurves to contour lines where (A’v)n = co > 0,
{sn)K - the length of slope on concave forms NnFK in the direction of orthogonal 
eurves to contour lines where (/f/v)n = co < 0,
that are important parameters for calculation of spatial distribution of erosion - denu- 
dation and transport energy of modelling processes on georelief

From the set Grf (4) we present the quantities that direetly influence the distribu­
tion of input DPFA points and the formation of triangels PTN. They are as follows:

y N - the slope of TSG in the direction of slope eurves (of orthogonal eurves to 
contour lines) from \grad z\ expressed by the relation

yv= are tg{\grad z|) =y/^ + (5)

graphically in the form of isolines field in modelled region of Ružiná expressed in 
tíie Fig. la,
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Fig. I a. YN and fi =0. Isoline ficld of slope YN of geoielief in the direclion of orthogonal curves to conlour lineš.

Fig. 1 b. An and Kr=(). Isoline tleld of the orientalion of georelief againsl Cardinal poinLs.
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An - the orientation of TSG against Cardinal points delcrmined by the vector 
-grád z and expressed from the coordinates of its unit vector -Ä? so

An= arccos = are Sin -2.V
^ Z.t + Zy

(6)

that is in the ťoím of isolines field expressed at the Fig. Ib,
(KN)n - the normál curvature of TSG in the direction of slope curves (of 

orthogonal curves to contour lineš) expressed by the relation

{KN)n = CO =
ZxxZx + '^ZxyZxZy + ZyyZy

(z?+ 2r)V (1 + z,?+ zj)^ (7)

where (KN)n = co acquires the values (KN)n > 0, (A'/v)„ =0, (KN)n < 0 that quantitati- 
vely characterize the norma! georelief forms N„F in 'the direction of orthogonal 
curves to contour lineš; the rádius of norma! curvature (/?/v)n = l/(KN)n = 1/ (a lies in 
the norma! N to the TSG; the norma! curvature (KN)n = co is in the form of isolines 
field from modelled region of Ružiná expressed at the Fig. 2,

Fig. 2. n Normál curvature of georelief in the direction of slope curves (of orthogonal curves to contour lineš). 
Isoline field of the normál curvature of georelief in the direction of slope curves.
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(KN)t - the normál curvature of TSG in the direction of tangents to contour 
lineš expressed by the relation

{K/\/)í =
2

Z.KxZy
2

2ZxyZxZy + ZyyZx
(8)

where {Kn)i acquires the values ÍKn)i > 0, {Kn)i = 0, {Kn)í < 0,
the rádius of normál curvature (Rn)i = \/(Kn)i lies in the normál N to the TSG
similarly as the (Äw)«, however (Rn)! (/?yv)n,

{Kv)i - the vertical curvature of TSG in the direction of tangents to contour 
lineš expressed by the relation

(Kv)f =
ZxxZy — 2ZxyZjcZy + ZyyZx 

(Zx + Zy)(Zx + Zy + 1)
(8’)

where (Kv)/ > 0, (Kv)/ = 0, (Ky)/ < 0, while the relation between (Ky)/ and (K/v)/ has 
the form (Ky)/ = (Kn)i /cos jn ; (Kn)i = (Ky)i.cos yrv, where

cos JN =
yj Zx + zj+ 1

(8”)

the rádius of vertical curvature RV = ll(Kv)/ lies in the vertical perpendicular to the 
plane (x, y) and so parallel to the axis of Carthesian coordinates systém < O, x, y, z >,

Kr - the horizontál curvature of TSG determined by the relation

Kr= -
ZxKZy — 2ZxyZxZy + ZyyZx 

2Ť3V (Z-V + Zy)
(9)

where Kr > 0, Kr - 0, Kr < 0, while the relation between Kr and {Kn)i (8) has the 
form Kr = (Kn)/ /sin yw ; (Kn)/ - Kr.ún y/v , where

V~žf
sin yw =

+ z]

'\J i + Zx + Zy
(9’)

the rádius of horizontál curvature (R)Kr - 1/ Kr lies in the plane of the contour line; 
the horizontál forms of georelief Krľ are quantitatively characterized by the horizon­
tál curvature Kr (9); the horizontál curvature Kr in the form of isolines fields is 
expressed in graphs in the Fig. 3;

NriF - the norma! forms of TSG in the direction of slope curves (of orthogo­
nal curves to contour lineš) quantitatively characterized by the value {KN)n = co (7) 
and according the mark ± (KN)n they are divided in:
NnFx - the convex normál forms in the direction of orthogonal curves to contour 
lineš where (KN)r\ = co > 0,
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Fig. 3. K, Isoline field of the horizontál curvature of georelief.

NhFk - the concave norma! forms in the direction of orthogonal curves to contour 
lineš where {KN)n s cd < 0,
while NnFx and NnFx are separated by the isoline (KN)n = (o = 0 in the equation

2 2 
ZxxZx + '^ZxyZxZy + ZyyZy = 0, (10)

NnF from mentioned modelled region of Ružiná are expressed in graphs at the Fig. 4.
NíF - the normál forms of georelief in the direction of tangents to contour 

Unes quantitatively characterized by the value (Kn)i (8) and according the mark 
± ÍKn)i intemally divided into
NiFx - the convex normál forms in the direction of tangents to contour lineš where 
(Kn), >0, ... .
NiFk - the concave normál forms in the direction ol tangents to contour lineš where 
(Kn), <0, ,
while NiFx and N/Fk are separated by the isoline (Kn), = 0 in the equation

2 2 
ZxxZy + 2zxyZxZy + ZyyZx = 0, (11)

KrF - horizontál forms of TSG quantitatively characterized by the value Kr (9) 
and intemally divided into
KrFx - the convex horizontall forms where Kr>Q and so {Kn), - Kr sin y/v > 0 
KrFx - the concave horizontál forms where Kr < 0, and so (Kn), - Kr sin y/v > 0
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while KrFx and KrFx are separated by the isoline Air = 0 in the equation that is 
identical with the equation {Kn)i = 0 (10) and therefore the forms NiF [NtFx, niFk] 
and the forms KrF [KrFx. KrFx] are spatially identical, however according to the 
relations (9) intemally quantitatively differentiated; the horizontál forms KrF are 
expressed in the Fig. 5.

F - the total fonns of TSG quantitatively characterized (AÍA')n, Kr intemally divi­
ded into
Fxx - convex - convex forms where is valid that [(A'a/)/i = co > 0, Air > 0]
Fkx- concave - convex forms where is valid that [(Aía/)„ = co< 0, A'r > 0]
Fkk- concave - concave forms where is valid that [(Aľv)/i = (o< 0, Aľ^ < 0]
Fxk - convex - concave forms where is valid that [(Aľ/v)„ s co > 0, A'r < 0],

The total geometrie forms F [Fxx Fxx Fxx Fxx J are separated by the isolines 
(KN)n = (O = 0 (10), as well as the isolines (Kn)i - 0= Air = 0(ll); see Fig. 6. They 
háve essential interdisciplinary significance; from viewpoint of the subject of contri- 
bution they considerable determine the localization of points DPFA on TSG and the 
formation of triangel nets.

The note 2. The norma! curvature {KN)n is expressed also with the symbol co due 
to the originál contribution Kreho (1973) where it was derived and cartographically 
expressed on the coloured isoline map of normál georelief curvature.

The note 3. The set Gxx (4) in relation to the contribution Kreho (1964a, 1964b) 
was formulated in detail and derived in the contribution Kreho (1973) and later 
analyzed in detail in the contributions Kreho (1983a, b, 1986, 1990, 1991, 1992, 
199.3). Similarly, the problém of morphometric analysis of georelief was solved in 
the contributions Evans (1972). Both contributions i. e. Evans (1972), Kreho (1973) 
were issued independently, moreoves the contribution Kreho (1973) was issued in 
1973. However, the contribution was sent to editorial in 1970, the issue was prepared 
in 1972. Unforlunatelly, due to the mathematic text, 10 coloured maps and 10 colou­
red charts and graphs supplemented, the preparation for issue took one year, so the 
contribution was published in 1973. However, we can state that the problém of 
morphometric analysis of georelief on the basis of geometrie aspect of llelds theories 
in connection to the contribution Šalamon (1961, 1963) was sketched and cartograp­
hically realized in the contributions Kreho (1964a, 1964b). In the contribution Kreho 
(1964b) the approach was documented on two coloured maps of the scale 1:5000 
Košice - sever, Košice - juh and on the coloured Map of slope gradients in Košická 
kotlina (basin) in the scale 1:50 000.

3. THE REPRESENTATIVE INPUT SET OF POINTS DPFA FORMING THE
SET dErf and ITS ADEQUATE SET dErf AS THE BASIS FOR TSG 

MODELLING WITH USING DTM

In the sense of contributions Kreho (1973, 1986, 1990, 1991, 1992) the set oí 
morphometric georelief quantities Grf (4) characterizes the geometrie georelief 
stmeture.

Significant relations between geometrie stmeture of TSG and the input points set 
DPFA and the formed PTN are manifested by the means of morphometric quantities 
(Kn)„ (7), {Kn)i (8), Kr (9) and defined forms Fxx, Fxx, Fxx, Fxx. Therefore, the
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Fig. 6. Total geometrie form.s of georelief.

eriteria Ibr localization and configuration oť points DPFA and the eriteria for trian- 
gels PTN formation are based on.

The representative set of measured input points for DTM forms on TSG the set

Ä- = (•</-31/-2/)]/=| > (12)

that in the plane (x, y) of Carthesian coordinate systém <0, x,y.z> as scalar basis of 
altitudes field corresponds the set

rÄ/- = lAj (,xj,yj,Zj)\
./=l

(13)

where the scalar of altitude Zj is unambiguously coordinated to each point Aj {xj, yj). 
The points Aj (xj, yj), Zj e form in the scalar basis the representative DPFA. The 
points Aj (xj, yj, z.j) are nodal points of triangels PTN on TSG and their adequate 
points Aj (xj, yj), Zj in the scalar basis are the nodal points of triangels PTN in the 
scalar basis.

Let US suppose for theoretical and methodological reasons that the coordinates xj, 
yj, z,j points Aj e (12) are measured theoretically exactly, and they are approp- 
riate to the function (1).
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Then for (12) is valid that

D^lľ = c El,.. = {Af {xi,yi,zi)}.

For the adequate set (13) is valid that

£'«/••= ixi,yi),Zi\.^

(14)

(15)

where / is the index set and i is appropriatelly selected identification mark for 
ordered couple (xj, yj) and the coordinated scalar, Zj of the altitude, Zj.

From viewpoint of representativeness of spatial distribution of input points 
aJ £ „El,, on TSG in the considered scale 1 : Mj and in its distinctive level Uj the 
relation between the density of the points and the geometrie structure TSG expressed 
by the set (4) are important. The normál and horizontál curvatures {KN)n = co, ( Kn)i, 
Kr as well as the average vertical curvature TSG between two arbitrary neighbouring 
points DPFA that is expressed by the symbol {Kv)pr play considerable role. We can 
briefly state that the point density of input DPFA depends on the value of TSG 
curvature so that it is statistically directly proportional. Because the points 
AJ e „^El,, on TSG and their adequate points AjS „E„,. in the scalar basis are the 
terminál (nodal) points PTN, the length of sides and the size of triangels PTN will be 
statistically indirectly proportional to the density of points DPFA. It means that the 
length of triangel sides in PTN is in statistical relation with georelief curvature what 
is expressed in graphs at the Fig. 7a. The vertical curvature Kv (8) that is ccxmected

cú > 0 co < 0
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with the normál curvature {Kn)i in the direction of tangents to contour lineš (8) is 
also considered.

Fig. 7a presents that if in the selected scale 1 : Mj from viewpoint of its distinctive 
level Ui and as a part of representativeness criterion the adhnissible distance (A A^v)l 
is determined between the tangent point Bc(xc, yc, Zl)íí of arbitrary vertical section in 
the direction of adequate side su of triangel and the side su then will be valid:

- the bigger the vertical curvature {Kv)íí of georelief in its vertical section leading 
in the direction of each side su of arbitrary triangel of triangels network, shorter side 
si, the under assumption that the condition (A Nv)ii < (A Nv)l is preserved.

The couple of indexes ii -fg, gh, hr, rs expresses the couples of consecutive 
numbers of individual points , A^' A^ A^ Af of triangels of triangel network deter- 
mining the individual sides sn in the Fig. 7a as well as it identifíes the individual 
vertical sections passing through the sides. Fig. 7a also indirectly seggests that on the 
vertical profile the distance (A Nv)íí of the point Bc{xc, yc, Zc)ii from its side su must 
not exceed in the considered scale 1 : Mi "the limiting" value (ANv)l determined 
from viewpoint of its distinctive level Ui as the part of representativeness criterion. It 
is expressed in detail for one triangel of triangel network in the Fig. 7b.

Due to the fact that the problém is not the subject of the contribution we shall be 
brief.

About the input sets (12) and (13) resp. we suppose that they are representative 
from viewpoint of considered scale 1 : M and their distinctive levels. The starting 
criterion of representativeness of distribution of input sets „Ef,, (12) and (13)
will be:

a. permissible length of sides of each triangel PTN where each side determined 
by the couple of terminál points Af , Af e (i\s e ;' = 1,2.. .while r^s) on TSG 
is expressed by the positional vector

rs = A Xrs Î  + AyrsJ^ + AZrs^ , (Ir

what in the scalar basis (x, y) corresponds to the positional vector

In- = A Xrs + A yrs + OJČ* , (16’)

while A Xrs = Xs -Xr, A yrs = y.s -yr, A Zrs = Zs - Zr', the length of side s% and are 
expressed by the absolute value of vectors (16), (16’) i. e.

^ <2 ‘j 9 ___^ I 2 2"

= fif.vl “V SXrs + A yrs + A yrs , Srs = finl “ v A Xrs + A yrs , (17)

what is expressed in graphs in the Fig. 7a and 7b.
b. the average vertical curvature (Ävjpr of the vertical cross-section passing 

through the points Af , Af e «£■«/., i. e. the average curvature of cross-section betwe­
en the points Af , Af e on TSG and even the rádius of average curvature (Bv)pr 
= 1/ (Aiv)/;/-while
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Fig. 7b. Determination of the representative length of the PTN triangle sides depending on vertical 
curvature Kv with (ANv)l limit value assessed.
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{Kv)nr =
(Ay,v)r.v (Ay,v)„

arctg
ľ j ^ 
ds\ Jx

- arctg
dsV y

(Aí)r.v iRv)pr^yrs
(Rv)pÁ arctg

ds\ Js
- arctg

C j \áL
dsv y

(18)

where (A Y,v)n- = (y.í) - (Y.Or, while

(Y.t)r= arctg

(Y.v).í= arctg

ds\ J

( j ^
dsv J

= arctg {zx cos a r.v + siná n)r ,

arctgiZx cosa n- + Zy siná r.s)s ,

(19)

(19’)

and (Aí)„ on the cross-section is the length of are between two points 
,Af e pEpF’ circle with diameter of curvature (Rv)pr ■

c. the distance A between the point Bf. (xc, yc, Zc) on TSG and the side sf, of 
considered triangel on TSG determined by the relation

AAřv = lUrc-XS^rx
l^v I (20)

Fig. 7b where the terminál point (xc, yc, Zc) of the positional vector u^c lies on 
the vertical cross - section between the points Af, and Af so Xce {xr, xs), yc-e (yr, y.v),
Zce (zr, Zx), and due to this for the derivation (dz, ds)c in the point Bf (xc, yc, Zc) in 
the direction of cross-section it is valid that

f I A 
dsV y

fiXx, Yí) - / (Xr, yr) Zx - Zr
----- 2----------J /-------- 2---------- ZA Xrx + A yrx y A Xrx + A yrx

lg(jx)c

The positional vector
utc = A XrcC + A yrc + A Zrc^ ,

(21)

(22)

on the vertical cross-section is determined by the points Af (xr, yr, Zr), Bf (xc. yc, Zc) 
the Fig. 7b, so

A Xrc = Xc - Xr, A yrc = yc - yr, A Zrc = Zc - Zr ■

The variable quantity ANv in the selected map scale 1 : Mi must not exceed the 
selected so called limiting distance (ANv)l valid for all input DPFA in modelled 
region as the constant. It means that 0 < ANv< (ANv)l- Between the distance ANv
of the point Bf on TSG and the side sf^ of considered triangle situated in vertical 
plane (oz)r.y and the distance A in the direction of normál N to TSG passing through
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A Nv
the point B? the relation ^N =-------cosyw is valid.

cosy.v

The note 4. Under the word vertical cross - section we understand the inter- 
section of vertical plane (o z)rx -L {x, ý) with TSG while the vertical plane (o z)rs is 
overloaded by the points Af, so the points Af, Af and the point Bf situated on 
TSG also lie in vertical plane in vertical plane [o z)rs there lies the abscissa íf,. 
what can be seen in graphs of Fig. 7b.

Between the quantities íf,., {Kv)i>r, (Rv)pr, A Nv, Ay „ are valid the relations as 
follows;

2V 2{ANv),^~ (Kv)pr(ANv)t
= 2v/ 2{Rv)pr{ANv)L - (ANv)í

pr

{Kv)pr =
S{ANv)l

(sf, 4{ANv)l
{Rv)pr —

{4x ) + 4(ANv)p
S(ANv)l

(23)

where the value of angle (A y.v)r.,- = (y.v).v - (y,v)r expressed from the relations (19), (19’) 
in radians and due to the quantities (ANv)l , {Kv)pr, {Rv)pr, is determined by the 
relation

(Ay.s)„= 2arccos[l - {Kv)pr{ANv)Ú ;

(Ay,y)r.v = arcsin(v/ 2{Kv)pr{ANv)L- iRv)pr (ANv)Í). (23’)

In the relations (23) and (23’) in the variable quantity ANv (20) admissible value is 
considered of (A Nv)ĺ that is selected for all DPFA as constant in considered scale
1 : Ml and due to its distinctive level Uj. Even the change of sides íf, value depends 
on the change of average vertical curvature (Kv)pr and the selected value (A Nv )l ■ 
Therefore the quantity A Nv (20) and its determined limiting value (A Nv )l is deter- 
minig quantity of essential significance for the lengths of sides if, of triangels PTN 
on TSG as well as for density of and their adequate points Af (xj,yj,zj)e

because the longest admissible lengths of sides if, of triangels PTN hence the density 
of points DPFA will be in close relation with the vertical curvature (Kv)pr-

If there, from the starting point Af under gradual change of terminál point Af in 
the selected direction o rs we gradually find the optimal length of triangel side with 
resulting terminál position of the point Af, then in dependance of the changing length 
and average vertical curvature {Kv)pr even ANv (20) is changed. Then the longest 
admissible distance of terminál point Af from the starting point Af is such length ífv 
where ANv = (Nv )l- Therefore for the length of triangle side íf, PTN will be valid 
the condition
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ANv < íANv)l (24)

Because (Kv)pr acquires smáli values under planar regions of TSG which are 
often close to zero, it is also required to introduce the limiting distance of two points
Af, Af expressed by the symbol (5'£)^. Therefore, all Sfs measured in selected scale 
1 : Mi on TSG except for the previous condition (24) must fullfil the condition

4,v

that in the scalar basis (x, y) corresponds with the condition

[5„= S% COS(Y,v)r.v]<[(5'z,)M= (5'f)^ COS(Y,)n].

(25)

(25’)

From (24) and (25) suggest that each two arbitrary neighbouring points Af, 
Af € on TSG and their adequate points A^, A,.6 pE/^p in the scalar basis (x, y) 
in considered scale 1 : Mi will be distanced if both conditions (24) and (25) are 
fullfilled i. e. if

[íf, <(SÍ)i^^lANv< {ANv)ú (26)

|[s„= sf,. cos(Y.v)/-.vl á [(5'r.)M = (SÍ)m COS(Y,v)r,v]l [AA^V < {ANv)l]- (26’)

It means that the measured íf,. must not exceed for ANv = {ANv)l the limiting 
length (S^p)/^ even in čase if for íf,. = (Af)^ there is ANv< (ANv)l and on the 
contrary, it must be valid that vf,. < even in čase if for sf,. there is
ANv ^ (ANv)L-

From the viewpoint of graphic distinctive level for ANv if we detemňne the 
limiting value (ANv )/, = 0.1 mm then for the scale 1 : 2 000 there will be (ANv)l = 
0.2 m, for the scale 1 : 5 000 there will be (ANv )l - 0.5 m, for the scale 1 : 10 000 
there will be (ANv )l = 1.0 m, for the scale 1 : 25 000 there will be (ANv )l - 2.5 m. 
Then in the sense of relations (16) to (23) and under mentioned conditions (26) in
relation to (Kv)pr, (Rv)pr the lengths of triangel sides if,. PTN are formed that fullfil 
from viewpoint of TSG geometry the conditions of determined representativeness. 
The value of rádius of average curvature (Rv)pr and the average vertical curvature
(Kv)pr, in relation to the length of sides íf,. (17) at the limiting value (ANv)l = 0.1 
mm are illustrated according to the relations (23) and (23’) in the Tab. 1 in the scale 
1 : 2 000 and in the Tab. 2 in the scale 1 : 5 000. In both Tables the length of sides ífj 
(17) due to the selected (ANv)l = 0.1 mm is expressed in milimetres (First column in 
Tab. 1 and 2) as well as in metres (second column in Tabs) due to the considered 
scale 1 : 2 000 and 1 : 5 000. The same way, (A Nv)l = 0.1 mm is selected due to both 
scales expressed in metres i. e. (ANv)l = 0.2 m and (ANv)l = 0.5 m.



243

Tab. 1. Exprcssion of the maximum allowed length of triangle sides in scale 1:2 000 along 
with the entry discrete point field and the still representative triangle plot made of it

(A Nv)l = 0.1 mm => (A Nv)i. = 0.2 m

sfs [mm] 4 [m] mpr [m] (Kv)pr [m"'] Ayr.°

4 8.00 40.1 0.024937 11.4496
5 10.00 62.6 0.015974 9.1624
6 12.00 90.1 0.011099 7.6366
8 16.00 160.1 0.006246 5.7284

10 20.00 250.1 0.004000 4.5831
12 24.00 360.1 0.002777 3.8194
14 28.00 490.1 0.002040 3.2738
16 32.00 640.1 0.001562 2.8646
18 36.00 810.1 0.001235 2.5464
20 40.00 1 000.1 0.001001 2.2918
25 50.00 1 562.6 0.000640 1.8334
30 60.00 2 250.1 0.000434 1.5279
40 80.00 4 000.1 0.000250 1.1459
50 100.00 6 250.1 0.000160 0.9167
60 120.00 9 000.1 0.000111 0.7639

Tab. 2. Expression of the maximum allowed length of triangle sides in scale 1:5 000 along
with the entry discrete point field and the still representative triangle plot made of it

(ANv)/. = 0.1 mm => (ANv)/, = 0.5 m

s-n- [mm] 4, [m] (Rv)pr [m] (Kv)pr [m''] Ay„"

4 20.00 100.25 0.009975 11.4496
5 25.00 156.50 0.006389 9.1624
6 30.00 225.25 0.004439 7.6366
8 40.00 400.25 0.002498 5.7284

10 50.00 625.25 0.001599 4.5831
12 60.00 900.25 0.001111 3.8194
14 70.00 1 225.25 0.000816 3.2738
16 80.00 1 600.25 0.000625 2.8646
18 90.00 2 025.'’5 0.000494 2.5463
20 100.00 2 499.75 0.000400 2.2920
25 125.00 3 906.50 0.000256 1.8334
30 150.00 5 625.25 0.000178 1.5279
40 200.00 10 000.25 0.000100 1.1459
50 250.00 15 625.25 0.000064 0.9167
60 300.00 22 500.25 0.000044 0.7639

In the Tables in the scales 1 : 2 000 and 1 : 5 000 and due to the determined 
limiting value íáNv)l = 0.2 m and (ANv )l = 0.5 m the maximum admissible sides
s^rs (17) lengths of triangels PTN are expressed where the input points field and the 
formed triangel net are representative. From the Tables it is also resulted that the last 
side 4.. in the Table 1 that fullfills the eriteria (26) is the side
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[4- = 100m = (5Í)^^2(HX)]^[^^í^= Í^Nv)l= 0.2m]

and the the last side 4 in the Table 2 that fullfills the eriteria (26) is the side

[4 = 200m = (•S'Í)Aí=_<j()(x)]'^ [AA?v= {ANv)l= 0.5m]

if in scale 1 ; 2000 the limiting length of side (5'f^)Aí=2(XX) = 100 m is determined and 

in the scale 1 : 5000 the limiting length of side (5'f^)Aí=5(xx) = 200m is determined.

4. THE STRUCTURAL PROPERTIES OF TSG IN NEIGHBOURHOOD OF 
ITS ARBITRARY POINT AND THE CRITERIA FOR SPATIAL POINTS 

DISTRIBUTION DPFA AND TRIANGELS OF ITS PTN

The required properties of continual differentiality suggest that the function (1) 
can be extended into the Taylor’s šerieš. Due to this its structural properties can be 
studied in differentially small but even in final large neighbourhood of the point

, y i, zi) e Ejfp- (2) on TSG and its adequate point y,), zi s Ekf (3) in scalar
basis.

In the sense of the contribution Šalamon (1963) and using the Taylor’s expan- 
sion, two differentially small neighbourhoods determined by the relations

áz = {Zx)idx + {Zy)idy (27)

Dz= {Zx)idx + {zy)idy+{\l2)[{zxx)idx^ + 2{zxy)i dxdy + {zyy)i dy^]. (28)

can be coordinated to each point Af (x,, y,, z/) e as the middle.

In these relations the partial derivations are related only to the selected point 
Af(Xi , y,, Zi) e £^/r and its neighbourhood where they are considered as constants 
while the quantities dbe, dy, dz are considered variable quantities. First linear relation 
(27) in the tangent piane to the TSG with the equation

Z-z, = {Zx)iiX-Xi) + (Zy)i{Y-yi) (29)

expresses differentially small neighbourhood of selected tangent point 
Af(jc,, y i, Zi) 6 E^lfp on TSG where the coordinates X, Y, Z of the tangent piane are 
changed in their entirety

X -xi = dx, Y -y/ = dy, Z-zi=dz .

In the sense of the contribution Šalamon (1963) the linear equation (27) is related 
to TSG by the differential to the function of tangent piane to the middle point Af. If 
the quantity dz in (27) is considered as the variable one then the equation (27) in the
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tangent plane (29) for the neighbourhood of tangent point A^íixi,yi, zi) e will 
express the linear elements as the parts of line passing through the neighbourhood. It 
seems to be that B. Salamon called the neighbourhood the linear neighbourhood.

Second relation (28) due to the variable quantities dbc, d}', ck^, dy^ is the quadratic 
function of two variables that in differentially small neighbourhood of tangent point
A^(xi,yi,zi) e expresses in the coordinates systém <0, x, y, z> the part of 
osculating paraboloid axis of which lies in the normál N to TSG passing through the 
tangent point Af (x,, y/, zi) e

If in the equation (28) we coordinate the significance of variable parameter to the 
quantity Dz then the equation (28) will express on the isolines passing the neighbour­
hood of point Af (x,, y i, zi) e E^j^p the curves elements of second order. The quadratic 
equation (28) in the sense of contribution Šalamon (1963) is the differential to the 
osculating paraboloid due to the middle point Af (x,, y/, zi) e Ej^p of neighbourhood 
that terminál is in this point and its axis is identical with the normál N to TSG 
passing through the point.

In the tangent piane (29) there lie the tangents to the norma! cross-section in the 
point Af (x;, y,-, zi) e Ejfp and pass in it through the tangent point Af (x,-, y/, zi) e Ej^p 
on TSG. The normál curvature (Aľv)m of the cross-sections in differential geometry is 
expressed by the parametric relation

, 1 1 _ Zxx+2Zxym+Zyym^
( Kn) m - . n . - I------- T---- , • Z ;; - r ' (3U)

(En)/. y/ 1 +Z^+Zy 1 + Zx+ Zy+ 2zxZym + ( 1+ Zy)m^

where m = dy/dx = tg a is variable parameter that is changed with the change of 
directional angle in defmition region <0“; 90“), (90“; 270"), 270“; 360“> in the 
interval (-°° ; -i-°o ); (R/v)m is the rádius of normál curvature that lies in the normál N to 
TSG. For the value of parameter m=n=k„=Zx IZy is defined (KN)n = w (7) and for the 
value of parameter m=t= - Zxhy is defined {Kn)í (8) as well as due to the (9) even 
Kr = {KN)i sin y N (9’), see Krcho (1973, 1983, 1990, 1991, 1992).

The properties of TSG that are observed from viewpoint of DPFA points distribu- 
tion and tbe PTN forming from it, depend in each point Af(x, , y,, z,) e E^pp and its 
neighbourhood on the sign of discriminant of second Gauss differential form

D2 =
ZxxZyy — Z-^y

Zx+ zj+ 1

If in the point A f (x,, y,, zi) e Ej^p there is D2 > 0 then in (30) it will be valid that

1. for all values of parameter m there is (Aw)m > 0 , so {KN)n > 0, as well as (Kn)i 
= KrúnyN> Oor

2. for all values of parameter m there is (KN)m < 0 , so (A'/v)n < 0, as well as (Kn)i 
= Kr sin y N < 0.
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In both cases the Dupin indicatrix has the form of ellipse and osculating parabolo­
id has the form of eliptic paraboloid. All points on TSG where D2 >0 are considered 
elliptic points. Because in corresponce with D2 > 0 the geometrie foíms Fxx are 
defined by the values (KN)n > 0 ; (Kn)j = Kr sin yv > 0 and the geometrie foíms Fkk 
by the values (Aw)n < 0 ; {Kn)i = Kr sin y n < 0, the foíms Fxx, Fkk e F are formed 
by the elliptic points. In both cases the Dupin indicatrix has the form of ellipse and 
osculating paraboloid has the form of eliptic paraboloid.

If there is in Af (x,, y/, z,) e D2 > 0 then (KN)m (30) with the change of 
parameter m acquires various signs. There can rise two possibilities:

1. for certain values m there are (KN)m > 0 as well as (Ajv)n > 0 and for certain 
values m (KN)m < 0 as well as (Kn)i = Kr sin yv < 0 or on the contrary.

2. for certain values m there are (Fv)m < 0 as well as (Fv)n < 0 and for certain 
values m (KN)m < 0 as well as (Kn)i = Kr sin y n > 0.

In the first čase the foíms Fxk are characterized by the foíms [(Aľw)« > 0 ; {Kn)i 
< 0 so Kr < 0 ] and in the second čase the foíms Fkx are characterized by the foíms 
[(Fv)n < 0 ; (Kn)i > 0 so Kr> 0]. The Dupin indicatrix in both cases has the form of 
dual set of hyperbols and the osculating paraboloid has the form of hyperbolic 
paraboloid. Due to this the geometrie foíms Fxk , Fkx are formed by the hyperbolic 
points.

If there is in Af{xi,yi,zd e F>2 = 0 then (A'v)m (30) with the change of 
parameter m does not change the sign, however, for certain values m there is (Fw)/,, = 
0. The osculating paraboloid has the form of parabolic cylinder and the Dupin indi­
catrix has the form of two paralel lines. Due to this the points are called parabolic 
points. On TSG and in its scalar basis, using the points the isolines {KN)n = 0 as well 
as (Fv)/ = Fr = 0 are formed, that separáte the individual total geometrie foíms Fxx, 
Fxk, Fkk, Fkx ■ In the forms the Dupin indicatrix has the form of two paralel lines. 
Presented total geometrie forms are the key factor for localization of input points
Af(x/ , y i, Zi) 6 as well as for the formation of PTN triangels.

The form of equation of osculating paraboloid (28) in the neighbourhood of the 
point Af(x/, y,, zi) e F^/r is simplified when there is selected the coordinates systém 
<0’ = Ai, x’, y, z’> due to the tangent piane (29) with the starting point O’and in the 
tangent point Af (jr/, y/, z,) e Krf on TSG while the axis zn = N, so the axes x’, y’, lie 
in the tangent piane (29). In the coordinate systém there will be Zr = 0, Zy = 0, so in 
the equation (27) there will be dz = 0 and the equation (28) will háve the form

Dz= {\l2)[{zxx)iÁx^ + 2{zxy)iáxdy+ (z>'>0idy^] (31)

Likewise, the form of parametric relation (30) is simplified so that it has the form

iKN)m =
1 2

-----y{Zxx + 2zxym + Zyym ), (32)
m

where the parameter ;n = tg v, the angle is the angle in the tangent piane between the 
axis x’ and the tangent of considered normál cross-section.
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We consider on TSG ihe small however fmally large neighbourhood of its arbitra- 
ry point Af{xi, y;, zi) e e. g. in the extension

- 15m < Ax < + 15m; - 15m < Ay < + 13m

so the equations (27), (28) considered in the coordinate systém < O, x, y, z> will háve 
the form

Az= {Zx)iAx+ iZy)iAy (33)

D^z= {Zx)iAx + {Zy)iAy + {l/2)[{Zxx)iAx^+ 2iZxy)i AxAy+ (Zyy)i Ay^] , (34)

while the equation (33) in the tangent plane (29) expresses small but not infinitisi- 
mally small neighbourhood of selected tangent point Af(x,-, y/, zi) e E^^p where the 
coordinates X, Y, Z are changed in the intervals X - xi = Ax, Y - yi = Ay, Z - n = Az, 
and where A z expresses the differences between the points coordinates of tangent 
plane neighbourhood and the coordinates of tangent point.

Small but not infinitisimally small large neighbourhoods of six selected points 
from individual geometrie forms Fxx, Fxk, Fkk, Fkx in graphs of Fig. 8 from the 
selected part of modelled region of Ružiná. Due to the brief presentation two points 
with their neighbourhoods; the point Ai and Aa were selected in details.

If the significance of variable parameter A z (A z < 0, A z = 0, A z > 0) is coordina- 
ted to tbe quantity A z then the equation (33) in the tangent plane (29) expresses the 
parts of lines passing through the selected fmally large neighbourhood of the tangent
point Af (x,, yi, zi) e Ej^p. The presented part of line from selected neighbourhood for 
Az = 0 will pass through the tangent point Af(.v,-, y/, zi) e Ej^p while its outline k= ki
of tangent to contour line passing through the tangent point Af. For the neighbourho­
od of two selected points Ai and Aa in Fig. 8 the course of lines (20) is expressed in 
Fig. 9a and 10a.

The second relation (34) in the selected fmally large neighbourhood of tangent 
point Af(x/, y/, zi) e E^pp expresses in coordinates systém <0, x, y, z> fmally large 
part of osculating paraboloid. If we coordinate the significance of variable parameter 
0 < z < 0 to the quantity z in (34) then through each selected value z one of 
its isolines will be determined on the osculating paraboloid that will be gradually 
deviated with inereasing distance from the point Af (x,, y,, z/) e E^pp from its adequa- 
te contour line on TSG. Using the value z = 0, the isoline passing through the
tangent point Af (x,, y,, z/) e E^pp is determined on the osculating paraboloid where it 
is connected with the contour line on TSG that passes through the point. The course 
of isolines (34) for the neighbourhood of points Ai, A4 in Fig. 8 is expressed in Fig. 
9b and 10b. In Fig. 9b there is expressed the course of isolines from the neighbour­
hood of points Ai, and in Fig. 10b there is expressed the course of isolines from the 
neighbourhood of points A4.

The equation (31) expressed in the coordinates systém <0’ = Ai, x\ y\ z’> will
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Fig. 8. Six points A|, A2,Af, selected in modelled region of Ružiná and their small though not 
infinitesimal neighbourhoods with analysed structural geometrical georelief characters.



Fig. 9c Fig. 9d

Fig. 9. Structural geometrical properties of georelief in small neighbourhood of the selected point
A| from Fig. 8.

háve for fmally large of neighbourhood of tangent point A^{xi, y/, zi) e Ej^f the form

D^Z= {{I2)[{zxx)i + 2(zxy)i Ax Ay + iZyy)i Ay^] . (35)

Due to the fact that in the coordinate systém there íszn= N with the starting point 
O’ = Af, the isolines of osculating paraboloid (35) determined by the variable para­
meter z will háve different course from the isolines determined by the equation 
(34). In the geometrie forms Fxx, Fxk e F i. e. for D2> 0 they will háve the form of 
ellipses with common middle in the tangent point Af. This is expressed for the 
neighbourhood of point in Fig. 9c. In the geometrie forms Fxx, Fxx e F i. e. for D2 < 
0 they will háve the form of dual set of hyperbolas while the isolines z = 0 are the
asymptoms passing through the point Af. This is expressed for the neighbourhood of



Fig. 10a Fig. 10b

Fig. 10c Fig. lOd

Fig. 10. Structural geometrical properties of georelief in small though not infinitesimal neighbour­
hood of the selected point A4 from Fig. 8.

point A4 in Fig. 10c. The form of isolines on the osculating paraboloid (35) is 
identical with the isolines (31).

Let US express in the coordinates systém <0, x, y, z> with starting point O = Af
in the selected fmally large neighbourhood of arbitrary tangent point Af(x/, y/, a) on 
TSG the differences of coordinates z-Z between the function TSG (1) and the 
tangent plane (29) and let us coordinate to the difference the significance of variable 
parameter z-Z. So, we get the equation of isolines of altitudes differences

\fix,y) -Zi ] - [(Zj:)/ (X-Xi) +(Zy)i(.Y-yi)] = Kaz , (36)

where 0< 0.
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One isoline is determined by the equation (36) for each value . The isolines in
the selected fmally large neighbourhood of arbitrary tangent point Af(x/, y,, zi) háve 
similar course to the isolines of osculating paraboloid (35), however there are not the 
isolines of osculating paraboloid as the equations (35) and (36) suggest. Therefore, 
with inereasing distance from the tangent point Af(x,, yi, zi) from the isolines of 
osculating paraboloid they are more deviated. This is expressed for the neighbourho­
od of point A\ at the Fig. 9d and for the neighbourhood of point A4 at the Fig. lOd. 
The poperties of isolines (36) will be of essential signifieance for location of measu- 
red points Af (x,, yi, zi) e E^p, as well as the formation of the PTN triangels.

5. THE CRITERIA FOR LOCALIZATION OF INPUT SET dErf 
POINTS FOR DTM AND THE CRITERIA FOR PTN FORMATION

FROM INPUT POINTS Af (x,-, yu zi) e E%p

Each triangel of PTN with sequence number x=l ,2,....on TSG is determined by
the triple of points

Af ( Xe, ye. Ze) ; A|( Xf, yf, zf) ; A|( x^,, yg, Zg) , (37)

where (Af, Af, Af) e pEf^p while from viewpoint of four basic geometrie forms 
Fxx, Fxk, Fkk, Fkx each triple (37) must fullfil the mentioned conditions D2 > 0, Fh 
= 0, D2 < 0 as entirety. But, due to the conditions D2 > 0 , D2 < 0 the specific 
position has the condition £>2 = 0 that determines the dividing line among individual 
forms Fxx, Fxk, Fkk, Fkx that are formed by tbe isoline (KN)n = (o =0, (Kn )i = Kr 
= 0. Due to this, in the individual points of triple (37) there are admissible the 
combinations either D2 >0, D2 = 0, or ZTa <0, D2 = 0, but not the combination D2 
> 0, D2< 0.

Because from all four forms, for the geometrie ones Fxx, Fkk e E it is valid D2 > 
0 and for the geometrie ones Fkx, Fxk e F there is valid Di < 0, then during the 
formation of each triangel PTN determined by the triple (37) it is valid that:
1. for D2 > 0 i. e. for Fxx, Fkk e F in individual points of triple (37) are admisible 
combinations

la. £>2 > 0 for whole triple (37) (intemal triangel in Fxxot Fkk)
lb. Da > 0 for two points of the triple (37) and Da = 0 for one point of the triple 

(the marginal triangel in Fxx or Fkk with two points intemal D2> 0 and one point 
marginal Lh = 0),

lc. D2 > 0 for one point of the triple (37) and D2 = 0 for two points of the triple 
(the marginal triangel in Fxx or Fkk with one point intemal Da > 0 and two points 
marginal Da = 0),
2. for Z)2 < 0 i. e. for Fkx, Fxk there are admisible combinations

2a. D2< o for whole triple (37) (intemal triangel in Fkx or Fxk)
2b. Da < 0 for two points of the triple (37) and Da = 0 for one point of the triple 

(the marginal triangel in Fkx or Fxk with two points intemal Da < 0 and one point 
marginal Da = 0),
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2c. D2 < O for one point of the triple (37) and D2 = 0 for two points of the triple 
(the marginal triangel in Fkx or Fxk with one point intemal D2 < 0 and two points 
marginal Fh. = 0).

The localization of PTN triangels determined by the triple (37) in details from 
modelled region of Ružiná in the sense of mentioned conditions is expressed in Fig. 
11. Fig. 11 brings the square net with lOm xlOm sides for size comparison. The 
points DPFA as well as the PTN triangels fullfil all required criteria of representati- 
veness mentioned so far. We demonstrate that from the viewpoint of accuracy of 
positional coordination of calculated data the criteria are the necessary but not suffí- 
cient condition.

The availability of mentioned combinations la, b, c, as well as 2a, b, c we 
illustrate on the basis of equation of altitudes difference isolines (36) in the neighbo­
urhood of arbitrary tangent point A j and we introduce the condition that the tangent
plane in the equation (36) will be parallel to the diagonál plane determined by the 
triple (37).

The equation of the diagonál plane with TSG determined by the triple (37) has the 
form

Fig. 11. Location of PTN triangies in the detail of the modelled region of Ružiná. The grid with si­
ze of the squares 10 m x 10 m facilitates the comparison.
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^-^T-.v y-yjs z-zr,
Axef Ayef AZef
Axef. Ayeg Azeg

= O . (38)

where e, f, ^ e y = 1,2,.... are order number of points (37) where e ^ f^g,
Xt, = {xe +xf + xg)l?,; yj^ = (ye +yf+yg)/3-, Zj-, = {Ze+Zf + Zg)ľi

are the coordinates of the centre of gravity of T,v of 5 - triangel of PTN and
AXef = Xf-Xe ; Ayef = yf-ye AZef = Zf-Ze 

Axeg = Xg-Xe ; Ayeg = yg-ye ; Azeg = Zg-Ze 

The equation (38) has the normál form

Aŕí = (x-Xj^) + N'ýiy-yj^) + N^l(z-Zj,) = 0 , (39)

where Aŕx, Aŕý, Aŕl are the coordinates of the unit vector of normál 

= iViV + K ^

y y, iVz

Vx í "t" Ay J + A^z

oriented to the extemal side of TSG while

p ’
Aŕl = where p = ^j~Ě^ +5^+0; (39’)

and where
Ayef AZef 
Ayeg AZeg

D Dy=-
AXef AZef 
A Xeg A Zeg

D,=
Axef Ayef 
A Xeg Ayeg

Using the unit vector of normál Ä?' also the tangent piane to the TSG with the 
tangent point Af (jc,, y u Zi) is determined in the equation

Aŕx(x-xi) +Aľý(y-yi) +N^l(z-Zi) = O , (40)

that is parallel to the diagonál piane (39). If the triple of points (37) on TSG correctly 
configurated then

Xí^Xt,, yi=yT.v Zŕ=Z7'.í+^2ŕ.7-.v; (40’)

where A z, = zi - Zj^ is the distance of both planeš in the direction of z axis. If the 
triple (37) is not correctly configurated then xi Xj^, yi * yj^ then the tangent point is 
the opposite side of the center of gravity 7)- (x.í, y,v, zO of í - triangel in the piane (x, y) 
positionaly shifted in Ax-j^=xj^-xi, Ay-j^=yj^-yi while the vertical distance 
A zi of both planeš (39), (40) is maintained.

We shall demonstrate that even if the conditions of representativeness are fullfiled 
the input points Af e are not usually correctly configurated what has direct
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negative consequences the positional and numeric accuracies of calculated data what 
is detailed expressed in the viewport at the Fig. 12a, b, c, d as well as 13a, b, c, d. Let 
US adjust both equations (39), (40) to the form

Dx Dy( JC - (y - + ( ^ - Zj^)D

D

Dz

Dy

(41)

(42)

so, in both equations (39), (40) for individual coefficients and due to the (39) it is 
valid that

_ N';_Dy
^o=D, = —=-^-(zy)r.y -iZy)i. (43)

Fig. 12c Fig. I2d

Fig. 12. Four chosen PTN triangies from Fig. 11 in geometrical forms Fxx (f?2 > 0) with location 
Shift of the tangent point Ai expressed.
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Fig. 13. Four chosen PTN triangies from Fig. 11 in geometrical forms Fxk, Fkx (D2< 0) with loca­
tion shift of the tangent point Aj expressed.

The tangent plane (42) due to the (43) is identical with the equation of tangent 
plane that is contained m the relation (36).

Therefore the relations for calculation of numeric values (Y/vlr.v’ gravity
centres of triangels of PTN derived and gradually detailed analyzed in the contribu- 
tions Krcho (1977, 1983, 1986, 1990, 1992 - 93) háve the form

^dI+d] ^
\dradz\j^=tg{y,^)j^= ^ iZx)T.i+(Zy)T.s

cos ( A n)Ts
Dx ; sin(AAř)r,v =

^Di+Dj

(44)

(45)
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are valid due to the parallelism of both planeš (41), (42), given by the common unit 
vector of normál as well as for the tangent point Af e in the tangent plane
(42) with TSG regardless of validity (40’) and also the tangent plane contained in the 
relation (36).
We can express for neighbourhood of the triangel the altitudes relations Az = z - Z 
between TSG (1) and the diagonál plane (41) in the equation form

fix, y)-{-
Dx
Dr

Dy

Dr
(46)

where 0 = z - Z < 0 has the significance of variable parameter what is the
equation of isolines field of altitudes differences so that we shall present the relation 
between spadal distribution of triple terminál points (37) of s - triangel of PTN and 
the position of the tangent point Af(x,, y,, zi) of the plane (40). In the equadon (46) X, 
Y, Z are the coordinates of points in the plane (41) and x, y are the coordinates of 
adequate points on TSG. Each isoline is determined by the value Qj. . The isolines
Q ^ in the neighbourhood of tangent point Af (x/, y,, zf) háve identical course to that of 
isolines (36) but they are only shifted in values in Az,-=Zí-Zj-,.. The isoline 
Q2 = 0 is formed by the intersecdon point of diagonál plane (41) with TSG and it 
passes through the points (37) triple.

Figs. 12a, b, c, d, as well as 13a, b, c, d present selected triangels from the Fig. 11 
with their neighbourhoods determined by the intersecdon points for Q ^ = 0 given by 
the equation (46). At the Fig. 12a, b, c, d there are presented four selected triangels 
from geometrie forms Fxx (T)2 > 0) from what two triangels are determined by the 
triples

8 (20, 23, 24); 9 (20,24,25)
are intemal triangels and two triangels determined by the triples 

4(15,21, 16); 30 (22, 29, 25)
are marginal triangels of the forms Fxx ■ The sequence numbers 5 = 8, 9, 4, 30 beíore 
brackets express the sequence numbers of triangels PTN and the triples in brackets 
express the sequence numbers of triples of their terminál points.

The triangel at the Fig. 12a with the sequence number s = 8 determined by the 
triple of points A20 , A23 , A24 e is under the condidon (40’) so the tangent
point (xí, yi, Zi) lies above the gravity point Ts. In triangels s = 9,4, 30 from the Fig. 
12b, c, d the condition (40’) is not fullfilled, so due to this the tangent point Af(x,, y/, 
Zi) in each one is posidonally shifted. The value of posidonal shift in Fig. is expres­
sed by the positional vectors in the form of arrows.

Fig. 13a, b, c, d presents four selected triangels from geometrie forms Fkx (Dz < 
0) determined by the triples

3(15, 16, 10); 28 (27, 39,40)
40(15,10,11); 17 (27,28,38)

where s = 3, 17, 28, 40 are the sequence numbers of triangels PTN and triples in
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brackets are the sequence numbers of e, f, g terminál points Af Af of triples (37). 
Figures suggest that in none of the triangels the condition (40’) is fullfilled.

In the geometrie forms Fxx or Fkk (D2 > 0) under mentioned conditions la, b, 
c there is valid that = 0 is closed eurve where the triangel given by the triple (37)
as well as the tangent point Af(xi, yi, Zi) of the tangent piane (42) with TSG lie inside. 
For Fxx there is valid that inside the area there is Q ^ > 0 with one maximum Q j, mitt
in the tangent point Af (Fig. 12a, b, c, d). For Fkk there is valid that inside the area 
there is < 0 with the minimum min in the tangent point Af . In both forms 
Fxx, Fkk the isolines Q ,- in the neighbourhood of each triangel PTN delimitated by 
the isoline Qj. = 0 háve the form close to ellipses. If (40’) is valid then in Fxx the 
tangent point will lie above the gravity centre Ts of í - triangel PTN (Fig. 12a) and in 
Fkk the tangent point will lie below the gravity centre Ts. If (40’) is not valid then in 
Fxx Fkk the tangent point Af(x/, yi, zi) will be positionally shifted against the gravity 
centre Ts (Fig. 12b, c, d).

In the geometrie forms Fkx or Fxk (D2 < 0) under mentioned conditions 2a, b, 
c there is valid that the intersection Q. =: 0 is composed from two parts. One part 
passes through two points from triple (37) and one part passes through remaining 
third point from the triple (37). The tangent piane (42) euts TSG in two curves that 
are crossed in the point Af(xi, y,, zi). There is the value of parameter (46) in the 
point Qz = Zi - Z'ľs and the value of parameter K/^z (36) in the point = 0. The point 
is the saddle point for other isolines Q z z • The isolines in its close neighbour­
hood háve the form close to hyperbolas. If (40’) is valid then in the forms Fxk the 
saddle point lies above the gravity centre Ts and in the forms Fkx the saddle point 
lies below the gravity centre Ts of the a - triangel of PTN. If (40’) is not valid then in 
Fxk Fkx the saddle point will be positionally shifted against the gravity centre Ts 
(Fig. 13a, b, c, d).

The representative PTN appropriate for (Z)2>0) i. e. for Fxx, Fkk e F for criteria 
la, Ib, Ic and Ibr {D2 < 0) i. e. for Fkx, Fxk e F for criteria 2a, 2b, 2c are presented 
at the Fig. 14.

CONCLUSION

The criteria of representativeness for input points DPFA distribution from view­
point of accuracy of positional coordination is only the necessary condition. There is 
also the condition of appropriate points DPFA configuration so that all formed trian­
gels PTN will fullfil the condition (40’).
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Jozef Krcho

MODELOVANIE GEORELĽÉEU POMOCOU DTM - VPLYV 
KONFIGURÁCIE BODOV VSTUPNÉHO BODOVÉHO POĽA NA 

POLOHOVÚ A NUMERICKÚ PRESNOSŤ

v práci je načrtnutý problém polohovej a numerickej presnosti modelovania množiny morfo- 
metrických veličín georeliéfu pomocou DTM z hľadiska vlastností reprezentatívneho vstupného 
diskrétneho bodového poľa výšok (DBPV). Výsledná presnosť modelovania georeliéfu a jeho 
geometrickej štruktúry v podstate závisí:

- od vlastností reprezentatívneho vstupného diskrétneho bodového poľa výšok (DBPV),
- od vlastností aproximujúcich funkcií obsiahnutých v DTM, ktorým modelujeme georeliéf.
Rôzne, navzájom odlišné výsledky pri modelovaní georeliéfu pomocou DTM môžeme totiž

dostať vtedy, ak vybranú oblasť georeliéfu pomocou DTM modelujeme:
1. z toho istého vstupného reprezentatívneho diskrétneho bodového poľa výšok (DBPV), avšak 

rôznymi aproximujúcimi funkciami (rozdiely vo výsledkoch sú v tomto prípade spôsobené od­
lišnými vlastnosťami jednotlivých použitých aproximujúcich funkcií),

2. tou istou aproximujúcou funkciou použitou v DTM, avšak z rôznych vstupných reprezen­
tatívnych diskrétnych bodových polí výšok (DBPV), pričom v tomto prípade sú rozdiely spôsobené 
rôznymi vlastnosťami jednotlivých vstupných diskrétnych bodových polí, a to aj napriek tomu, že 
všetky spĺňajú podmienky reprezentativnosti.

V práci je rozobraný problém súvisiaci s obsahom bodu 2, a to problém polohovej presnosti 
modelovania georeliéfu a množiny jeho morfometrických veličín z hľadiska vlastností reprezen­
tatívneho vstupného diskrétneho bodového poľa výšok (DBPV). Potvrdzuje sa, že reprezentatívne 
vstupné diskrétne bodové pole výšok (DBPV) musí spĺňať dve základné podmienky:

2a. podmienku reprezentativnosti rozloženia bodov vstupného diskrétneho bodového poľa 
výšok (DBPV),

2b. podmienku vhodnej (správnej) konfigurácie bodov reprezentatívneho vstupného diskrét­
neho bodového poľa výšok (DBPV), z ktorého je potom zostrojená trojuholníková sieť (PTS).
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Kritériá reprezentativnosti pre rozloženie bodov vstupného diskrétneho bodového poľa výšok 
(DBPV) sú z hľadiska presnosti polohového priradenia jednotlivých vypočítaných hodnôt výšok a 
ich vrstevnicového poľa, ako aj množiny morfometrických veličín a ich izočiarových polí, iba 
podmienkou nutnou, ale nie postačujúcou, K tejto prvej podmienke ako nutnej však pristupuje ešte 
ďalšia, a to podmienka vhodnej konfigurácie bodov reprezentatívneho vstupného diskrétneho bo­
dového poľa výšok (DBPV) a to tak, aby všetky vytvorené trojuholníky trojuholníkovej siete 
spĺňali podmienku, že dotykový bod dotykovej roviny s georeliéfom paralelnej so sečnou rovinou 
určenou trojicou vrcholových bodov ľubovoľného trojuholníka leží nad, alebo pod ťažiskom tohto 
ľubovoľného trojuholníka. Táto podmienka je v texte práce vyjadrená vzťahom (40’)- Tento 
problém je v práci graficky vyjadrený na obr. 11, 12a, b, c, d a na obr, 13a, b, c, d.

V práci sú zároveň uvedené pravidlá pre tvorbu trojuholníkov trojuholníkovej siete z bodov 
vstupného reprezentatívneho diskrétneho bodového poľa výšok z hľadiska celkových geomet­
rických foriem georeliéfu Fxx, Fxx, Fxx, Fxx- Sú od seba navzájom oddelené izočiarami nulovej 
normálovej krivosti georeliéfu (Aľv)/) =03= 0 v smere spádových kriviek a izočiarami nulovej 
horizontálnej krivosti georeliéfu Kr = 0.

Obr. la. YN a 03 =0. Izočiarové pole sklonov yw georeliéfu v smere spádových kriviek.
Obr. Ib. An a Kr = 0. Izočiarové pole orientácie georeliéfu voči svetovým stranám.
Obr. 2, £í . Normálová krivosť georeliéfu v smere spádových kriviek. Izočiarové pole nor­

málovej krivosti georeliéfu v smere spádových kriviek.
Obr. 3. Kr. Izočiarové pole horizontálnej krivosti georeliéfu.
Obr. 4. Normálové formy georeliéfu v smere spádových kriviek.
Obr. 5. Horizontálne formy georeliéfu.
Obr. 6. Celkové geometrické formy georeliéfu.
Obr. 7a. Profil georeliéfu na spádovej krivke v smere trojuholníkových hrán primárnej tro­

juholníkovej siete (PTN).
Obr. 7b. Určenie reprezentatívnej dľžky strán trojuholníkov PTN v závislosti od vertikálnej 

krivosti Kv pri stanovenej "limitnej" hodnote (ANv)l.
Obr. 8. Šesť vybraných bodov A i, A2, ..., A6 v modelovom území Ružiná a ich malé, ale nie 

infinitezimálně okolia, v ktorých sú analyzované štruktúrne geometrické vlastnosti 
georeliéfu.

Obr. 9. Štruktúrne geometrické vlastnosti georeliéfu v malom okolí vybraného bodu Ai z 
obr, 8.

Obr. 10. Štruktúrne geometrické vlastnosti georeliéfu v malom, ale nie infinitezimálnom okolí 
vybraného bodu A4 z obr. 8.

Obr. 11. Lokalizácia trojuholníkov PTN z detailu modelovej oblasti Ružiná. Na obr. je pre 
porovnanie velkosti súčasne vykreslená štvorcová sieť o velkosti strán 10m x 10 m.

Obr. 12. Štyri vybrané trojuholníky PTN z obr. 11 v geometrických formách Fxx (D2>0) s 
vyjadreným polohovým posunom dotykového bodu Ai.

Obr. 13. Štyri vybrané trojuholníky s obr. 11 v geometrických formách Fxk, Fkx (D2<0) 
s vyjadreným polohovým posunom dotykového bodu Aj.

Obr. 14. Reprezentatívna PTN a rozloženie jej trojuholníkov podľa jednotlivých celkových 
geometrických foriem Fxx, Fkx, Fkk, Fxk-

Tab, 1. Tab. 1. Vyjadrenie maximálnej dovolenej dĺžky strán trojuholníkov v mierke 1:2000, 
pri ktorých je vstupné diskrétne bodové pole a z neho zhotovená trojuholníková sieť 
ešte reprezentatívna.

Tab. 2. Tab, 1, Vyjadrenie maximálnej dovolenej dĺžky hrán trojuholníkov v mierke 1:5000, 
pri ktorých je vstupné diskrétne bodové pole a z neho zhotovená trojuholníková sieť 
ešte reprezentatívna.




