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Abstract: In this paper, I will discuss boulesic and deontic logic and 
the relationship between these branches of logic. By ‘boulesic logic,’ 
or ‘the logic of the will,’ I mean a new kind of logic that deals with 
‘boulesic’ concepts, expressions, sentences, arguments and systems. 
I will concentrate on two types of boulesic expression: ‘individual 
x wants it to be the case that’ and ‘individual x accepts that it is the 
case that.’ These expressions will be symbolised by two sentential 
operators that take individuals and sentences as arguments and give 
sentences as values. Deontic logic is a relatively well-established 
branch of logic. It deals with normative concepts, sentences, argu-
ments and systems. In this paper, I will show how deontic logic can 
be grounded in boulesic logic. I will develop a set of semantic tableau 
systems that include boulesic and alethic operators, possibilist quan-
tifiers and the identity predicate; I will then show how these systems 
can be augmented by a set of deontic operators. I use a kind of pos-
sible world semantics to explain the intended meaning of our formal 
systems. Intuitively, we can think of our semantics as a description 
of the structure of a perfectly rational will. I mention some interesting 
theorems that can be proved in our systems, including some versions 
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of the so-called hypothetical imperative. Finally, I show that all sys-
tems that are described in this paper are sound and complete with 
respect to their semantics. 

Keywords: Boulesic logic; deontic logic; modal logic; practical ration-
ality; the hypothetical imperative; the logic of the will; semantic tab-
leaux. 

1. Introduction 

 In this paper, I will discuss boulesic and deontic logic and the relation-
ship between these branches of logic. By ‘boulesic logic’ (from the Greek 
‘boulesis’), ‘the logic of the will,’ ‘conative logic,’ or ‘volative logic’ I mean 
a kind of logic that deals with ‘boulesic’ concepts, words, expressions, sen-
tences, principles, arguments and systems. Boulesic logic is a new kind of 
logic. There are hints about such a logic in the literature, but few attempts 
to develop the basic idea in detail. The main results in this paper are there-
fore entirely new.1 

                                                      
1  In the Nicomachean Ethics (Book VI and VII), Aristotle mentions a special kind 
of practical syllogism where the conclusion is a command or act. This suggests that 
the Greek philosopher might have envisioned some sort of ‘practical logic.’ Immanuel 
Kant discusses some principles that it is plausible to be included in a boulesic logic, 
for instance, the so-called hypothetical imperative (see below for more on this). Some 
similar principles were discussed already by various medieval thinkers (see Knuuttila 
2004, 3.3). In 1926, Ernst Mally published the book Grundgesetze des Sollens, which 
is generally thought to contain the first published formal deontic system ever. Mally’s 
book has the subtitle Elemente der Logik des Willens (Elements of the Logic of (the) 
Will), which indicates that he saw important connections between deontic logic and 
the logic of the will. In fact, he might have thought they are the same thing. There 
are some similarities between boulesic logic and ‘intentional logic,’ even though there 
are also many important differences. Later in the introduction, I will say more about 
this. For some information on intentional logic, see, for example, (Broersen 2011; 
Broersen, Dastani and van der Torre 2001; Cohen and Levesque 1990; Lorini and 
Herzig 2008; Marra and Klein 2015; and Semmling and Wansing 2008). Harry Gens-
ler develops a logic of the will as a part of a kind of ‘belief logic’ that is based on 
imperative logic and extends ideas introduced by Hector-Neri Castañeda in several 
works (see Gensler 2002, Chapter 10 for more on this). See also (Bratman 1999). 
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 Some examples of boulesic words include ‘wanting,’ ‘willing,’ ‘accepting,’ 
and ‘consenting.’ Many words and expressions in the vicinity might also be 
classified as boulesic, such as ‘intending,’ ‘desiring,’ ‘rejecting,’ ‘loving,’ and 
‘hating,’ and—more generally—‘having a pro-attitude.’ A boulesic concept 
is a concept expressed by a boulesic word. A boulesic sentence is a sentence 
that (essentially) includes a boulesic word. A boulesic argument is an argu-
ment that (essentially) involves a boulesic sentence, and a boulesic system 
is a system that (essentially) includes various boulesic axioms and/or rules 
of inference.2 
 Here are some examples of boulesic sentences: 

• John wants to win. 
• Jennifer wants it to be the case that there will be peace. 
• Sonny accepts the fact that he is never going to be a professional 

football player. 

 Here are some examples of boulesic principles (not necessarily valid): 

• No one wants it to be the case that A and also wants it to be the 
case that not-A. 

• If a perfectly rational individual x wants it to be the case that A and 
B is a necessary means to A, then x wants it to be the case that B. 

• It is permitted that you perform this action only if everyone who is 
perfectly rational consents to the idea that you perform this action. 

 Here are some examples of boulesic arguments (not necessarily valid): 

                                                      
Boulesic logic, in the sense that I am using the term, is similar to deontic logic, 
intentional logic, imperative logic (if there is such a thing) and certain forms of 
epistemic and doxastic logics, and there seem to be important connections between, 
for instance, boulesic and deontic logic (for more on this, see sections 3.4, 3.5 and 
4.3). However, there are also important differences between these branches, and there 
are, as far as I know, no systems of the kind introduced in this paper in the literature. 
2  These are not meant to be exact definitions. There are sentences that include 
boulesic words that are not boulesic—for example, ‘The word “want” is an English 
word’ and ‘Jim believes that Greta wants to become a doctor’—and there are argu-
ments that include boulesic sentences that are not boulesic, etc. Hence, I have added 
the qualification ‘essentially.’ 
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 Argument 1 
1. Henrietta wants the sun to shine. 
2. Henrietta wants to go to the beach. 
 Hence: 
3. Henrietta wants the sun to shine and go to the beach. [From 1 and 2] 

 Argument 2 
1. Mona wants to be happy. 
 Thus: 
2. If Mona is perfectly rational, she consents to the idea that she is 

happy. [From 1] 

 Argument 3 
1. Every person in the class wants to pass the exam. 
2. Sandra is a person in the class. 
3. It is necessary that Sandra passes the exam only if she studies hard. 
 Therefore: 
4. If Sandra is perfectly rational, she wants to study hard. [From 1−3] 

 I will concentrate on two types of boulesic expression in this paper: ‘in-
dividual c wants it to be the case that A’ and ‘individual c accepts that it 
is the case that A’ or ‘individual c consents to the state of affairs (the 
fact/the idea) that A.’ These expressions will be symbolised by two senten-
tial operators, W and A respectively, which take individual terms and sen-
tences as arguments and give sentences as values. That is, in the formal 
sentence WcB, the constant c refers to an individual and B is any well-
formed sentence (and similarly for AcB). In other words, ‘WcB’ is read as 
‘c wants it to be the case that B’ and ‘AcB’ is read as ‘c accepts that it is 
the case that B.’ 
 Deontic logic is a relatively well-established branch of logic. It deals with 
normative concepts, sentences, arguments and systems. For introductions 
to this branch of logic, see for example (Åqvist 1987, 2002; Gabbay et al. 
2013; and Hilpinen 1971, 1981). In this paper, I will show how deontic logic 
can be grounded in boulesic logic in a certain sense. I will develop a set of 
semantic tableau systems that include boulesic and alethic operators, pos-
sibilist quantifiers and the identity predicate, and I will show how these 
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systems can be augmented by a set of deontic operators. I use a kind of 
possible world semantics to explain the intended meaning of our formal 
systems. Intuitively, we can think of our semantics as a description of the 
structure of a perfectly rational will. I mention some interesting theorems 
that can be proved in our systems, including several versions of the so-called 
hypothetical imperative (if you want A and B is a necessary means to or 
condition for A, then you also want B insofar as you are rational; more 
about this below). Finally, I show that all systems that are described in this 
paper are sound and complete with respect to their semantics. 
 W takes any sentence as its argument. In WcB, B can be any well-
formed formula whatsoever. So, it is possible to want anything, so to speak. 
B can be about the present time (I want you to be here now), about the 
future (She wants to become a doctor [some time in the future]) or about 
the past (I want [hope, desire, wish] that I made the right choice yesterday 
(Feldman 2004, 62)); it can be about a contingent state of affairs (She wants 
to buy a house) or a necessary state of affairs (He wants this mathematical 
theorem to be true); it can be about facts concerning nature (He wants the 
sun to shine tomorrow) or about various mental states (I want to feel 
happy); it can be about c (He wants to be happy) or about some other 
individual or individuals (She wants her children to be happy), and so on. 
According to our systems, it is meaningful to speak about wanting anything, 
and it is (logically) possible that any sentence of the form WcB is true. It 
is even possible for someone to want something that is impossible. It seems 
reasonable to me that our systems allow this. Normally, if we want B, it is 
probably true that B is a contingent state of affairs that is in (or about) 
the future. However, this does not appear to be logically necessary. The 
same is true about A (acceptance). If we assume that c is perfectly rational 
(reasonable or wise), things are different. It seems plausible, for example, 
to claim that every perfectly rational (reasonable or wise) individual only 
wants something if it is possible; let us call this principle the Want-Can 
principle (WC).3 Nonetheless, there is a difference between what a perfectly 
                                                      
3  In every system that includes the tableau rule T – WC (Table 18), we can prove 
this principle. T – WC is valid in the class of all models that satisfy C – WC (see 
Section 3.3.5 for more on this). Note that the Want-Can principle does not entail 
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rational individual wants and what some arbitrary agent desires. It appears 
to be possible for someone who is not perfectly rational to want something 
that is impossible. In fact, there are probably actual examples of people 
with an inconsistent will. Yet, this should come as no surprise: not everyone 
is perfectly rational.4 
 When we say that someone wants something (or accepts something), we 
usually mean that she wants (accepts) this ‘thing’ in an all-things-consid-
ered sense in this paper; we do not necessarily mean that she wants it in 
itself. It is possible to want something as a means to something else and it 
is possible to want something in itself and it is possible to want something 
all-things-considered. Someone can, for example, want to study for the exam 
in an all-things-considered sense even though she does not want this in 
itself. She wants to study for the exam because she wants to pass the exam 
and she believes that she will pass the exam only if she studies for it.  
Studying is a means to an end. Moreover, it is possible for someone to want 
(or accept) A in an all-things-considered sense even if she does not like 
every aspect of A or every consequence of A and even if she has some desire 
(a prima facie desire) for not-A. 

                                                      
that everyone ought to want something only if it is possible. The latter thesis is 
independent of the Want-Can principle. The Want-Can principle is even compatible 
with the proposition that some individuals that are not perfectly rational ought to 
want some things that are impossible (in every system in this paper). Furthermore, 
it may still be reasonable to think about doing something impossible, to daydream 
about doing something impossible, and perhaps also to wish that something impos-
sible be the case. But (merely) thinking, wishing, daydreaming, and so on is not the 
same thing as wanting. 
4  Some philosophers seem to think that desires (and wants) are always future-
oriented—that is, they think that if at time t, someone S desires that p be the case, 
then p is future relative to t. Wayne Sumner might be an example (Sumner 1996, 
128–30; Sumner 2000). Other philosophers appear to reject this thesis (see, for ex-
ample, Feldman 2004, 61–63). According to our systems, wants are not necessarily 
concerned with the future; it is possible that they are directed at the present or the 
past too, for instance. Still, I am inclined to believe that all ‘genuine’ wants are 
future-oriented for perfectly rational individuals—at least if we assume that facts 
about the past and the present are historically settled. Thus, I think our systems 
can do justice to Sumner’s intuitions, at least to some extent. 
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 For perfectly rational individuals wanting is a ‘stronger’ attitude than 
consenting (at least, in every class of models that satisfies C – bD (Table 
3)). If a perfectly rational individual wants A, she also consents to A (given 
that we accept C – bD). However, it is possible for a perfectly rational indi-
vidual to consent to something that she does not want. A perfectly ra-
tional individual may, for example, consent to doing some boring chore in 
a particular situation even though doing this chore is not something she 
wants. Sometimes we can use the words ‘agree,’ ‘allow,’ ‘approve,’ ‘con-
done’ or ‘tolerate’ instead of ‘accept’ or ‘consent.’ Again, in this paper, 
we use ‘accept’ etc. in an all-things-considered sense. It is possible for 
someone to consent to A even though she objects to some aspects of or 
consequences of A. In every system in this paper, it is possible (even for 
a perfectly rational individual) to accept that A and (at the same time) 
to accept that not-A. 
 If c is not perfectly rational, almost nothing interesting at all follows 
logically from the fact that c wants something or accepts something.5 For 
instance, if c is not perfectly rational and wants it to be the case that A, it 
does not follow that it is not the case that c also wants it to be the case 
that not-A. If c is not perfectly rational and c wants it to be the case that 
A, it does not follow that c also wants it to be the case that B even if B is 
a necessary condition for A and c knows this. It is probably not rational to 
want it to be the case that A and also want it to be the case that not-A, 
etc., but it does not seem to be logically impossible. And, in fact, according 
to our systems it is not. This is as it should be. We cannot prove the prop-
osition that no one wants it to be the case that A and wants it to be the 
case that not-A in any system introduced in this paper. Nevertheless, in 
some systems (for instance every system that includes the rule T – bD; Table 
14), we can prove the proposition that no one that is perfectly rational 
wants it to be the case that A and wants it to be the case that not-A (for 
more on this principle, see Section 3.3.3). These facts do not exclude the 

                                                      
5  I say ‘almost nothing interesting,’ because we can still draw all usual conclusions 
from this fact. For example, if c wants it to be the case that A, then it is not the 
case that it is not the case that c wants it to be the case that A, etc. But we do not 
need a special boulesic logic to draw such conclusions. 
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possibility that there are psychological laws that make it historically  
impossible to combine different attitudes. It might, for instance, be histor-
ically necessary that no one (not even anyone that is imperfectly rational) 
wants it to be the case that A and also at the same time wants it to be the 
case that not-A. I am inclined to believe that this is not the case, at least 
not always. Yet, it is not logically impossible according to our systems:  
our systems do not rule out this possibility, and I believe that this is plau-
sible.6 
 Boulesic logic, in the sense that I am using the term, is about the ra-
tional will, not only about what people actually want and accept and what 
follows from this. It attempts to give a description of the will of perfectly 
rational, reasonable or wise individuals. However, we can also use the sys-
tems in this paper to symbolise propositions about what individuals that 
are not perfectly rational want, accept, etc. Yet, the new, interesting 
boulesic laws that can be proved in our systems are not empirical, psycho-
logical laws; they do not ‘describe’ the contingent boulesic lives of actual 
people, even though the contents of these laws can include claims about 
what individuals that are not perfectly rational want, accept, etc.; they are 
‘laws of rationality.’ Derivatively, boulesic logic also tells us how we must 
structure our wants if we are to be (perfectly) rational. Of course, exactly 
what it means to be ‘perfectly rational’ is something of an open question 

                                                      
6  It does not appear to be logically impossible for human beings to be perfectly 
rational, but it is very likely that no actual human being is perfectly rational; it 
might even be historically impossible for human beings to instantiate this property. 
Still, it seems to be the case that people are not totally irrational either. Normally, 
it appears to be true that if someone wants it to be the case that A, she does not 
also at the same time want it to be the case that not-A, etc. If this were not the 
case, we would probably not be able to ascribe wants to anyone. Furthermore, it is 
hard to think that an individual that often wanted it to be the case that A and also 
wanted it to be the case that not-A would survive for any long period: she would 
likely be stuck between alternatives like Buridan’s ass and starve to death or be 
eaten by a predator. It is primarily a question for psychologists and other scientists, 
not for philosophers or logicians, to find out if there are any historically necessary 
laws of this kind. 
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and different answers to this question may lead to different boulesic sys-
tems. In boulesic logic, we can investigate the consequences of various ways 
of making the concept of perfect rationality more precise. 
 There are many ideas about what it means to be rational and many 
concepts of rationality. According to my view, the ‘essence’ of rationality is 
consistency; to be rational is to be consistent (in a wide sense). This in-
volves, at least, consistency with oneself, but perhaps also consistency with 
the world and with other individuals. According to this view of rationality, 
it is very plausible to assume that one cannot be perfectly rational if one 
believes that A and that not-A, or if one wants it to be the case that A and 
that not-A. This is the core of the concept of rationality that I am trying 
to explicate in this paper. This concept of rationality should be distin-
guished from the concept that is often used in, for example, game theory 
and similar disciplines. In game theory, one usually assumes that every in-
dividual is an ‘egoist’ in the sense that she is only interested in satisfying 
her own preferences.7 In game theory rationality is something like enlight-
ened self-interest. Rationality-as-consistency should also be distinguished 
from a kind of ‘rationality’ that might be called ‘pragmatic.’ Suppose an 
eccentric (and very rich) neuroscientist were to offer you 10.000.000 pounds 
if you were able to believe in a contradiction and want this contradiction 
to be true. In this situation it might be plausible to say that it is ‘rational’ 
to believe in the contradiction and want it to be true, in some sense of 
‘rational.’ We can call this kind of rationality ‘pragmatic.’ Suppose you 
were able to believe in the contradiction and want it to be true. Then we 
could say that you were pragmatically rational, but you would not be per-
fectly rational in our sense of this term. Rationality-as-consistency seems to 
me to be the most basic form, even though I do not deny that it might be 
fruitful to talk about rationality in other senses too. Much more could be 

                                                      
7  Such preferences can include otherregarding or altruistic preferences. Still, if an 
individual does not have any otherregarding or altruistic preferences, it is not ra-
tional for her to care about other people according to standard versions of game 
theory. 
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said about different theories of rationality, but this suffices for our purposes 
in the present paper.8 
 One could develop a boulesic logic as a kind of normal modal system 
and introduce a boulesic operator for every individual, where every operator 
functions as a normal modal operator. Let us call a boulesic system of this 
kind an ‘ordinary boulesic system.’ Nonetheless, there are certain problems 
with this approach. Firstly, in a system of this kind, it seems unlikely that 
W can be used to symbolise what actual persons want, for in such systems 
everyone wants everything that is necessary, no one has conflicting wants 
(without wanting absolutely everything), and every individual is such that 
if she wants A and B is a (logically) necessary means to A (i.e. if A entails 
B), then she also wants B. But all of this seems false. Secondly, if we restrict 
a boulesic logic to perfectly rational individuals (to avoid the first problem), 
we cannot speak about what persons that are not perfectly rational want, 
accept, etc., at least not in a natural way (we would have to use atomic 
formulas). Thirdly, we want to be able to symbolise such sentences as ‘Eve-
ryone wants to be happy,’ ‘No perfectly rational individual wants it to be 
the case that both A and not-A,’ and ‘Everyone in the room wants to take 
the course.’ Fourthly, in an ordinary boulesic system we implicitly have to 
assume that every perfectly rational individual is necessarily perfectly ra-
tional. It is not immediately obvious that this is the case. In our systems, 
we can investigate what follows if there are individuals that are only con-
tingently perfectly rational. It is also meaningful, in principle, to ask 
whether we should be perfectly rational. If we can only speak about perfectly 
rational individuals, this does not seem possible. Fifthly, there are many 
arguments that are intuitively plausible (valid) that cannot be proved in 
ordinary boulesic systems that can be established in our systems. Argument 
3 above is an example. The conclusion in this argument is derivable from 
the premises in every logic in this paper that includes the rule T – MW (see 
Table 18). In Section 5.1, I will show this. Yet, argument 3 cannot be proved 
in any ordinary boulesic system, at least not without adding extra, implicit 

                                                      
8  For more on the concept of rationality, see, for example, (Broome 2013; Horty 
2015; and Mele 2004). 
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premises. For these (and some other) reasons, I think the logics developed 
in this essay are preferable. In spite of this fact, they can be seen as an 
elaboration of the modal approach. All our systems include an ordinary 
modal part, with two kinds of modal operators for absolute and historical 
necessity and possibility.9 
 As I mentioned in footnote 1, there are some similarities between 
boulesic logic and ‘intentional logic,’ even though there are also many im-
portant differences. My formal approach is quite different from the formal 
approach found in the literature on intentional logic. I want to point out 
some differences. (i) The systems that are developed in the literature on 
intentional logic are often axiomatic. I use semantic tableaux. (ii) As far as 
I know, no intentional system includes a distinction between perfectly ra-
tional individuals and individuals that are not perfectly rational. Hence, the 
same logical principles hold for everyone in such systems. In my systems, it 
is not necessarily the case that individuals who are not perfectly rational 
satisfy the same principles that perfectly rational individuals satisfy. (iii) 
Intentions are sometimes required to be consistent while desires are not. In 
such intentional systems, it is logically impossible that some individual in-
tends to do something and also intends not to do it. In my systems, it is 
always logically possible that someone (who is not perfectly rational) wants 
A at the same time that she wants not-A. (iv) Intentional systems are often 
at least as strong as so called classical modal systems. This means that an 
individual c intends (that) A iff (if and only if) she intends everything that 
is logically equivalent with A. In my systems, it is possible that an individ-
ual (who is not perfectly rational) wants A even though she does not want 
everything that is logically equivalent with A. (v) The intentional systems 
are not usually combined with predicate logic. Therefore, it is not possible 
to quantify over agents in such systems. They cannot be used to symbolize 

                                                      
9  For some introductions to ordinary (alethic) modal logic, see, for example, 
(Blackburn, de Rijke, and Venema 2001; Blackburn, van Benthem, and Wolter 2007; 
Chellas 1980; Fitting and Mendelsohn 1998; Gabbay 1976; Garson 2006; Kracht 
1999; and Lewis and Langford 1932). For more on modal predicate logic, see, for 
example, (Barcan (Marcus) 1946; Carnap 1946; Garson 1984, 2006; Hintikka 1961; 
Hughes and Cresswell 1968; Parks 1976; and Priest 2008). 
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expressions of the following kind: ‘Everyone who is such and such intends 
to do this or that,’ and ‘someone who is such and such intends to do this 
or that.’ In all systems in this paper, we can symbolise expressions of the 
following kind: ‘Everyone who is such and such wants it to be the case that,’ 
and ‘someone who is such and such wants it to be the case that.’ (vi) In-
tentional systems are often weaker than so-called normal modal systems (at 
least for desires). This means that one cannot prove that if an individual 
desires (intends) (that) A then she also desires (intends) (that) B even 
though B is a necessary means to A. Similarly, in our systems we cannot 
prove that if an individual wants A then she also wants every necessary 
condition of A. However, in some systems we can show that if a perfectly 
rational individual wants A and A necessarily implies B, then she also wants 
B (see the discussion about hypothetical imperatives below). (vii) At least 
in some intentional systems the following propositions are valid: if an indi-
vidual x intends that A and x intends that A implies B then x intends that 
B, and if it is valid that A implies B then if x intends that A then x intends 
that B. In our systems, it is not generally true that if an individual x wants 
it to be the case that A and x wants it to be the case that A implies B then 
x wants it to be the case that B; nor is it necessarily the case that x wants 
it to be the case that B if x wants it to be the case that A given that it is 
valid that A implies B. However, the latter principles do hold in our systems 
if they are restricted to perfectly rational individuals. (viii) As I am using 
the terms, intentions and wants are not the same thing. You can want 
someone else to do something, but you cannot intend someone else to do 
something. Intentions are directed towards (our own) actions, while it is 
possible to want all sorts of things. Wanting to do something and intending 
to do it might be the same thing, but it is not obvious that this is the case. 
If wanting to do something and intending to do it are not the same thing, 
wanting to do something probably often causes an intention to do it. So, 
we should make a distinction between intentions and wants. These are some 
of the most important differences. 
 Furthermore, I believe, that we should make a distinction between 
‘wants’ and ‘wishes’ and not only between ‘wants’ and ‘intentions.’ Wanting 
something is not (necessarily) the same thing as wishing it were true, even 
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though we may sometimes use ‘wish’ instead of ‘want.’ Wishing something 
impossible were true might perhaps be possible even for a perfectly rational 
individual, even though it seems to be reasonable to claim that no perfectly 
rational individual wants impossible things (in an all-things-considered 
sense). It seems possible that the sentence ‘I wish you were here’ could be 
true (even in a situation where it is historically impossible for you to be 
here [now]), while ‘I want you were here’ is not even grammatical. 
 There are many good reasons to be interested in the results in this paper, 
both logical and philosophical. I cannot discuss all of these reasons: instead 
I will focus on one to illustrate the philosophical usefulness of our technical 
results. 
 The systems in this paper can be used to analyse and shed some light 
upon various interpretations of some philosophically interesting principles—
for instance, the so-called hypothetical imperative. The notion of a hypo-
thetical imperative was introduced by Immanuel Kant. In Grundlegung zur 
Metaphysik der Sitten, Kant characterises a hypothetical imperative in the 
following way: 

‘Who wills the end, wills (so far as reason has decisive influence 
on his actions) also the means which are indispensably necessary 
and in his power’ and “‘If I fully will the effect, I also will the 
action required for it” is analytic.’ (Kant 1991, 45 [originally pub-
lished in 1785]; English translation in Paton 1948, 80–81.) 

 Since Kant, there has been debate about how one should formulate the 
hypothetical imperative and how it should be interpreted, and about 
whether it is true or not. I will now show how one can use boulesic-deontic 
logic to distinguish between several different interpretations of this famous 
principle. I will consider eight of the most interesting readings and then 
show how they can be formalised in our systems. Finally, I will indicate 
which versions can be proved in various systems.10 

 1. It is universally necessary that, for every x, if x wants it to be the 
case that A and it is necessary that if A then B, then x wants it to be the 
                                                      
10  Kant is usually taken to mean that moral principles are necessary and universal. 
Hence, I will interpret the hypothetical imperative in the same way. 
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case that B. UΠx((WxA ∧ □(A → B)) → WxB). (Translation key. U: It is 
universally (absolutely) necessary that. Πx: For every [possible] x. Wx: x 
wants it to be the case that. □: It is historically necessary that. →: Material 
implication.) 
 2. It is universally necessary that, for every x, if x wants it to be the 
case that A and it is necessary that if A then B, then it ought to be the 
case that B. UΠx((WxA ∧ □(A → B)) → OB). (Translation key. The same 
as before. O: It ought to be the case that.) 
 3. It is universally necessary that, for every x, if x wants it to be the 
case that A and it is necessary that if A then B, then x ought to want it to 
be the case that B. UΠx((WxA ∧ □(A → B)) → OWxB). 
 4. It is universally necessary that, for every x, it ought to be the case 
that if x wants it to be the case that A and it is necessary that if A then 
B, then x wants it to be the case that B. UΠxO((WxA ∧ □(A → B)) → 
WxB). 
 5. It is universally necessary that, for every x, it ought to be the case 
that if x wants it to be the case that A and it is necessary that if A then 
B, then B. UΠxO((WxA ∧ □(A → B)) → B). 
 6. It is universally necessary that, for every x, if x is perfectly rational, 
then if x wants it to be the case that A and it is necessary that if A then 
B, then x wants it to be the case that B. UΠx(Rx → ((WxA ∧ □(A → B)) 
→ WxB)). 
 7. It is universally necessary that, for every x, if x is perfectly rational, 
then if x wants it to be the case that A and it is necessary that if A then 
B, then it ought to be the case that B. UΠx(Rx → ((WxA ∧ □(A → B)) → 
OB)). 
 8. It is universally necessary that, for every x, if x is perfectly rational, 
then if x wants it to be the case that A and it is necessary that if A then 
B, then x ought to want it to be the case that B. UΠx(Rx → ((WxA ∧ □(A 
→ B)) → OWxB)). 

 (1), (2), (3), (6), (7) and (8) are so-called ‘narrow-scope’ readings of the 
hypothetical imperative; (4) and (5) are so-called ‘wide-scope’ readings. 
Note how the consequent in the various interpretations varies. In (1), the 
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consequent is about an attitude; in (2), the consequent is about a norm; 
and in (3), it is about a norm about an attitude, etc. Readings (1)–(5) 
cannot be proved in any system in this paper: they are not valid in any 
class of model that we consider. In Section 5.1, I will show that the following 
‘instance’ of (1) is not valid (in the class of all models): Πx((WxQx ∧ □(Qx 
→ Dx)) → WxDx), where Q and D are two monadic predicates. In our 
example, Qx stands for ‘x quenches her thirst’ and Dx stands for ‘x drinks 
some water.’ Since Πx((WxQx ∧ □(Qx → Dx)) → WxDx) is not valid in the 
class of all models, it follows that not every instance of UΠx((WxA ∧ □(A 
→ B)) → WxB) is valid in the class of all models. Nevertheless, (6)–(8) can 
be deduced in some systems: (6) is provable in any boulesic (or boulesic-
deontic) system that includes the rule T – MW; (7) and (8) cannot be es-
tablished in any pure boulesic system: we need a boulesic-deontic system; 
(7) can be derived in every boulesic-deontic system that includes the rules 
T – WO, T – HW and T – MW (I will establish this in Section 5.1); (8) can 
be proved in every boulesic-deontic system that includes the rules T – WO, 
T – HW, T – MW, T – a4, T – b4 and T – FTR. (For more on these rules, 
see Section 4.2.) 
 It seems to me that interpretation (6) comes very close to Kant’s own 
reading of the hypothetical imperative. If this is correct, we can prove that 
Kant was right: ‘Who wills the end, wills (so far as reason has decisive 
influence on his actions) also the means which are indispensably neces-
sary...’ is, in this sense, a necessary universal truth in some models. In Sec-
tion 3.6, I will discuss a semantic argument that shows that (6) is valid in 
the class of all models that satisfy C – MW (see Table 5).11 

                                                      
11  For more information about the hypothetical imperative, see, for example, 
(Bedke 2009; Broome 1999; Brunero 2010; Downie 1984; Feldman 1986, Chapter 5; 
Foot 1972; Gensler 1985; Greenspan 1975; Harsanyi 1958; Hill 1973, 1989; Korsgaard 
2008; Marshall 1982; Shaver 2006; Schroeder 2004, 2005, 2009, 2015; Wallace 2001; 
and Way 2010). There are at least two interesting questions about the interpretation 
of the hypothetical imperative. (1) What does (or should) the ‘consequent’ of the 
hypothetical imperative say (is it a claim about an attitude, a norm about what 
ought to be or about what we ought to do, or a norm about an attitude)? Kant 
seems to think that the consequent is about an attitude, about willing. But it has 
also been suggested that the consequent is a norm about what we ought to do or 
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 The discussion of the hypothetical imperative above clearly shows, I be-
lieve, that the systems introduced in this paper are philosophically interest-
ing. In conclusion, the topic of this article is both philosophically and logi-
cally well motivated.12 

                                                      
a norm about an attitude. Hill (1973), for instance, suggests that the consequent 
might be about what ‘we’ ought to want, and Marshall (1982) and Schroeder (2004) 
suggest that it might be about what ‘we’ ought to do. (2) Should the imperative be 
given a wide-scope or a narrow-scope interpretation? There is a debate about what 
Kant meant. Many philosophers seem to prefer a wide-scope reading of hypothetical 
imperatives, see e.g. (Hill 1973; Gensler 1985; Wallace 2001; Broome 1999, 2001; Green-
span 1975). But some have also argued for a narrow-scope reading, see e.g. (Schroeder 
2004, 2005, 2009). According to Schroeder, Kant should be interpreted as a narrow-
scoper. I am inclined to believe that this is in fact a better interpretation of Kant’s 
position. Whether or not this view is correct, it is a nice feature of the systems in 
this paper that we can clearly distinguish between these different readings. 
12  There are many other good reasons to be interested in the systems in this paper 
and also some potential problems with the whole project. I cannot discuss every 
interesting philosophical issue that is related to the topics of this paper. However, 
I would like to briefly mention a potential problem that was raised by an anonymous 
reviewer. According to this reviewer it may in principle be interesting to devote some 
attention to specific logical/inferential features of sentences which speak about will-
ing/wanting, but there is no real need for a comprehensive logical theory of expres-
sions of this kind. It is, of course, possible that this view is correct, but is seems 
highly problematic to me. If it is interesting to devote some attention to specific 
logical/inferential features of sentences which speak about willing/wanting, it seems 
to me that it must also be interesting to try to develop a comprehensive logical 
theory of expressions of this kind. In general, it is more interesting to have a com-
prehensive theory of some ‘phenomenon’ than just a piecemeal grasp of some uncon-
nected truths (and almost everyone, I think, agrees with this view). Consider a sim-
ilar argument. ‘Though in principle it may be interesting to devote some attention 
to specific logical/inferential features of sentences which speak about propositional 
(truth-functional) truths there is no real need for a comprehensive logical theory of 
expressions of this kind. For example, we do not need sound and complete systems 
of propositional logic. There is no point in trying to construct axiomatic systems or 
tableau systems of propositional logic. It is enough if we study the law of non-con-
tradiction, the law of identity, the law of excluded middle, etc.’ This argument is 
obviously highly problematic and I believe few people would be convinced by it. 
When philosophers and logicians started to study propositional logic systematically, 
constructed sound and complete systems, and proved that they were sound and 
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 The paper is divided into seven main sections. Section 2 deals with the 
syntax and Section 3 with the semantics of our systems. In Section 4, I de-
scribe the proof theory of our logics, while Section 5 includes some examples 
of theorems. Section 6 contains soundness and completeness proofs for every 
system. Finally, Section 7 includes a short conclusion and summary. 

2. Syntax 

2.1. Alphabet 

 Terms 
(i) A set of variables x1, x2, x3, . . .  
(ii) A set of constants (rigid designators) kd1, kd2, kd3, . . .  

 Predicates 
(iii) For every natural number n > 0, n-place predicate symbols P 1

n, P
2
n, 

P 3
n, . . .  

(iv) The monadic existence predicate E, and the monadic rationality pred-
icate R. 

(v) The dyadic identity predicate (necessary identity) =. 

 Connectives 
(vi) The primitive truth-functional connectives ¬ (negation), ∧ (conjunc-

tion), ∨ (disjunction), → (material implication) and ↔ (material 
equivalence). 

                                                      
complete, this was an extremely important development in the history of logic. Why 
should there be any difference if one talks about ‘logical/inferential features of sen-
tences which speak about willing/wanting’? The reviewer might be right that we do 
not ‘need’ boulesic logic in some senses of this word. For example, we do not need it 
to survive or for society to go on functioning. But, then again, we do not need any 
comprehensive logical theory at all for these purposes. The fact that we do not ‘need’ 
boulesic logic in some senses of the term ‘need,’ doesn’t show that the topic of my 
paper isn’t interesting. And it certainly does not follow that the project is not worth 
the effort. In conclusion, this potential problem does not strike me as particularly 
serious. 
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 Operators 
(vii) The alethic operators U (universal necessity), M (universal possibil-

ity), □ (historical necessity) and  (historical possibility).13 
(viii) The deontic operators O (Ought) and P (Permission). 
(ix) The boulesic operators W (Want) and A (Accept). 

 Quantifiers 
(x) The (possibilist) quantifiers Π (For all) and Σ (For some). 

 Parentheses 
(xi) The brackets ) and (. 

I will use x, y and z . . .  for arbitrary variables, a, b, c . . .  for arbitrary 
constants, and s and t for arbitrary terms (with or without primes or sub-
scripts). For more on the set of constants, see Section 3.1. I will use Fn, Gn, 
Hn, . . .  for arbitrary n-place predicates and I will omit the subscript if it 
can be read off from the context. 
 Π and Σ are substitutional, ‘possibilist’ quantifiers because the domain is 
the same in every possible world and every object in the domain has a name 
(Section 3). Thus, in effect, they vary over every object in the domain. 

2.2. Languages 

 I will consider two languages in this paper. The first, L1, does not in-
clude the deontic operators; the second, L2, does. L1 is constructed from 
clauses (i)–(viii) and (x), and L2 from clauses (i)–(x) below. 

(i) Any constant or variable is a term. 
(ii) If t1, . . . , tn are any terms and P is any n-place predicate, Pt1. . . tn is 

an atomic formula. 

                                                      
13  U and M are standard universal modalities (see almost any introduction to modal 
logic). For more on the concepts of historical necessity and possibility, see, for example, 
(Åqvist and Hoepelman 1981; and Chellas 1969). In this paper, I will not try to combine 
boulesic logic and temporal logic since I want to keep things relatively simple. However, 
it is in principle possible to combine the systems in this paper with various tense 
systems. I hope to do this in future work (see the conclusion in Section 7). 
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(iii) If t is a term, Et (‘t exists’) is an atomic formula and Rt (‘t is perfectly 
rational’) is an atomic formula. 

(iv) If s and t are terms, then s = t (‘s is identical with t’) is an atomic 
formula. 

(v) If A and B are formulas, so are ¬A, (A ∧ B), (A ∨ B), (A → B) and 
(A ↔ B). 

(vi) If A is a formula, so are UA (‘it is universally [or absolutely] necessary 
that A’), MA (‘it is universally [or absolutely] possible that A’), □A 
(‘it is [historically] necessary that A’) and A (‘it is [historically] pos-
sible that A’). 

(vii) If B is any formula and t is any term, then WtB (‘t wants it to be the 
case that B’) and AtB (‘t accepts that it is the case that B’) are for-
mulas. 

(viii) If A is any formula and x is any variable, then ΠxA (‘for every [possi-
ble] x: A’) and ΣxA (‘for some [possible] x: A’) are formulas. 

(ix) If A is a formula, then OA (‘it ought to be the case that A’) and PA 
(‘it is permitted that A’) are formulas. 

(x) Nothing else is a formula. 

 A, B, C . . .  stand for arbitrary formulas, and Γ, Φ . . .  for sets of for-
mulas. The concepts of bound and free variables, and open and closed for-
mulas, are defined in the usual way. (A)[t/x] is the formula obtained by 
substituting t for every free occurrence of x in A. The definition is standard. 
Brackets around formulas are usually dropped if the result is not ambigu-
ous. 

2.3. Definitions 

 It is possible to introduce some new symbols into our languages by def-
initions. If we do that, the new symbols should be treated as pure metalog-
ical abbreviations and we should not read anything more into the defini-
tions. Here are some examples: 

Deontic operators. FA =df ¬PA. KA =df (PA ∧ P¬A). NA =df ¬KA. 

Actualist quantifiers. ∀xA =df Πx(Ex → A) and ∃xA =df Σx(Ex ∧ A). 
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 O and P are not included in L1; in L2 they are treated as primitive 
symbols. In some (but not all) systems that I will describe, O, P and F are 
‘definable’ in terms of the boulesic operators in the sense that we can prove 
that the following equivalences are logically true: OB ↔ Πx(Rx → WxB) 
(‘It ought to be the case that B iff everyone who is perfectly rational wants 
it to be the case that B’); PB ↔ Πx(Rx → AxB) (‘It is permitted that B iff 
everyone who is perfectly rational accepts that [consents to the state of 
affairs that] it is the case that B’); and FB ↔ Πx(Rx → Wx¬B) (‘It is not 
permitted that B iff everyone who is perfectly rational wants it to be the 
case that not-B’). However, since it is not immediately obvious that these 
equivalences should hold, and since we want to know which assumptions we 
must make to be able to prove them, we do not introduce the deontic op-
erators through definitions in this paper. Furthermore, when I say that O, 
P and F are ‘definable’ in terms of the boulesic operators, this should not 
be taken to imply that, for example, ‘OB’ has the same meaning as ‘Πx(Rx 
→ WxB)’ or that ‘OB’ can be replaced by ‘Πx(Rx → WxB)’ in every context. 
(For more on this, see Section 4.2.12 and Table 30.)14 

                                                      
14  One possible objection against these equivalences is that they seem to presuppose 
an extreme view of rationality according to which all rational agents should have 
essentially the same wishes. It is true that in the systems where we can prove the 
equivalences, all perfectly rational individuals want the same things (see Sections 
3.3.7, 4.2.8 and 4.2.12). If a is perfectly rational and b is perfectly rational, then it 
is not the case that a wants C and b wants not-C in those systems (at least, if we 
also assume that they include, for example, T – bD (Table 14)). But is it not the 
case that this leaves no scope for legitimate conflicts of interests such as two busi-
nesspeople each wishing their own company to take market shares from that of the 
other, or two fathers both wishing that their own child wins a competition? I cannot 
discuss this argument in detail in this paper, but I want to make the following 
remarks. (1) Even in systems where we can prove the equivalences, it is possible that 
an individual a wants C and another individual b wants not-C (given that not both 
a and b are perfectly rational). (2) Even in systems where we can prove the equiva-
lences, it is possible that it is permitted (and even obligatory) for some individual 
a to want C and for some other individual b to want not-C. (3) Even in systems 
where we can prove the equivalences and where both a and b are perfectly rational, 
it is possible that a wants to do ‘everything’ a can to win and that b wants to do 
‘everything’ b can to win and that both a and b want ‘the best man’ to win, even 
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3. Semantics 

3.1. Models 

Definition 1 A model M is a relational structure ⟨D, W, ℜ, 𝔄𝔄, v⟩, where 
D is a non-empty set of individuals (the domain), W is a non-empty set of 
possible worlds, ℜ is a binary alethic accessibility relation (ℜ is a subset of 
W × W), 𝔄𝔄 is a ternary boulesic accessibility relation (𝔄𝔄 is a subset of  
D × W × W), and v is an interpretation function. 
 A supplemented model Ms is a relational structure ⟨D, W, ℜ, 𝔖𝔖, 𝔄𝔄, v⟩, 
where D, W, ℜ, 𝔄𝔄 and v are as in an ordinary model, and 𝔖𝔖 is a dyadic 
deontic accessibility relation (𝔖𝔖 is a subset of W × W). 

 ℜ ‘corresponds’ to the alethic operators □ and , 𝔖𝔖 to the deontic 
operators O and P, and 𝔄𝔄 to the boulesic operators W and A. Informally, 
ℜ𝜔𝜔𝜔𝜔′ says that the possible world 𝜔𝜔′ is alethically (historically) accessible 
from the possible world 𝜔𝜔, 𝔖𝔖𝜔𝜔𝜔𝜔′ says that the possible world 𝜔𝜔′ is deonti-
cally accessible from the possible world 𝜔𝜔, and 𝔄𝔄𝔄𝔄𝜔𝜔𝜔𝜔′ says that the possible 
world 𝜔𝜔′ is acceptable to the individual 𝛿𝛿 in (or relative to) the possible 
world 𝜔𝜔, or that 𝛿𝛿 accepts 𝜔𝜔′ in (or relative to) 𝜔𝜔. 
 In Section 3.4, we will see how 𝔖𝔖 and 𝔄𝔄 can be defined, and we will 
explore the consequences of these definitions. 
 The valuation function v assigns every constant c an element v(c) of D, 
and every possible world 𝜔𝜔 in W and an n-place predicate P a subset v𝜔𝜔(P) 
(the extension of P in 𝜔𝜔) of Dn. In other words, v𝜔𝜔(P) is the set of n-tuples 
that satisfy P in the world 𝜔𝜔. Hence, every constant is a kind of rigid des-
ignator: it refers to the same individual in every possible world. Nonetheless, 
the extension of a predicate may change from world to world and it may be 
empty in a world. Let M be an ordinary or supplemented model. Then the 

                                                      
though it is not possible that both a and b win. (4) All systems I discuss are com-
patible with the proposition that it is possible for perfectly rational individuals to 
wish for incompatible things even though it is not possible for them to want incom-
patible things. So, it is not the case that those systems leave no scope for legitimate 
conflicts of interests. Whether or not they leave enough scope is, of course, debatable. 
Personally, I am inclined to believe that they do leave enough scope. 



208  Daniel Rönnedal 

Organon F 27 (2) 2020: 187–262 

language of M, L(M), is obtained by adding a constant kd, such that v(kd) 
= d, to the language for every member d ∈ D. Hence, every object in the 
domain of a model has at least one name in our language, but several dif-
ferent constants may refer to one and the same object. 
 The predicate R has a special interpretation in our systems. ‘Rc’ says 
that c is perfectly rational, perfectly reasonable or perfectly wise. If v(c) is 
in the extension of R at the possible world 𝜔𝜔, this means that v(c) is per-
fectly rational, reasonable or wise in 𝜔𝜔. Exactly what this means will depend 
on the conditions we impose on the boulesic accessibility relation 𝔄𝔄 (Section 
3.3). R functions as an ordinary predicate. Hence, an individual 𝛿𝛿 may be 
in R’s extension in one possible world even though 𝛿𝛿 is not in R’s extension 
in every possible world. Accordingly, the fact that an individual 𝛿𝛿 is per-
fectly rational, reasonable or wise in a possible world does not entail that 
𝛿𝛿 is perfectly rational, reasonable or wise in every possible world. In Section 
3.3.8, we will see what happens if we add the extra assumption that every 
perfectly rational individual is necessarily perfectly rational (the semantic 
condition C–UR guarantees that this is the case: see Table 8). In the light 
of the definitions of the truth conditions for sentences of the forms WaC 
and AaC (see Section 3.2, conditions (ii), (xi) and (xii)), it should be obvi-
ous that R plays an important role in our systems. It will become even 
clearer when we introduce the various tableau rules in Section 4.2. Whether 
or not we can draw any interesting consequences from the fact that an 
individual c wants (or accepts) something (in a possible world) will depend 
on whether or not c is perfectly rational, that is, whether or not c is in R’s 
extension (in this possible world). 
 The valuation function assigns extensions to so-called matrices. Given 
any closed boulesic formula of the form WtC or AtC, we shall construct its 
matrix as follows. Let m be the least number greater than every n such that 
xn occurs bound in C. From left to right, replace every occurrence of an 
individual constant with xm, xm+1, etc. The result is the formula’s matrix. 
Here are some examples: the matrix of WdPc is Wx1Px2; the matrix of  
AcPdc is Ax1Px2x3; the matrix of Wc(Pa ↔ (Pa ∧ Pa)) is Wx1(Px2 ↔ (Px3 
∧ Px4)); the matrix of WcΣx1(Fc → Gx1) is Wx2Σx1(Fx3 → Gx1); the matrix 
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of WcWdΠx3Px3 is Wx4Wx5Πx3Px3, the matrix of WcΠx1Wx1Σx2Px1x2 is 
Wx3Πx1Wx1Σx2Px1x2, etc. 
 Let A be any formula. Then, (A)[a1, . . . , an/x1, . . . , xn] is the result of 
replacing every free occurrence of x1 by a1, and . . . , and every free occur-
rence of xn by an in A. (A)[a1, . . . , an/x1, . . . , xn] will be abbreviated as 
(A)[a1, . . . , an/𝑥𝑥]⃗ (parentheses around A will sometimes be dropped). Here 
are some examples. Let A be Wx1Px2. Then, (A)[d, c/x1, x2] = WdPc.  
Let A be Ax1Px2x3. Then, (A)[c, d, c/x1, x2, x3] = AcPdc. Let A be 
Wx4Wx5Πx3Px3. Then, (A)[c, d/x4, x5] = WcWdΠx3Px3, etc. 
 If M is any matrix of the form WtC or AtC with free variables x1, . . . , xn, 
then v𝜔𝜔(M) ⊆ Dn. Intuitively, this means that M is interpreted as a predi-
cate and not as a (closed) sentence. Note that M always includes at least 
one free variable. Let M be a matrix where xm is the first free variable in M 
and am is the constant in M[a1, . . . , an/𝑥𝑥]⃗ that replaces xm. Then the truth 
conditions for closed boulesic formulas of the form M[a1, . . . , an/𝑥𝑥]⃗, when 
v𝜔𝜔(Ram) = 0, are defined in terms of the extension of M in 𝜔𝜔. If v𝜔𝜔(Rc) = 
1, then Wc in WcB (Ac in AcB) will behave as a modal operator in 𝜔𝜔. (See 
conditions (ii), (xi) and (xii) in Section 3.2 below for more on this.)15 
 v𝜔𝜔(=) = {⟨d, d⟩ : d ∈ D}, i.e. the extension of the identity predicate is 
the same in every possible world (in a model). It follows that all identities 
(and non-identities) are both absolutely and historically necessary. The ex-
istence predicate E functions as an ordinary predicate. The extension of this 
predicate may vary from one world to another. ‘Ec’ is true in a possible 
world iff v(c) exists in this world. 

3.2. Truth conditions 

 We now extend the interpretation function. Every closed formula, A, is 
assigned exactly one truth-value (1 = True or 0 = False), v𝜔𝜔(A), in each 
world 𝜔𝜔. 
 Here are the truth conditions for some sentences in our language. (The 
truth conditions for the omitted truth-functional connectives are the usual 

                                                      
15  See Priest (2005, Ch. 1–2) and Section 5.1 in this paper for more on matrices. 
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ones. ‘∀𝜔𝜔′ ∈ W’ means ‘for every possible world 𝜔𝜔′ in W’; and ‘∃𝜔𝜔′ ∈ W’ 
means ‘for some possible world 𝜔𝜔′ in W.’) 

 (i)  v𝜔𝜔(Pa1 . . . an) = 1 iff ⟨v(a1), . . . , v(an)⟩ ∈ v𝜔𝜔(P). 

 Let M be a matrix where xm is the first free variable in M and am is the 
constant in M[a1, . . . , an/𝑥𝑥]⃗ that replaces xm. Then the truth conditions for 
closed boulesic formulas of the form M[a1, . . . , an/𝑥𝑥]⃗, when v𝜔𝜔(Ram) = 0, are 
given in (ii) below. 

 (ii)  v𝜔𝜔(M[a1, . . . , an/𝑥𝑥]⃗) = 1 iff ⟨v(a1), . . . , v(an)⟩ ∈ v𝜔𝜔(M). 
 (iii) v𝜔𝜔(UA) = 1 iff ∀𝜔𝜔′ ∈ W: v𝜔𝜔′(A) = 1. 
 (iv) v𝜔𝜔(MA) = 1 iff ∃𝜔𝜔′ ∈ W: v𝜔𝜔′(A) = 1. 
 (v)  v𝜔𝜔(□A) = 1 iff ∀𝜔𝜔′ ∈ W s.t. ℜ𝜔𝜔𝜔𝜔′: v𝜔𝜔′(A) = 1. 
 (vi) v𝜔𝜔(A) = 1 iff ∃𝜔𝜔′ ∈ W s.t. ℜ𝜔𝜔𝜔𝜔′: v𝜔𝜔′(A) = 1. 
 (vii) v𝜔𝜔(OA) = 1 iff ∀𝜔𝜔′ ∈ W s.t. 𝔖𝔖𝜔𝜔𝜔𝜔′: v𝜔𝜔′(A) = 1. 
 (viii) v𝜔𝜔(PA) = 1 iff ∃𝜔𝜔′ ∈ W s.t. 𝔖𝔖𝜔𝜔𝜔𝜔′: v𝜔𝜔′(A) = 1. 
 (ix) v𝜔𝜔(ΠxA) = 1 iff for all kd ∈ L(M), v𝜔𝜔(A[kd/x]) = 1. 
 (x)  v𝜔𝜔(ΣxA) = 1 iff for some kd ∈ L(M), v𝜔𝜔(A[kd/x]) = 1. 

Note that O and P are not included in the language L1, while they are 
primitive in the language L2. 
 Here are the truth conditions for WaC and AaC. 

 (xi) v𝜔𝜔(WaC) = 1 iff for all 𝜔𝜔′ such that 𝔄𝔄v(a)𝜔𝜔𝜔𝜔′: v𝜔𝜔′(C) = 1, given 
that v(a) is an element in v𝜔𝜔(R), if v(a) is not an element in v𝜔𝜔(R), 
then WaC is assigned a truth value in 𝜔𝜔 in a way that does not 
depend on the value of C (see condition (ii) above). 

 (xii) v𝜔𝜔(AaC) = 1 iff for at least one 𝜔𝜔′ such that 𝔄𝔄v(a)𝜔𝜔𝜔𝜔′: v𝜔𝜔′(C) = 
1, given that v(a) is an element in v𝜔𝜔(R), if v(a) is not an element 
in v𝜔𝜔(R), then AaC is assigned a truth value in 𝜔𝜔 in a way that 
does not depend on the value of C (see condition (ii) above). 

 Intuitively, conditions (xi) and (xii) can be interpreted in the following 
way: if v(a) is not perfectly rational in a possible world, WaC and AaC 
behave as if they are ordinary predicates in this world; and if v(a) is per-
fectly rational in a possible world, Wa and Aa behave as ordinary modal 
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operators in this world. So, the truth value of WaC (AaC) in the possible 
world 𝜔𝜔 when a is not perfectly rational in 𝜔𝜔 is not determined by anything 
that goes on in some other world. It is, for example, logically possible for 
someone who is not perfectly rational to want C without wanting B even 
though B is a necessary means to C (see Section 5.1 for more on this). 

3.3. Conditions on models 

 In this section, I will consider some conditions that might be imposed on 
our models. These conditions concern the formal properties of the accessibility 
relations, the relationships between the various accessibility relations and the 
relationships between the accessibility relations and the valuation function. 
In the formulas in this section, we can think of c and d as varying over 
individuals in D, and x, y, z and w as varying over possible worlds in W. 
Table 1 and Table 2 include information about the alethic and the deontic 
accessibility relations. The well-known conditions introduced in these tables 
are mentioned in almost any introduction to modal and deontic logic (see the 
introduction for some references). The clauses in Table 4, which concern the 
relationships between the alethic and the deontic accessibility relations, have 
been discussed by Rönnedal (2012), for instance. All other conditions are new. 
 The clauses in this section can be combined in many different ways, gen-
erating many different boulesic and boulesic-deontic systems (sections 3.5 and 
4.3). Exactly which conditions should we accept? The answer to this question 
will depend on what it means to be perfectly rational. I think there might be 
good reasons to accept all (or almost all) conditions in this section. In Section 
3.4, I will consider one such reason. However, it might also be interesting to 
see what follows if we accept some other, smaller class. The conditions in this 
section should be more or less self-explanatory. Nevertheless, I have added a 
few comments about some of the new clauses. There are many interesting 
relationships between the various conditions that I do not have space to dis-
cuss in this paper. In Section 3.4, I will consider what follows if we define the 
ternary boulesic accessibility relation 𝔄𝔄 in terms of the alethic accessibility 
relation ℜ and a binary acceptance predicate, and the deontic accessibility 
relation 𝔖𝔖 in terms of the ternary boulesic accessibility relation. This will 
show how deontic logic can in a certain sense be grounded in boulesic logic. 
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3.3.1. Conditions on the relation ℜ 

Condition  Formalisation of condition 

C – aT  ∀xℜxx 

C – aD  ∀x∃yℜxy 

C – aB  ∀x∀y(ℜxy → ℜyx) 

C – a4  ∀x∀y∀z((ℜxy ∧ ℜyz) → ℜxz) 

C – a5  ∀x∀y∀z((ℜxy ∧ ℜxz) → ℜyz) 

Table 1 

3.3.2. Conditions on the relation 𝔖𝔖 

Condition  Formalisation of condition 

C – dD  ∀x∃y𝔖𝔖xy 

C – d4  ∀x∀y∀z((𝔖𝔖xy ∧ 𝔖𝔖yz) → 𝔖𝔖xz) 

C – d5  ∀x∀y∀z((𝔖𝔖xy ∧ 𝔖𝔖xz) → 𝔖𝔖yz) 

C – dT′  ∀x∀y(𝔖𝔖xy → 𝔖𝔖yy) 

C – dB′  ∀x∀y∀z((𝔖𝔖xy ∧ 𝔖𝔖yz) → 𝔖𝔖zy) 

Table 2 

3.3.3. Conditions on the relation 𝔄𝔄 

Condition  Formalisation of condition 

C – bD  ∀d∀x∃y𝔄𝔄dxy 

C – b4  ∀d∀x∀y∀z((𝔄𝔄dxy ∧ 𝔄𝔄dyz) → 𝔄𝔄dxz) 

C – b5  ∀d∀x∀y∀z((𝔄𝔄dxy ∧ 𝔄𝔄dxz) → 𝔄𝔄dyz) 

C – bT′  ∀d∀x∀y(𝔄𝔄dxy → 𝔄𝔄dyy) 

C – bB′  ∀d∀x∀y∀z((𝔄𝔄dxy ∧ 𝔄𝔄dyz) → 𝔄𝔄dzy) 

Table 316 

                                                      
16  ‘C’ in ‘C – bD’ stands for ‘condition’ and ‘b’ for ‘boulesic.’ C – bD is called ‘C –
bD’ because it is similar to the well-known condition D (as in ‘deontic’) in ordinary 
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 The conditions in Table 3 correspond to the tableau rules in Table 14. 
Note that 𝔄𝔄 is a ternary relation. C – bD (Table 3) says: for every (individ-
ual) d and for every (possible world) x there is a (possible world) y such 
that d accepts y in x. According to this condition, every individual always 
accepts at least one possible world, no matter what situation she is in. If all 
possibilities are in some sense ‘bad,’ she will accept the possibility (or pos-
sibilities) that is (are) ‘least bad,’ so to speak. In all classes of models that 
satisfy this condition, the following sentence (schema) is valid: Πx(Rx → 
¬(WxB ∧ Wx¬B)) (‘For every x: if x is perfectly rational, then it is not the 
case that x wants it to be the case that B and x wants it to be the case that 
not-B’). This is an intuitively plausible principle. If c wants it to be the 
case that B and also wants it to be the case that not-B, not all of c’s wants 
can be satisfied. There is no possible world in which both B and not-B are 
true, and c cannot see to it that B and see to it that not-B. 

3.3.4. Conditions concerning the relation between ℜ and 𝔖𝔖 

Condition  Formalisation of condition 

C – MO  ∀x∀y(𝔖𝔖xy → ℜxy) 

C – OC  ∀x∃y(𝔖𝔖xy ∧ ℜxy) 

C – OC′  ∀x∀y(𝔖𝔖xy → ∃z(𝔖𝔖yz ∧ ℜyz)) 

C – MO′  ∀x∀y∀z((𝔖𝔖xy ∧ 𝔖𝔖yz) → ℜyz) 

C – ad4  ∀x∀y∀z((ℜxy ∧ 𝔖𝔖yz) → 𝔖𝔖xz) 

C – ad5  ∀x∀y∀z((ℜxy ∧ 𝔖𝔖xz) → 𝔖𝔖yz) 

C – PMP  ∀x∀y∀z((𝔖𝔖xy ∧ ℜxz) → ∃w(ℜyw ∧ 𝔖𝔖zw)) 

C – OMP  ∀x∀y∀z((ℜxy ∧ 𝔖𝔖yz) → ∃w(𝔖𝔖xw ∧ ℜwz)) 

Table 4 

                                                      
alethic (modal) logic. Similar remarks apply to the other conditions in this section. 
It is usually binary relations that are called serial, transitive, Euclidean, etc. None-
theless, we will extend these concepts to ternary relations. If 𝔄𝔄 satisfies C – b4, we 
will call 𝔄𝔄 transitive, and so on. If it is clear from the context that we are talking 
about a semantic condition, I will often omit the initial C. 
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3.3.5. Conditions concerning the relation between ℜ and 𝔄𝔄 

Condition  Formalisation of condition 

C – MW  ∀d∀x∀y(𝔄𝔄dxy → ℜxy) 

C – WC  ∀d∀x∃y(𝔄𝔄dxy ∧ ℜxy) 

C – WC′  ∀d∀x∀y(𝔄𝔄dxy → ∃z(𝔄𝔄dyz ∧ ℜyz)) 

C – MW′  ∀d∀x∀y∀z((𝔄𝔄dxy ∧ 𝔄𝔄dyz) → ℜyz) 

C – ab4  ∀d∀x∀y∀z((ℜxy ∧ 𝔄𝔄dyz) → 𝔄𝔄dxz) 

C – ab5  ∀d∀x∀y∀z((ℜxy ∧ 𝔄𝔄dxz) → 𝔄𝔄dyz) 

C – AMP  ∀d∀x∀y∀z((𝔄𝔄dxy ∧ ℜxz) → ∃w(ℜyw ∧ 𝔄𝔄dzw)) 

C – WMP  ∀d∀x∀y∀z((ℜxy ∧ 𝔄𝔄dyz) → ∃w(𝔄𝔄dxw ∧ ℜwz)) 

Table 517 

 The conditions in Table 5 are similar to the conditions in Table 4. How-
ever, the clauses in Table 5 concern the relationship between the boulesic 
accessibility relation and the alethic accessibility relation. The conditions 
in Table 5 correspond to the tableau rules in Table 18. C – MW says: ‘For 
every (individual) d, for every (possible world) x and for every (possible 
world) y, d accepts y in x only if y is alethically accessible from x.’ In other 
words, if C – MW holds, then it is not the case that d accepts y in x if y is 
not alethically accessible from x. In every class of models that satisfies this 
condition, the following version of the hypothetical imperative is valid: 
UΠx(Rx → ((WxA ∧ □(A → B)) → WxB)) (see the introduction; in Section 
3.6, I will prove this claim). So, this condition is philosophically quite in-
teresting. 
 C – WC is another philosophically interesting condition. According to 
C – WC, for every (individual) d, for every (possible world) x there is  

                                                      
17  ‘MW’ in ‘C – MW’ stands for ‘Must Want,’ and ‘WC’ in ‘C – WC’ for ‘Want 
Can.’ C – ab4 (as in ‘alethic boulesic 4’) is called ‘C – ab4’ because it is similar to the 
well-known alethic (modal) condition C – 4 and the alethic deontic condition C –
ad4, and similarly for C – ad5. ‘AMP’ in ‘C – AMP’ is an abbreviation of ‘Acceptance 
Must Permutation,’ and ‘WMP’ in ‘C – WMP’ is an abbreviation of ‘Want Must 
Permutation.’ 
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a (possible world) y such that d accepts y in x and y is alethically accessible 
from x. In other words, in every possible world, d accepts at least one pos-
sible world that is alethically accessible. This condition is similar to condi-
tion C – bD (Table 3). C – WC entails C – bD, but C – bD (in itself) does 
not entail C – WC. In every class of models that satisfies this condition, the 
following schema is valid: Πx(Rx → (WxA → A)) (‘For every x: if x is 
perfectly rational, then x wants it to be the case that A only if A is (histor-
ically) possible’). Hence, according to this condition, a perfectly rational 
individual does not want anything impossible. This is an intuitively plausi-
ble principle. If c wants something that is impossible, c’s want will inevita-
bly be frustrated; c can never see to it that anything impossible is the case. 
In the introduction, we called this principle the ‘Want-Can principle’ (WC). 
 Space does not allow me to discuss every philosophically interesting ar-
gument for and against the Want-Can principle, but I would like to address 
one possible counterexample (this problem was raised by an anonymous 
reviewer). If WC is valid, then we must accept the following instance of 
this principle: If a perfectly rational individual wants a unicorn to exist then 
it is (historically) possible that a unicorn exists. But this instance is coun-
terintuitive. Hence, WC cannot be valid. I agree that this instance seems 
somewhat strange, even perhaps counterintuitive, at a first glance. But I do 
not think that this fact refutes the principle. Let me explain why. The 
expression ‘If, then’ in this instance should be interpreted as material im-
plication. Sometimes we read more into this expression in English, for ex-
ample, some kind of causal relation. But we should avoid this in our case. 
Suppose that a perfectly rational individual c wants it to be the case that 
A. WC does not entail that we have to assume that c’s attitude causes it 
to be the case that it is historically possible that A. If we are idealists about 
possibilities, we might want to make such an assumption. But we do not 
have to be idealists to accept the systems in this paper. We can read WC 
in the following way: ‘For every x: if x is perfectly rational, then if x wants 
it to be the case that A then A is (historically) possible.’ But, as I suggested 
above, it might be more plausible to read it in the other direction, that is, 
in the following way: ‘For every x: if x is perfectly rational, then x wants it 
to be the case that A only if A is (historically) possible.’ We can think of 
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our example in this way. Then we should read our instance of WC in the 
following way: ‘If someone is perfectly rational, then she wants a unicorn to 
exist only if it is (historically) possible that a unicorn exists.’ Suppose that 
it is not (historically) possible that a unicorn exists. (In our possible world 
it seems to be the case that it is logically but not historically possible that 
there exists a unicorn.) Then a perfectly rational individual will adjust his 
or her attitudes to this fact. Hence, he or she will not want a unicorn to 
exist. Furthermore, recall that we use ‘want’ in an all-things-considered 
sense in this paper. So, the fact that a perfectly rational individual does not 
want anything that is (historically) impossible according to WC does not 
necessarily entail that he or she cannot daydream about unicorns, think 
about what it would be like if a unicorn existed, believe that it would be 
cool if a unicorn existed, etc. (see footnote 3). However, he or she will not 
want a unicorn to exist in an all-things-considered sense. So, I do not think 
that this example refutes WC. 

3.3.6. Conditions concerning the relation between 𝔖𝔖 and 𝔄𝔄 

Condition  Formalisation of condition 

C – OW  ∀x∀y(∃d𝔄𝔄dxy → 𝔖𝔖xy) 

C – WO  ∀x∀y(𝔖𝔖xy → ∃d𝔄𝔄dxy) 

C – 𝔄𝔄Σ  ∀x∀y(𝔖𝔖xy ↔ ∃d𝔄𝔄dxy) 

C – OW′  ∀x∀y(∀d𝔄𝔄dxy → 𝔖𝔖xy) 

C – WO′  ∀x∀y(𝔖𝔖xy → ∀d𝔄𝔄dxy) 

C – 𝔄𝔄Π  ∀x∀y(𝔖𝔖xy ↔ ∀d𝔄𝔄dxy) 

Table 618 

 The conditions in Table 6 are concerned with some possible relationships 
between the deontic accessibility relation 𝔖𝔖 and the boulesic accessibility 
relation 𝔄𝔄. According to C – 𝔄𝔄Σ, y is deontically accessible from x iff y is 
acceptable to at least one individual in x; and according to C – 𝔄𝔄Π, y is 

                                                      
18  ‘OW’ is an abbreviation of ‘Ought Want,’ and ‘WO’ of ‘Want Ought.’ 
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deontically accessible from x iff y is acceptable to all individuals in x. C –
𝔄𝔄Π is an immediate consequence of (Def 𝔖𝔖), which is a definition that we 
will introduce in Section 3.4. C – 𝔄𝔄Σ follows from C – OW and C – WO, and 
C – 𝔄𝔄Π follows from C – OW′ and C – WO′. If the condition C – HW (Table 
7) holds, then C – 𝔄𝔄Σ and C – 𝔄𝔄Π are equivalent, for then a possible world 
y is boulesically accessible from a possible world x to some individual iff y 
is boulesically accessible from x to every individual. C – OW corresponds to 
the tableau rule T – OW and C – WO to the tableau rule T – WO (Table 
19). In Sections 3.4 and 4.2.12, we will consider some consequences of C –
𝔄𝔄Π (Def 𝔖𝔖). In every model that satisfies C – OW the following sentence is 
valid: OA → Πx(Rx → WxA), which says that if it ought to be the case 
that A then everyone who is perfectly rational wants it to be the case that 
A. If a model satisfies C – WO (and C – HW and C – ΣR in Table 7), then 
Πx(Rx → WxA) → OA is valid in this model. Πx(Rx → WxA) → OA says 
that it ought to be the case that A if everyone who is perfectly rational 
wants it to be the case that A. The intuitive idea behind the conditions in 
Table 6 is that there might be some interesting connections between what 
perfectly rational individuals want and accept and various normative ‘facts’ 
about what ought to be the case, about what is permitted and about what 
is not permitted. In our systems, we can explore those possible connections 
in a systematic and precise way. (For more on this, see Sections 3.4 and 
4.2.12.) 

3.3.7. One more condition on the relation 𝔄𝔄 and the being  
of a perfectly rational individual 

Condition  Formalisation of condition 

C – HW  ∀c∀d∀x∀y(𝔄𝔄cxy → 𝔄𝔄dxy) 

C – ΣR 
 In every possible world, 𝜔𝜔, there is at least one in-

dividual, d, such that d is in R’s extension in 𝜔𝜔. 

Table 719 

                                                      
19  ‘HW’ in ‘C – HW’ is an abbreviation of ‘[the] Harmony of the Wills’ and ‘R’ in 
‘T – ΣR’ is an abbreviation of ‘perfectly rational’ or ‘perfectly reasonable.’ 
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 C – HW says that if the possible world y is acceptable to the individual 
c in the possible world x, then y is acceptable to any individual d in x. C –
HW corresponds to the tableau rule T – HW (Section 4.2.8, Table 15). 
 C – ΣR says the following: in every possible world, there is at least one 
individual that is perfectly rational. This does not entail that there is one 
individual that is perfectly rational in every possible world. However, if 
there is one individual that is perfectly rational in every possible world, 
then obviously C – ΣR holds. C – ΣR corresponds to the tableau rule T –
ΣR (Section 4.2.8, Table 15). When I say that ‘there is at least one indi-
vidual,’ I do not mean that this necessarily entails that this individual exists 
in this world. The expression is interpreted as a kind of ‘possibilist quanti-
fier’ that is supposed to range over every possible object. Obviously, though, 
if there exists an individual that is perfectly rational (in some possible 
world), then there is such an individual (in this world). 

3.3.8. Conditions on the valuation function v in a model 

Condition  Formalisation of condition 

C – FTR 
 If ℜ𝜔𝜔1𝜔𝜔2 and Rc is true in 𝜔𝜔1, then Rc is true in 𝜔𝜔2 

(for any c). 

C – UR  If Rc is true in 𝜔𝜔1, then Rc is true in 𝜔𝜔2 (for any c). 

Table 8 

 The semantic conditions C – FTR and C – UR correspond to the tab-
leau rules T – FTR and T – UR, respectively. (See Section 4.2.10, Table 
17, for more on this.) 

3.4. Relations between semantic conditions 

 There are many interesting relationships between the conditions intro-
duced in Section 3.3. It is not possible to go through them all, but I will 
mention some of the most interesting. Due to considerations of space, proofs 
are omitted. Let us begin by saying a few words about the alethic accessi-
bility relation. 
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Remark 2  The following facts are well-known. (a) If ℜ is reflexive (C –
aT), then ℜ is serial (C – aD). (b) ℜ is an equivalence relation iff (i) ℜ is 
reflexive (C – aT), symmetric (C – aB) and transitive (C – a4), iff (ii) ℜ is 
reflexive (C – aT) and Euclidean (C – a5), iff (iii) ℜ is serial (C – aD), 
symmetric (C – aB) and transitive (C – a4), iff (iv) ℜ is serial (C – aD), 
symmetric (C – aB) and Euclidean (C – a5). 

 Since □ and  are interpreted as historical necessity and possibility, it 
is reasonable to treat ℜ as an equivalence relation. If we assume this, □ and 
 will behave as so-called S5-operators. 
 The following theorem says something about the relationships between 
the conditions on the deontic accessibility relation and between the condi-
tions on the boulesic accessibility relation. 

Remark 3  The following facts are well-known. (i) If 𝔖𝔖 is Euclidean (C –
d5), then 𝔖𝔖 is almost (secondarily) reflexive (C – dT′) and almost (second-
arily) symmetric (C – dB′). Likewise, it is easy to prove the following facts. 
(ii) If 𝔄𝔄 is Euclidean (C – b5), then 𝔄𝔄 is almost (secondarily) reflexive (C –
bT′) and almost (secondarily) symmetric (C – bB′). 

 Now we will introduce some definitions. First, we define the ternary 
boulesic accessibility relation 𝔄𝔄 and the binary deontic accessibility relation 
𝔖𝔖, and then we investigate the consequences of these definitions. We also 
introduce a new semantic condition called the Accessibility Condition, or 
C – bdD (Definition 6), which has some interesting implications.20 

Definition 4 Def 𝔄𝔄. ∀c∀x∀y(𝔄𝔄cxy =df (ℜxy ∧ Tcy)).21 

 In this definition (Definition 4), T is a binary predicate that says that 
(the individual) c accepts (the possible world) y or that y is acceptable to 
c. Def 𝔄𝔄 can be read as: ‘For every (individual) c and for all (possible 
worlds) x and y: y is acceptable to c in x iff y is alethically accessible from 

                                                      
20  Note that the definitions in this paper are ‘theoretical’ rather than ‘lexical’ or 
‘descriptive.’ Furthermore, the ‘definiens’ does not have to have the same meaning 
as the ‘definiendum’ in every respect. 
21  Note that this definition does not entail any of the following propositions: 
∀c∃yTcy, ∃c∃yTcy, ∀c∃y(Rcy ∧ Tcy), ∃c∃y(Rcy ∧ Tcy). 
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x and c accepts y.’ This is a definition of the ternary boulesic accessibility 
relation 𝔄𝔄 in terms of the alethic accessibility relation ℜ and the binary 
accessibility relation T.22 

Definition 5 Def 𝔖𝔖. ∀x∀y(𝔖𝔖xy =df ∀c𝔄𝔄cxy). 

 Def 𝔖𝔖 (Definition 5) was mentioned already in Section 3.3.6. It should 
be obvious that C – 𝔄𝔄Π is an immediate consequence of Def 𝔖𝔖. Def 𝔖𝔖 is 
a definition of the deontic accessibility relation 𝔖𝔖 in terms of the boulesic 
accessibility relation 𝔄𝔄. Informally, Definition 5 says the following: ‘For all 
(possible worlds) x and y: y is deontically accessible from x iff every (indi-
vidual) c accepts y in x’ (or iff y is acceptable to every individual c in x). 
The intuition behind this definition is that the aim of morality is to create 
a possible world that everyone (who is perfectly rational) accepts (or can 
accept). This is an idea that might be attractive to at least some ideal 
observer theorists, Kantians, contractualists, moral idealists, constructiv-
ists, response dependent theorists, and divine will theorists. The definition 
has several interesting formal consequences (see Theorem 7 and Theorem 
8 below), but it does not tell us anything about which worlds various  

                                                      
22  Def 𝔄𝔄 is compatible with many different theories about what it means for an 
individual to accept a possible world (for a world to be acceptable to an individual). 
T is not necessarily a primitive, undefined relation. Here are some possible defini-
tions: y is acceptable to c iff the utility of y for c is positive, or above a certain 
threshold or as high as possible, or iff c does not prefer any other possible world to 
y, or . . . . The important thing for our purposes in this paper is that all definitions 
of this kind share the same form. The definition is also consistent with the proposi-
tion that different individuals accept different worlds and that different individuals 
might have different reasons for accepting a possible world. Perhaps c accepts y be-
cause the utility of y for c is above a certain threshold, and perhaps d accepts z be-
cause z does not contain any serious violations of human rights. It is an interesting 
question whether or not T is definable, but for our purposes in this paper, we do not 
have to answer this question. However, note that not all definitions are compatible 
with condition C – bdD (see definition 6) or with the proposition that there are pos-
sible worlds that are acceptable to some individual in some possible world. Suppose, 
for example, that y is acceptable to c iff the utility of y for c is positive and that 
there are no alethically accessible worlds from the world w in which the utility of 
y for c is positive. Then there is no world in w that is acceptable to c. 
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individuals accept or why they accept them (see footnote 22). So, the view 
is compatible with several different value theories and substantive norma-
tive theories. 
 Definition 5 does not entail that there is any world that everyone (who 
is perfectly rational) accepts. Accordingly, this definition does not guaran-
tee that ought implies historical possibility. To guarantee this principle, we 
need to introduce another condition, namely the following: 

Definition 6 (C – bdD) The Accessibility Condition. ∀x∃y(ℜxy ∧ ∀cTcy). 

 The Accessibility Condition says the following: ‘For every (possible 
world) x, there is a (possible world) y such that y is alethically accessible 
from x and for every (individual) c: c accepts y’; in other words, in every 
possible world there is at least one alethically accessible world that everyone 
accepts (or that is acceptable to everyone). Intuitively, this condition entails 
that no matter how good or bad things are in a given situation (possible 
world) everyone (who is perfectly rational) will agree that at least one pos-
sible outcome (world) is acceptable in this situation (world).23 This defini-
tion (together with some other conditions) guarantees that ought implies 
historical possibility, that is, if we assume this condition, then everything 
that ought to be is historically possible and nothing historically impossible 
is obligatory (see Theorem 8 below). 
 Now we will investigate some consequences of these definitions. 

Theorem 7 Suppose that 𝔖𝔖 can be defined in terms of 𝔄𝔄 according to 
Definition 5 (Def 𝔖𝔖) and that the Harmony of the Wills holds (C – HW). 
Furthermore, suppose that 𝔄𝔄 is serial (C – bD), transitive (C – b4) and Eu-
clidean (C – b5). Then 𝔄𝔄 is almost reflexive (C – bT′) and almost symmetric 

                                                      
23  I do not suggest that The Accessibility Condition means that everyone ‘con-
sciously’ accepts at least one possible world. Ordinary people almost certainly do not 
have any conscious attitudes that involve whole possible worlds and they disagree 
about many things. But 𝔄𝔄 is only relevant for perfectly rational individuals; the 
truth values of sentences of the forms WcB and AcB when c is not perfectly rational 
do not depend on 𝔄𝔄. We are primarily interested in the structure of a perfectly 
rational will, not about the actual attitudes of ordinary people; T is an ‘ideal’ rela-
tion. So, this is not a problem for The Accessibility Condition. 
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(C – bB′), and 𝔖𝔖 is serial (C – dD), transitive (C – d4), Euclidean (C – d5) 
and (hence) almost reflexive (C – dT′) and almost symmetric (C – dB′). 

Theorem 8 Suppose ℜ is an equivalence relation. (i) Then Def 𝔄𝔄 and Def 
𝔖𝔖 entail the following conditions: d4, d5 and hence dT′ and dB′, b4, b5 and 
hence bT′ and bB′, MO, OC′, MO′, ad4, ad5, OMP, PMP, MW, WC′, 
MW′, bd4, bd5, WMP and AMP. (ii) Then Def 𝔄𝔄, Def 𝔖𝔖 and HW entail 
all conditions in (i), and all conditions in Table 6. (iii) Then Def 𝔄𝔄, Def 𝔖𝔖 
and C – bdD entail all the conditions in tables 1–5. (iv) Then Def 𝔄𝔄, Def 
𝔖𝔖, HW and C – bdD entail all the conditions in tables 1–6. 

 Accordingly, if C – HW and C – bdD are plausible and the definitions in 
this section are reasonable (they do have significant intuitive appeal), then 
we have a good reason to accept all conditions in tables 1–6. The conditions 
in Table 7 and Table 8 might seem controversial. Nevertheless, I think one 
could make a good case for accepting them (at least every condition except 
C – UR24). However, space does not permit me to do this in the present 
paper. Whether or not we should accept all conditions in this section, clearly 
all of them are interesting enough to be worth discussing. (See sections 4.2.8 
and 4.2.10 for more on some tableau rules that correspond to the semantic 
conditions in tables 7 and 8.) 

3.5. Model classes and the logic of a class of models 

 The conditions mentioned in Section 3.3 can be used to obtain a cate-
gorisation of the set of all models into various kinds. We shall say that 
M(C1, . . . , Cn) is the class of (all) models that satisfy the conditions 

                                                      
24  C – UR is a theoretically important condition. Yet, there might be good reasons 
to reject it. Even though we, human beings, are not perfectly rational (see footnote 
6), it seems interesting to consider what would be the case if we were. If all perfectly 
rational individuals necessarily are perfectly rational, we cannot do this, for then 
there are no individuals that are contingently perfectly rational—i.e. perfectly ra-
tional in some possible worlds and not perfectly rational in some other possible 
worlds. A being that is in fact not perfectly rational cannot then be perfectly rational 
in some other possible world. 
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C1, . . . , Cn. For example, M(C – bD, C – b4, C – b5) is the class of (all) mod-
els that satisfy the conditions C – bD, C – b4 and C – b5. 
 By imposing different conditions on our models we can obtain different 
logical systems. The set of all sentences in the language L1 (L2) that are 
valid in a class of models M is called the logical system of M, or the system 
of M, or the logic of M, in symbols S(M). For example, S(M(C – bD, C –
b4, C – b5)) (the system of M(C – bD, C – b4, C – b5)) is the class of sen-
tences in L1 (L2) that are valid in the class of (all) models that satisfy the 
conditions C – bD, C – b4 and C – b5. 
 By using this classification of model classes we can define a large set of 
systems. In the next section, I will develop semantic tableau systems that 
exactly correspond to these logics. I will consider four systems that seem 
especially philosophically interesting. The first is a pure boulesic system; 
the other three are boulesic-deontic systems (Section 4.3). 

Definition 9 (i) Let the class of all strict models be the class of models 
where ℜ is an equivalence relation and where Def 𝔄𝔄 holds. (ii) Let the class 
of all strong models be the class of all (supplemented) models where ℜ is 
an equivalence relation and where Def 𝔄𝔄, Def 𝔖𝔖, C – HW and C – ΣR hold. 
(iii) Let the class of all strong+ models be the class of all (supplemented) 
models where ℜ is an equivalence relation and where Def 𝔄𝔄, Def 𝔖𝔖, C –
bdD, C – HW and C – ΣR hold. (iv) Let the class of all almost complete 
models be the class of all (supplemented) models where ℜ is an equivalence 
relation and where Def 𝔄𝔄, Def 𝔖𝔖, C – bdD, C – HW, C – ΣR and C – FTR 
hold. 

 The first class in Definition 9 corresponds to strict boulesic logic, the 
second to strong boulesic-deontic logic, the third to strong+ boulesic-deon-
tic logic, and the fourth to almost complete boulesic-deontic logic (Section 
4.3, Definition 10). Hence, the system of the class of all strict models is the 
same as the set of all sentences provable in strict boulesic logic (see Section 
4.3, Definition 10), etc. This follows from the soundness and completeness 
results in Section 6 and the results in Section 3.4. 
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3.6. An example of a valid formula 

 In the introduction, I mentioned the so-called hypothetical imperative. 
One of the most interesting readings of this principle was interpretation 
(6): UΠx(Rx → ((WxA ∧ □(A → B)) → WxB)). Now I will show that  
this formula is valid in the class of all models that satisfy C–MW (Table 
5).25 
 To establish this, assume that this sentence is not true in some possible 
world 𝜔𝜔 in some model M that satisfies C – MW. Then there is some pos-
sible world 𝜔𝜔′ in M in which Πx(Rx → ((WxA ∧ □(A → B)) → WxB)) is 
false. Hence, Rc, WcA and □(A → B)) are true in 𝜔𝜔′ in M, while WcB is 
false in 𝜔𝜔′ in M (‘c’ represents an arbitrary ‘new’ individual). Since c is 
perfectly rational in 𝜔𝜔′ in M and WcB is false in 𝜔𝜔′ in M, there is a possible 
world 𝜔𝜔′′ in M that is boulesically accessible to c from 𝜔𝜔′ in which B is 
false. c is perfectly rational in 𝜔𝜔′, 𝜔𝜔′′ is boulesically accessible to c from 𝜔𝜔′ 
and WcA is true in 𝜔𝜔′ in M. Hence, A is true in 𝜔𝜔′′ in M. Since M satisfies 
C – MW and 𝜔𝜔′′ is boulesically accessible to c from 𝜔𝜔′ in M, 𝜔𝜔′′ is 
alethically accessible from 𝜔𝜔′ in M. Consequently, A → B is true in 𝜔𝜔′′ in 
M, for 𝜔𝜔′′ is alethically accessible from 𝜔𝜔′ and □(A → B) is true in 𝜔𝜔′ in 
M. Therefore, B is true in 𝜔𝜔′′ in M (by propositional logic). But this is 
absurd. Accordingly, our assumption cannot be true. In conclusion, UΠx(Rx 
→ ((WxA ∧ □(A → B)) → WxB)) is valid in M. Since, 𝜔𝜔 and M were 
arbitrary, it follows that UΠx(Rx → ((WxA ∧ □(A → B)) → WxB)) is valid 
in every model that satisfies C – MW. Q.E.D.  

4. Proof theory 

4.1. Semantic tableaux 

 In Section 4, I will develop a set of tableau systems. The propositional 
part of these systems is similar to systems introduced by Raymond  

                                                      
25  In a strict sense, UΠx(Rx → ((WxA ∧ □(A → B)) → WxB)) is not a sentence 
but a schema. The argument in this section shows that every instance of this schema 
is valid in the class of all models that satisfy C – MW. 
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Smullyan (1968) and Richard Jeffrey (1967), and the modal part is similar 
to systems discussed by Graham Priest (2008). For more information about 
the tableau method and various kinds of tableau systems, see, for example, 
(D’Agostino et al. 1999; and Fitting and Mendelsohn 1998). 
 The concepts of semantic tableau, branch, open and closed branch, etc. 
are essentially defined as in (Priest 2008). 

4.2. Tableau rules 

 In this section, I will introduce a set of tableau rules that can be used 
to construct a large set of tableau systems (Section 4.3). They should be 
more or less self-explanatory. However, I will comment on some of the new 
rules. 

4.2.1. Propositional rules 

 I will use the same propositional rules as in (Priest 2008). Let us call 
them (¬¬), (∧), (¬∧), (∨), (¬∨), (→), (¬→), (↔) and (¬↔). 

4.2.2. Basic alethic rules (ba-rules) 

U M □  

UA,i 
↓ 

A,j 
for any j 

MA,i 
↓ 

A,j 
where j is new 

□A,i 
irj 
↓ 

A,j 

A,i 
↓ 
irj 
A,j 

where j is new 

¬U ¬M ¬□ ¬ 

¬UA,i 
↓ 

M¬A,i 

¬MA,i 
↓ 

U¬A,i 

¬□A,i 
↓ 

¬A,i 

¬A,i 
↓ 

□¬A,i 

Table 9 
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4.2.3. Basic boulesic and deontic rules (bb-rules and d-rules) 

W A O P 

Rc,i 
WcB,i 
iAcj 
↓ 

B,j 

Rc,i 
AcB,i 

↓ 
iAcj 
B,j 

where j is new 

OB,i 
isj 
↓ 

B,j 

PB,i 
↓ 
isj 
B,j 

where j is new 

¬W ¬A ¬O ¬P 

Rc,i 
¬WcB,i 

↓ 
Ac¬B,i 

Rc,i 
¬AcB,i 

↓ 
Wc¬B,i 

¬OB,i 
↓ 

P¬B,i 

¬PB,i 
↓ 

O¬B,i 

Table 10 

 Intuitively, ‘Rc,i’ in the boulesic rules says that the individual denoted 
by ‘c’ is perfectly rational in the possible world denoted by ‘i,’ and ‘iAcj’ in 
the rules W and A says that the possible world denoted by ‘j’ is acceptable 
to the individual denoted by ‘c’ in the possible world denoted by ‘i.’ The 
basic boulesic rules hold for every constant c (i.e. c can be replaced by any 
constant in these rules). 

4.2.4. Possibilist quantifiers 

Π Σ ¬Π ¬Σ 

ΠxA,i 
↓ 

A[a/x],i 
for every constant a on the 
branch, a new if there are 

no constants on the branch 

ΣxA,i 
↓ 

A[c/x],i 
where c is 
new to the 

branch 

¬ΠxA,i 
↓ 

Σx¬A,i 

¬ΣxA,i 
↓ 

Πx¬A,i 

Table 11 
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 Note that a and c in the quantifier rules are rigid constants—we never 
instantiate with variables; a is any constant on the branch and c is a con-
stant new to the branch. 

4.2.5. Alethic accessibility rules (a-rules) 

T – aD T – aT T – aB T – a4 T – a5 

i 
↓ 
irj 

where j is new 

i 
↓ 
iri 

irj 
↓ 
jri 

irj 
jrk 
↓ 
irk 

irj 
irk 
↓ 
jrk 

Table 12 

4.2.6. Deontic accessibility rules (d-rules) 

T – dD T – d4 T – d5 T – dT′ T – dB′ 

i 
↓ 
isj 

where j is new 

isj 
jsk 
↓ 
isk 

isj 
isk 
↓ 
jsk 

isj 
↓ 
jsj 

isj 
jsk 
↓ 
ksj 

Table 13 

4.2.7. Boulesic accessibility rules (b-rules) 

T – bD T – b4 T – b5 T – bT′ T – bB′ 

i 
↓ 

iAcj 
where j is new 

iAcj 
jAck 

↓ 
iAck 

iAcj 
iAck 

↓ 
jAck 

iAcj 
↓ 

jAcj 

iAcj 
jAck 

↓ 
kAcj 

Table 14 

 The boulesic accessibility rules hold for every constant c (i.e. c can be 
replaced by any constant in these rules). The b-rules in Table 14 correspond 
to the semantic conditions in Table 3. 
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4.2.8. Non-basic boulesic rules (nbb-rules) 

T – HW T – ΣR 

iAcj 
↓ 

iAdj 
for every c and d 

i 
↓ 

ΣxRx,i 

Table 15 

 The rules in Table 15 correspond to the semantic conditions in Table 7. 
In every system that includes T – HW, we can prove the first six sentences 
in Table 25, and in every system that includes T – HW and T – bD, we can 
prove all sentences in Table 25 (see Section 5). Therefore, in systems that 
include T – HW, we can prove that all perfectly rational individuals want 
and accept the same things. According to this rule, the idea of perfect ra-
tionality, or wisdom, includes a kind of interpersonal consistency, not only 
a kind of intrapersonal consistency. The wills of perfectly rational individ-
uals are consistent, they harmonise. If individual c wants it to be the case 
that B and individual d wants it to be the case that ¬B, then both cannot 
get what they want; either c’s or d’s desires will be frustrated: it is not 
possible to see to it that B and to see to it that ¬B. In systems that include 
T – HW and T – bD, situations of this kind are ruled out. Hence, these con-
ditions seem to be intuitively plausible (however, see footnote 14). 
 If we include T – ΣR in our systems, we can prove that ΣxRx is neces-
sarily true. Recall that ΣxRx says that there is something or someone, 
a possible individual that is perfectly rational. This does not entail that this 
individual exists. 
 Space does not permit me to discuss all philosophical arguments for and 
against these rules. However, it should be noted that T – HW does not entail 
that all individuals that are not perfectly rational want and accept the same 
things, and it does not entail that everyone should have the same attitudes. 
Furthermore, it does not entail that everyone should act in the same way 
or be a certain kind of person, nor does it entail that if something is per-
mitted for some person it is permitted for every person. Suppose that c and 
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d are perfectly rational. Even if this is the case, it is possible that both c 
and d want individual e to perform a certain action and that both want 
individual f not to perform this action. Situations of this kind are not in-
consistent according to any system in this paper. If they were inconsistent, 
T – HW would probably not be a philosophically reasonable rule. 

4.2.9. The CUT-rule (CUT) 

CUT 

i 
↙ ↘ 

A,i   ¬A,i 
for every A and i 

Table 1626 

4.2.10. Transfer-rules, etc. 

T – FTR T – UR 

Rc,i 
irj 
↓ 

Rc,j 

Rc,i 
↓ 

Rc,j  
for any j 

Table 1727 

 The tableau rules in Table 17 correspond to the semantic conditions in 
Table 8. 

                                                      
26  We could use a more restricted CUT rule, CUTR, where ‘A’ in CUT is replaced 
by ‘Rc’ where c is a constant (that occurs as an index to some boulesic operator) 
on the branch. In fact, in the completeness proofs we do not need CUT if our 
systems include CUTR. However, CUT is often more useful in proving theorems 
and deriving non-primitive rules. For more on the CUT rule, see, for example, 
(Rönnedal 2009). 
27  ‘FT ’ in ‘T – FTR’ is an abbreviation of ‘Forward Transfer,’ and ‘R’ in ‘T – FTR’ 
and ‘T – UR’ of ‘Rationality.’ 
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 In every system that includes T – UR or T – FTR and T – MW (Table 
18), we can prove that the following sentence is a theorem: Πx(Rx → 
WxRx), which says that everyone who is perfectly rational wants to be 
perfectly rational. 
 In every system that includes T – UR or T – FTR and T – MW, and T –
bD (Table 14), we can prove that the following sentence is a theorem: Πx(Rx 
→ AxRx), which says that everyone who is perfectly rational accepts that 
she is perfectly rational. 
 In every system that includes T – UR, we can prove the following sen-
tence: Πx(Rx → URx), which says that every perfectly rational individual 
is necessarily perfectly rational. 
 We do not assume that the transfer rules (the rules in Table 17) are 
included in every system. Whether or not they should be added seems to 
be something of an open question.28 

4.2.11. Alethic-boulesic accessibility rules (ab-rules) 

T – MW T – MW′ T – WC T – WC′ 

iAcj 
↓ 
irj 

iAcj 
jAck 

↓ 
jrk 

i 
↓ 

iAcj 
irj 

where j is new 

iAcj 
↓ 

jAck 
jrk 

where k is new 

T – ab4 T – ab5 T – AMP T – WMP 

irj 
jAck 

↓ 
iAck 

irj 
iAck 

↓ 
jAck 

iAcj 
irk 
↓ 
jrl 

kAcl 
where l is new 

irj 
jAck 

↓ 
iAcl 
lrk 

where l is new 

Table 18 

                                                      
28  See footnote 24 for some critique of C – UR, which is the semantic condition that 
corresponds to T – UR. 
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 The ab-rules in Table 18 correspond to the semantic conditions intro-
duced in Table 5. 

4.2.12. Boulesic-deontic accessibility rules (bd-rules) 

T – OW T – WO 

iAbj 
↓ 
isj 

for any b 

isj 
↓ 

iAcj 
where c is new 

Table 19 

 The rule T – OW in Table 19 corresponds to the semantic condition C –
OW mentioned in Table 6, and the rule T – WO in Table 19 corresponds 
to the semantic condition C – WO in Table 6. In every system that includes 
T – OW, we can prove that OA → Πx(Rx → WxA) is a theorem—i.e. if it 
ought to be the case that A, then everyone who is perfectly rational wants 
it to be the case that A. This is one version of a philosophically very inter-
esting thesis often called ‘existence internalism.’ It follows from this theorem 
that if the individual c ought to do the action H, then if c is perfectly 
rational c wants to do H. However, if c is not perfectly rational, it is not 
necessary that she wants to do H. So, this kind of internalism is compatible 
with the existence of amoralists and with the phenomenon of weakness of 
will. Internalism can help explain the fact that we find utterances of the 
following kind puzzling: ‘I know that I ought to do it, but I have no incli-
nation whatsoever to do it’ and ‘You ought to do it, but by all means don’t 
do it.’ At the same time, the kind of internalism mentioned here avoids 
some of the common objections against this thesis.29 

                                                      
29  For more information on internalism and various versions of internalism and 
arguments for and against this thesis, see, for example, (Björklund et.al. 2012; 
Björnsson et.al. 2015; and van Roojen 2013). It might be interesting to note that 
existence internalism entails the following version of ‘knowledge internalism’: 𝒦𝒦cOA 
→ (Rc → WcA), where ‘𝒦𝒦cA’ stands for ‘c knows that A’ (given that knowledge 
implies truth). ‘𝒦𝒦cOA → (Rc → WcA)’ says that if c knows that it ought to be the 
case that A, then if c is perfectly rational then c wants it to be the case that A. 
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 In every system that includes T – WO, T – HW and T – ΣR we can 
prove that Πx(Rx → WxA) → OA is a theorem—i.e. if everyone who is 
perfectly rational wants it to be the case that A, then it ought to be the 
case that A. This is the converse of OA → Πx(Rx → WxA). Together these 
theorems entail OA ↔ Πx(Rx → WxA), which says that it ought to be the 
case that A iff everyone who is perfectly rational wants it to be the case 
that A. Similar equivalences hold for P (it is permitted that) and F (it is 
not permitted that) (see Table 30). These theorems can be seen as a part 
of a kind of ideal observer theory for normative propositions.30 
 Some might worry that the equivalences in Table 30 are too strong. If 
we accept those equivalences, do we not have to accept that, for example, 
‘Tom ought to go home’ has the same meaning as ‘Everyone who is perfectly 
rational wants Tom to go home’ and isn’t this unreasonable?31 Personally, 
I do not think that we have to accept this. Let me explain why. Since OA 
↔ Πx(Rx ↔ WxA) holds in some systems, OA is in principle ‘definable’ in 
terms of Πx(Rx → WxA) in those systems (see Section 2.3). However, this 
fact does not entail that ‘It ought to be the case that A’ has the same 
meaning as ‘Everyone who is perfectly rational wants it to be the case that 
A.’ To say that OA is in principle ‘definable’ in terms of Πx(Rx → WxA) 
means that ‘OA’ can be replaced by ‘Πx(Rx → WxA)’ (and vice versa) in 
every ‘extensional context,’ but not necessarily in every ‘intensional con-
text,’ for example, if ‘OA’ (‘Πx(Rx → WxA)’) occurs within the scope of 
a boulesic operator. So, those systems do not entail that, for example, ‘Tom 
ought to go home’ says exactly the same thing as ‘Everyone who is perfectly 
rational wants Tom to go home.’ In this sense, our equivalences are similar 

                                                      
Furthermore, assume that every perfectly rational individual is infallible in the 
sense that everything she believes is true. Then existence internalism entails the 
following version of ‘belief internalism’: BcOA → (Rc → WcA), where ‘BcA’ stands 
for ‘c believes that A.’ ‘BcOA → (Rc → WcA)’ says that if c believes that it ought 
to be the case that A, then if c is perfectly rational then c wants it to be the case 
that A. 
30  For more on ideal observer theories, see, for example, (Firth 1952; and Kawall 
2013). 
31  An anonymous reviewer raised this worry. 
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to other equivalences in other branches of logic. In propositional logic, dis-
junction is in principle definable in terms of conjunction and negation since 
(A ∨ B) ↔ ¬(¬A ∧ ¬B) is a tautology. This fact does not entail that ‘Either 
London or Paris is the capital of France’ means the same as ‘It is not the 
case that it is not the case that London is the capital of France and it is 
not the case that Paris is the capital of France.’ I suggest that the same 
thing is true of our equivalences.32 In conclusion, the fact that ‘Tom ought 
to go home’ does not have the same meaning as ‘Everyone who is perfectly 
rational wants Tom to go home’ is not a serious problem for the systems 
that include the equivalence OA ↔ Πx(Rx → WxA). 

4.2.13. Alethic-deontic accessibility rules (ad-rules) 

T – MO T – MO′ T – OC T – OC′ 

isj 
↓ 
irj 

isj 
jsk 
↓ 
jrk 

i 
↓ 
isj 
irj 

where j is new 

isj 
↓ 
jsk 
jrk 

where k is new 

T – ad4 T – ad5 T – PMP T – OMP 

irj 
jsk 
↓ 
isk 

irj 
isk 
↓ 
jsk 

isj 
irk 
↓ 
jrl 
ksl 

where l is new 

irj 
jsk 
↓ 
isl 
lrk 

where l is new 

Table 20 

                                                      
32  In other words, meaning is stronger than necessary equivalence. The fact that 
A is necessarily equivalent with B does not entail that A and B have the same 
meaning; but if A has the same meaning as B, then A and B are necessarily equiv-
alent. 
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4.2.14. Identity rules 

T – R = T – S = T – N = T – A = 

* 
↓ 

t = t,i 
for every t  

on the branch 

s = t,i 
A[s/x],i 

↓ 
A[t/x],i 

where A is of  
a certain form 

(see below, 
4.2.14) 

a = b,i 
↓ 

a = b,j 
for any j 

a = b,i 
Aajk 

↓ 
Abjk 

Table 2133 

 (T – S =) is applied only ‘within worlds,’ and we usually only apply the 
rule when A is atomic. However, we shall also allow applications of the 
following kind. Let M be a matrix where xm is the first free variable in 
M and am is the constant in M[a1, . . . , a, . . . , an/𝑥𝑥]⃗ that replaces xm. Fur-
thermore, suppose we have a = b,i, M[a1, . . . , a, . . . , an/𝑥𝑥]⃗,i and ¬Ram on 
the branch. Then we may apply (T – S =) to obtain an extension of the 
branch that includes M[a1, . . . , b, . . . , an/𝑥𝑥]⃗,i. 
 With the help of (T – S =) and (T – A =) we can prove the following 
theorems: (WcB ∧ c = d) → WdB, (AcB ∧ c = d) → AdB, ΠxΠy((WxB ∧ 
x = y) → WyB) and ΠxΠy((AxB ∧ x = y) → AyB). All of these theorems 
are intuitively plausible. By using (T – N =), we can establish that all iden-
tities and non-identities are (absolutely and historically) necessary—i.e. we 
can prove all of the following theorems: ΠxΠy(x = y → Ux = y), ΠxΠy(x = y 
→ □x = y), ΠxΠy(¬x = y → U¬x = y), and ΠxΠy(¬x = y → □¬x = y). This 
is plausible since every constant is treated as a rigid designator in this pa-
per. 

                                                      
33  In the identity rules R stands for ‘reflexive,’ S for ‘substitution (of identities),’ 
N for ‘necessary identity,’ and A for ‘(boulesic) accessibility.’ 
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4.3 Tableau systems and some basic proof-theoretical concepts 

 A tableau system is a set of tableau rules. I will consider two kinds of 
system in this paper: (pure) boulesic systems and boulesic-deontic systems. 
 A (pure) (alethic) boulesic system is a tableau system that includes the 
propositional rules, the basic alethic rules, the basic boulesic rules, the rules 
for the possibilist quantifiers, the CUTR-rule (or CUT) and the identity 
rules. The smallest boulesic system is called V. By adding various transfer 
rules, and/or boulesic, alethic and/or alethic-boulesic accessibility rules to 
V, we obtain a large class of stronger boulesic systems. 
 A (alethic) boulesic-deontic system is a tableau system that includes 
V and all basic deontic rules. The smallest boulesic-deontic system is called 
BD. Every boulesic-deontic system that includes T – HW, T – ΣR, T – OW 
and T – WO will be called a normal boulesic-deontic system. The smallest 
normal boulesic-deontic system is called NBD. By adding various tableau 
rules from Section 4.2 to BD, we obtain extensions of this system. Our 
(normal) boulesic-deontic systems illustrate how deontic logic can be 
‘grounded’ in boulesic logic in a certain sense. 
 Let aA1, . . . , AnbB1, . . . , BnabC1, . . . , CnTrD1, . . . , Dn be the boulesic 
system that includes the alethic accessibility rules A1, . . . , An, the boulesic 
accessibility rules B1, . . . , Bn, the alethic-boulesic accessibility rules 
C1, . . . , Cn, and the transfer rules D1, . . . , Dn. A boulesic-deontic system is 
defined in a similar way: aA1, . . . , AnbB1, . . . , BndC1, . . . , CnabD1, . . . ,  
DnadE1, . . . , EnTrF1, . . . , Fn is a boulesic-deontic system, where a, b, ab, 
and Tr are interpreted as in a boulesic system; C1, . . . , Cn is a list (possibly 
empty) of deontic accessibility rules; and E1, . . . , En is a list (possibly 
empty) of alethic-deontic rules. 
 Important proof theoretical concepts like the concepts of proof, theorem, 
derivation, consistency, inconsistency in a system, the logic of a tableau 
system, etc. are defined as usual (see, for example, Priest 2008). 
 I will now describe four different tableau systems that correspond to the 
four classes of models described in Definition 9. The first system is an ex-
ample of a boulesic system; the other three are examples of boulesic-deontic 
systems. 
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Definition 10 (i) Strict boulesic logic is the boulesic system that includes all 
a-rules and the tableau rules b4, b5, bT′, bB′, MW, WC′, MW′, ab4, ab5, 
WMP, and AMP. (ii) Strong boulesic-deontic logic is the (normal) 
boulesic-deontic system that includes all a-rules and the tableau rules d4, 
d5, dT′, dB′, b4, b5, bT′, bB′, MO, OC′, MO′, ad4, ad5, OMP, PMP, MW, 
WC′, MW′, ab4, ab5, WMP, AMP. (iii) Strong+ boulesic-deontic logic is 
the (normal) boulesic-deontic system that includes all rules in tables 12–15 
and 18–20. (iv) Almost complete boulesic-deontic logic is the (normal) 
boulesic-deontic system that includes all rules that are contained in Strong+ 
boulesic-deontic logic plus T – FTR.34 

 Note that the following relations hold between these systems: Strict 
boulesic logic ⊆ Strong boulesic-deontic logic ⊆ Strong+ boulesic-deontic 
logic ⊆ Almost complete boulesic-deontic logic. As far as I can see, the 
following relations also hold: Strict boulesic logic ⊂ Strong boulesic-deontic 
logic ⊂ Strong+ boulesic-deontic logic ⊂ Almost complete boulesic-deontic 
logic. However, I will only offer the latter claim as a conjecture in the pre-
sent paper. 

5. Examples of theorems 

 In this section, I will mention some sentences that can be proved in 
various systems. The informal reading of the theses should be obvious. 
Every formula in Table 22 is a theorem in every system in this paper; every 
sentence in Table 23 is a theorem in every system that includes the tableau 
rule T – bD, etc. 
 All of the following sentences (schemas) are theorems in every system 
in this paper: Πx(Rx → (WxB ↔ ¬Ax¬B)), Πx(Rx → (¬WxB ↔ Ax¬B)), 
Πx(Rx → (Wx¬B ↔ ¬AxB)) and Πx(Rx → (AxB ↔ ¬Wx¬B)). Note that 
universal necessity is stronger than historical necessity and that universal 
                                                      
34  Some of the rules in these systems are ‘redundant,’ and there are several ‘weaker’ 
systems that are deductively equivalent—i.e. they contain exactly the same theo-
rems. ‘Weaker system’ here means a system with fewer primitive rules, not a system 
with fewer theorems. 
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possibility is weaker than historical possibility in every system in this paper. 
In other words, UA → □A and A → MA are theorems in every system 
in this paper, while □A → UA and MA → A are not theorems in any 
system in this paper. U and M behave as so-called S5-operators in every 
system in this paper and □ and  behave as S5-operators in every system 
that includes every rule in Table 12 (note that not all rules have to be 
primitive). 

Theorem System 

Πx(Rx → (Wx(A ∧ B) ↔ (WxA ∧ WxB))) Every 

Πx(Rx → ((WxA ∨ WxB) → Wx(A ∨ B))) Every 

Πx(Rx → (Ax(A ∧ B) → (AxA ∧ AxB))) Every 

Πx(Rx → (Ax(A ∨ B) ↔ (AxA ∨ AxB))) Every 

Πx(Rx → (Wx(A → B) → (WxA → WxB))) Every 

Πx(Rx → (Wx(A → B) → (AxA → AxB))) Every 

Πx(Rx → (Wx(A → B) → (Wx¬B → Wx¬A))) Every 

Πx(Rx → (Wx(A ↔ B) → (WxA ↔ WxB))) Every 

Πx(Rx → (Wx(A ↔ B) → (AxA ↔ AxB))) Every 

Πx(Rx → (Wx(A ↔ B) → (Wx¬A ↔ Wx¬B))) Every 

Table 22 

Theorem System 

Πx(Rx → (WxB → AxB)) bD 

Πx(Rx → ¬(WxB ∧ Wx¬B)) bD 

Πx(Rx → (AxB ∨ Ax¬B)) bD 

Πx(Rx → ¬(Wx(A ∨ B) ∧ (Wx¬A ∧ Wx¬B))) bD 

Πx(Rx → (Wx(A → B) → (WxA → AxB))) bD 

Πx(Rx → (Wx(A → B) → (Wx¬B → ¬WxA))) bD 

Table 23 
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Theorem Systems 

Πx((Rx ∧ WxRx) → (WxB → WxWxB)) b4 

Πx((Rx ∧ WxRx) → (AxB → WxAxB)) b5 

Πx((Rx ∧ WxRx) → Wx(WxB → B)) bT′ 

Πx((Rx ∧ WxRx) → Wx(AxWxA → A)) bB′b4 

Πx(Rx → (WxB → WxWxB)) b4UR 

Πx(Rx → (AxB → WxAxB)) b5UR 

Πx(Rx → Wx(WxB → B)) bT′UR 

Πx(Rx → Wx(AxWxA → A)) bB′UR 

Table 24 

Theorems Systems 

ΠxΠy((Rx ∧ Ry) → (WxB → WyB)) HW 

Πx(Rx → (WxB → Πy(Ry → WyB)) HW 

ΠxΠy((Rx ∧ Ry) → (AxB → AyB)) HW 

Πx(Rx → (AxB → Πy(Ry → AyB))) HW 

Σx(Rx ∧ WxB) → Πx(Rx → WxB) HW 

Σx(Rx ∧ AxB) → Πx(Rx → AxB) HW 

¬ΣxΣy((Rx ∧ Ry) ∧ (WxB ∧ Wy¬B)) HWbD 

Πx(Rx → (WxB → Πy(Ry → AyB))) HWbD 

Table 25 

Theorems Systems 

Πx(Rx → (□A → WxA)) abMW 

Πx(Rx → (WxA → A)) abWC 

Πx((Rx ∧ WxRx) → Wx(□A → WxA)) abMW′ 

Πx((Rx ∧ WxRx) → Wx(WxA → A)) abWC′ 

Πx(Rx → (WxA → □WxA)) ab4UR 
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Πx(Rx → (AxB → □AxB)) ab5UR 

Πx(Rx → (Ax□B → □AxB)) abAMPUR 

Πx(Rx → (Wx□A → □WxA)) abWMPUR 

Πx(Rx → Wx(□A → WxA)) abMW′UR 

Πx(Rx → Wx(WxA → A)) abWC′UR 

Table 26 

Name Theorem Systems 

MO □A → OA adMO 

OC OA → A adOC 

OC′ O(OA → A) adOC′ 

MO′ O(□A → OA) adMO′ 

ad4 OA → □OA ad4 

ad5 PA → □PA ad5 

PMP P□A → □PA adPMP 

OMP O□A → □OA adOMP 

Table 27 

Theorem System 

Πx(Rx → (ΠyWxB ↔ WxΠyB)) Every 

Πx(Rx → (ΣyAxB ↔ AxΣyB)) Every 

Πx(Rx → (AxΠyB → ΠyAxB)) Every 

Πx(Rx → (ΣyWxB → WxΣyB)) Every 

Table 28 

Theorem System 

Πx(Rx → (□(A → B) → (WxA → WxB))) MW 

Πx(Rx → (□(A → B) → (AxA → AxB))) MW 

Πx(Rx → (□(A → B) → (Wx¬B → Wx¬A))) MW 
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Πx(Rx → (□(A ↔ B) → (WxA ↔ WxB))) MW 

Πx(Rx → (□(A ↔ B) → (AxA ↔ AxB))) MW 

Πx(Rx → (□(A ↔ B) → (Wx¬A ↔ Wx¬B))) MW 

Πx(Rx → (□(A ↔ B) → (¬WxA ↔ ¬WxB))) MW 

Table 29 

Theorem System 

OA → Πx(Rx → WxA) OW 

Πx(Rx → WxA) → OA WOHWΣR 

OA ↔ Πx(Rx → WxA) OWWOHWΣR 

PB → Πx(Rx → AxB) WOHW 

Πx(Rx → AxB) → PB OWHWΣR 

PB ↔ Πx(Rx → AxB) WOOWHWΣR 

FA → Πx(Rx → Wx¬A) OW 

Πx(Rx → Wx¬A) → FA WOHWΣR 

FA ↔ Πx(Rx → Wx¬A) OWWOHWΣR 

Table 30 

5.1. Examples: Valid arguments and valid and invalid formulas 

 In this section, I will consider one example of a valid argument, one 
example of a valid sentence and one example of an invalid sentence. I will 
show that argument 3 described in the introduction is valid (in the class of 
all models that satisfy C – MW). This illustrates one of the possible appli-
cations of the systems that are introduced in this paper, namely as a tool 
in the analysis and evaluation of various arguments. Argument 3 is intui-
tively valid, but it seems impossible to prove this in any other systems in 
the literature. Nonetheless, we can prove that the conclusion is derivable 
from the premises in all systems in this paper that include T – MW. Since 
the smallest boulesic system that includes T – MW is sound with respect to 
the class of all models that satisfy C – MW, the argument is valid in the 



Boulesic Logic, Deontic Logic and the Structure of … 241 

Organon F 27 (2) 2020: 187–262  

class of all models that satisfy C – MW. Hence, we seem to need systems of 
the kind developed in this paper. 
 Argument 3 can be symbolised in the following way. Πx(Px → WxMx) 
(for every x: if x is a person in the class, then x wants it to be the case that 
x passes the exam), Ps (Sandra is a person in the class), □(Ms → Ss) (it is 
necessary that Sandra passes the exam only if she studies hard), Rs → WsSs 
(if Sandra is perfectly rational, she wants to study hard). To prove that the 
conclusion is derivable from the premises, we construct a semantic tableau 
that begins with all premises and the negation of the conclusion. Since this 
tableau is closed, it constitutes a derivation of the conclusion from the 
premises in the smallest boulesic system that includes T – MW. Hence, the 
conclusion follows from the premises in the class of all models that satisfy 
C – MW (by the soundness theorems in Section 6). Here is our proof. (‘MP’ 
stands for the derived rule ‘Modus Ponens.’) 

(1) Πx(Px → WxMx), 0 
(2) Ps, 0 

(3) □(Ms → Ss), 0 
(4) ¬(Rs → WsSs), 0 

(5) Rs, 0 [4, ¬→] 
(6) ¬WsSs, 0 [4, ¬→] 

(7) As¬Ss, 0 [5, 6, ¬W] 
(8) Ps → WsMs, 0 [1, Π [s/x]]  

(9) WsMs, 0 [2, 8, MP] 
(10) 0As1 [5, 7, A] 
(11) ¬Ss, 1 [5, 7, A] 

(12) Ms, 1 [5, 9, 10, W]  
(13) 0r1 [10, T – MW] 

(14) Ms → Ss, 1 [3, 13, □] 
(15) Ss, 1 [12, 14, MP] 

(16) ∗ [11, 15] 

 Let us now turn to our valid sentence. In the introduction, we considered 
several interpretations of the so-called hypothetical imperative. One of the 
readings was (7): UΠx(Rx → ((WxA ∧ □(A → B)) → OB)). Intuitively, 
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this sentence says that it is absolutely necessary that if x is perfectly ra-
tional, then if x wants it to be the case that A and it is necessary that 
A only if B then it ought to be the case that B. Here is an instance of this 
schema: if x is perfectly rational and x wants to achieve end E and it is 
necessary that x achieves end E only if x does action A then x ought to do 
action A. Or more concretely, if x is perfectly rational then if x wants to 
become a doctor of philosophy (sometime in the future) and it is necessary 
that x will become a doctor of philosophy (sometime in the future) only if 
x writes a dissertation then x ought to write a dissertation. I will now show 
that (7) is a theorem in every boulesic-deontic system that includes the 
rules T – WO, T – HW and T – MW. Here is our tableau proof:35 

(1) ¬UΠx(Rx → ((WxA ∧ □(A → B)) → OB)), 0 
(2) M¬Πx(Rx → ((WxA ∧ □(A → B)) → OB)), 0 [1, ¬U] 

(3) ¬Πx(Rx → ((WxA ∧ □(A → B)) → OB)), 1 [2, M] 
(4) Σx¬(Rx → ((WxA ∧ □(A → B)) → OB)), 1 [3, ¬Π] 

(5) ¬(Rc → ((WcA[c/x] ∧ □(A[c/x] → B[c/x])) → OB[c/x])), 1 [4, Σ] 
(6) Rc, 1 [5, ¬→] 

(7) ¬((WcA[c/x] ∧ □(A[c/x] → B[c/x])) → OB[c/x]), 1 [5, ¬→] 
(8) WcA[c/x] ∧ □(A[c/x] → B[c/x]), 1 [7, ¬→] 

(9) ¬OB[c/x], 1 [7, ¬→] 
(10) WcA[c/x], 1 [8, ∧] 

(11) □(A[c/x] → B[c/x]), 1 [8, ∧] 
(12) P¬B[c/x], 1 [9, ¬O] 

(13) 1s2 [12, P] 
(14) ¬B[c/x], 2 [12, P] 
(15) 1Ad2 [13, T – WO] 
(16) 1Ac2 [15, T – HW] 

(17) A[c/x], 2 [6, 10, 16, W] 
(18) 1r2 [16, T – MW] 

(19) A[c/x] → B[c/x], 2 [11, 18, □] 

                                                      
35  In a strict sense, this is not a proof, but a proof schema. For it includes expres-
sions such as A[c/x]. However, this schema shows that any proof of this form is 
correct. 
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(20) B[c/x], 2 [17, 19, MP] 
(21) ∗ [14, 20] 

 The tableau above is closed. Hence, UΠx(Rx → ((WxA ∧ □(A → B)) 
→ OB)) is a theorem in every boulesic-deontic system that includes the 
rules T – WO, T – HW and T – MW. It follows, by the soundness results in 
Section 6, that UΠx(Rx → ((WxA ∧ □(A → B)) → OB)) is valid in the 
class of all models that satisfy C – WO, C – HW and C – MW. Even though 
UΠx(Rx → ((WxA ∧ □(A → B)) → OB)) is valid in some systems, 
UΠx((WxA ∧ □(A → B)) → OB) is not a theorem in any system in this 
paper (as I mentioned in the introduction). This is as it should be since this 
formula has countless counterintuitive consequences. Consider, for example, 
the following ‘instance’: ‘If c wants to destroy the City Hall and it is nec-
essary that c uses a bomb to destroy the City Hall, then c ought to use 
a bomb to destroy the City Hall.’ Suppose that the antecedent is true. Then 
c ought to use a bomb to destroy the City Hall. But this is absurd. 
 Now I will show how it is possible to use semantic tableaux to prove 
that a sentence is not valid and how it is possible to use open complete 
branches to read off countermodels. Consider the following sentence: 

For every individual x, if x wants to quench her thirst and it is necessary 
that x quenches her thirst only if x drinks some water, then x wants to 
drink some water. 

 This sentence can be symbolised in the following way: Πx((WxQx ∧ 
□(Qx → Dx)) → WxDx), where Qx says that x quenches her thirst and Dx 
says that x drinks some water. I will show that this formula is not valid in 
the class of all models. To establish this, I will show that the formula is not 
a theorem in our weakest system. By the completeness theorems in Section 
6, it follows that the sentence is not valid in the class of all models. I will 
use an open branch in a complete tree for the formula to read off a coun-
termodel and I will verify that this model is a countermodel to the formula. 
In fact, it is possible to prove that the sentence is not a theorem in any 
system in this paper. Consequently, it is possible to show that the formula 
is not valid in any class of models (in this paper). It is left to the reader to 
verify this claim. Here is our tableau: 
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(1) ¬Πx((WxQx ∧ □(Qx → Dx)) → WxDx), 0 
(2) Σx¬((WxQx ∧ □(Qx → Dx)) → WxDx), 0 [1, ¬Π] 

(3) ¬((WcQc ∧ □(Qc → Dc)) → WcDc), 0 [2, Σ] 
(4) WcQc ∧ □(Qc → Dc), 0 [3, ¬→] 

(5) ¬WcDc, 0 [3, ¬→] 
(6) WcQc, 0 [4, ∧] 

(7) □(Qc → Dc), 0 [4, ∧] 
     ↙ ↘ 
     (8) Rc, 0 (9) ¬Rc, 0 [CUTR]  
      (10) c = c, 0 [T – R=] 

 It is possible to extend the left branch in this tree. Nevertheless, at this 
stage we cannot apply any more rules to the right branch, which is open 
(and complete). It follows that the whole tableau is open (and complete). 
Hence, Πx((WxQx ∧ □(Qx → Dx)) → WxDx) is not a theorem in our weak-
est system. Consequently, the formula is not valid in the class of all models 
(by the completeness results in Section 6). 
 Let us verify this conclusion. We can use the right branch to read off 
a countermodel, M, since this branch is open and complete. The matrix of 
WcQc is Wx1Qx2 and the matrix of WcDc is Wx1Dx2. 
 W = {𝜔𝜔0}, D = {[c]}, v(c) = [c], and the extensions of Q and D are 
empty in 𝜔𝜔0. ℜ, 𝔄𝔄 (and 𝔖𝔖) are empty. v𝜔𝜔0(Wx1Qx2) is the extension of 
Wx1Qx2 in 𝜔𝜔0 and v𝜔𝜔0(Wx1Dx2) is the extension of Wx1Dx2 in 𝜔𝜔0. If ¬Ram,i 
is on the branch B and M is an n-place matrix with instantiations on the 
branch (where xm is the first free variable in M and am is the constant in 
M[a1, . . . , an/x1, . . . , xn] that replaces xm), then ⟨[a1], . . . , [an]⟩ is an element 
of v𝜔𝜔i(M) iff M[a1, . . . , an/x1, . . . , xn],i occurs on B. 
 ¬Rc, 0 is on the branch, while Wx1Dx2[c, c/x1, x2], 0 (=WcDc, 0) is not 
on the branch. x1 is the first free variable in Wx1Dx2 and c is the constant 
in Wx1Dx2[c, c/x1, x2] that replaces x1. Consequently, ⟨[c], [c]⟩ is not an 
element in v𝜔𝜔0(Wx1Dx2) (v𝜔𝜔0(Wx1Dx2) is empty). Rc is false in 𝜔𝜔0 in M, for 
¬Rc, 0 is on B. If Rc is false in 𝜔𝜔0 in M, then Wx1Dx2[c, c/x1, x2] is true in 
𝜔𝜔0 in M iff ⟨v(c), v(c)⟩ is in v𝜔𝜔0(Wx1Dx2). Hence, Wx1Dx2[c, c/x1, x2] is true 
in 𝜔𝜔0 in M iff ⟨v(c), v(c)⟩ is in v𝜔𝜔0(Wx1Dx2). ⟨v(c), v(c)⟩ is not in v𝜔𝜔0(Wx1Dx2). 
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Consequently, it is not the case that Wx1Dx2[c, c/x1, x2] is true in 𝜔𝜔0 in M. 
Wx1Dx2[c, c/x1, x2] = WcDc. It follows that it is not the case that WcDc is 
true in 𝜔𝜔0 in M, that is, WcDc is false in 𝜔𝜔0 in M. 
 Wx1Qx2[c, c/x1, x2], 0 (that is, WcQc, 0) is on the branch. x1 is the first 
free variable in Wx1Qx2 and c is the constant in Wx1Qx2[c, c/x1, x2] that 
replaces x1. Hence, ⟨[c], [c]⟩ is an element in v𝜔𝜔0(Wx1Qx2). If Rc is false in 
𝜔𝜔0 in M, then Wx1Qx2[c, c/x1, x2] is true in 𝜔𝜔0 in M iff ⟨v(c), v(c)⟩ is in 
v𝜔𝜔0(Wx1Qx2). Accordingly, Wx1Qx2[c, c/x1, x2] is true in 𝜔𝜔0 in M iff ⟨v(c), 
v(c)⟩ is in v𝜔𝜔0(Wx1Qx2). ⟨v(c), v(c)⟩ is in v𝜔𝜔0(Wx1Qx2). Therefore, Wx1Qx2[c, 
c/x1, x2] is true in 𝜔𝜔0 in M. Wx1Qx2[c, c/x1, x2] = WcQc. Consequently, 
WcQc is true in 𝜔𝜔0 in M. 
 Since no possible world is alethically accessible from 𝜔𝜔0 in M, □(Qc → 
Dc) is true in 𝜔𝜔0 in M. 
 We have established that WcQc is true in 𝜔𝜔0 in M and that □(Qc → 
Dc) is true in 𝜔𝜔0 in M. Accordingly, WcQc ∧ □(Qc → Dc) is true in 𝜔𝜔0 in 
M. Furthermore, we have shown that WcDc is false in 𝜔𝜔0 in M. It follows 
that (WcQc ∧ □(Qc → Dc)) → WcDc is false in 𝜔𝜔0 in M. Since [c] is an 
object in the domain, we conclude that Πx((WxQx ∧ □(Qx → Dx)) → 
WxDx) is false in 𝜔𝜔0 in M. It follows that this formula is not valid in the 
class of all models. This result is intuitively plausible. If some individual is 
not perfectly rational, it is possible that she wants something, A, without 
wanting the necessary means to A. This is compatible with the proposition 
that several other versions of the hypothetical imperative are valid (in some 
models) (see above, the introduction and Section 3.6). 

6. Soundness and completeness theorems 

 In this section, I will prove that every system in this essay is sound and 
complete with respect to its semantics. The concepts of soundness and com-
pleteness are defined as usual (see, for example, Priest, 2008). Many steps 
in the proofs are easy modifications of existing proofs. However, due to the 
presence of the boulesic operators in our language, some steps require some 
new techniques. 
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Lemma 11 (Locality): Let M1 = ⟨D, W, ℜ, 𝔄𝔄, 𝔖𝔖, v1⟩ and M2 = ⟨D, W, 
ℜ, 𝔄𝔄, 𝔖𝔖, v2⟩ be two supplemented models (the lemma for unsupplemented 
models is similar). The language of the two, which we call L, is the same, 
for they have the same domain. Let A be any closed formula of L such that 
v1 and v2 agree on the denotations of all the predicates, constants and ma-
trices in it. Then for all 𝜔𝜔 ∈ W: v1𝜔𝜔(A) = v2𝜔𝜔(A). 

 Proof. The proof is by recursion on the sentences in our language. ‘the 
IH’ refers to the induction hypothesis. 
 Atomic formulas. v1𝜔𝜔(Pa1. . . an) = 1 iff ⟨v1(a1), . . . , v1(an)⟩ ∈ v1𝜔𝜔(P) iff 
⟨v2(a1), . . . , v2(an)⟩ ∈ v2𝜔𝜔(P) iff v2𝜔𝜔(Pa1. . . an) = 1. 
 Suppose that v1𝜔𝜔(Ram) = 0, that M is a matrix where xm is the first free 
variable in M and that am is the constant in M[a1, . . . , an/𝑥𝑥]⃗ that replaces 
xm. Then: v2𝜔𝜔(Ram) = 0 and v1𝜔𝜔(M[a1, . . . , an/𝑥𝑥]⃗ = 1 iff ⟨v1(a1), . . . , v1(an)⟩ 
∈ v1𝜔𝜔(M) iff ⟨v2(a1), . . . , v2(an)⟩ ∈ v2𝜔𝜔(M) iff v2𝜔𝜔(M[a1, . . . , an/𝑥𝑥]⃗) = 1.  
 Truth-functional connectives. Straightforward. 
 (□). v1𝜔𝜔(□B) = 1 iff for all 𝜔𝜔′ such that ℜ𝜔𝜔𝜔𝜔′, v1𝜔𝜔′(B) = 1 iff for all 𝜔𝜔′ 
such that ℜ𝜔𝜔𝜔𝜔′, v2𝜔𝜔′(B) = 1 [the IH] iff v2𝜔𝜔(□B) = 1. 
 The cases for the other alethic and deontic operators are similar. 
 (WcB). A is of the form WcB. Suppose v1𝜔𝜔(WcB) = 1. We have two 
cases: v1𝜔𝜔(Rc) = 0 or v1𝜔𝜔(Rc) = 1. Suppose v1𝜔𝜔(Rc) = 0. Then v2𝜔𝜔(Rc) = 0. 
Hence, v2𝜔𝜔(WcB) = 1. And vice versa. Suppose v1𝜔𝜔(Rc) = 1. Then for all 𝜔𝜔′ 
such that 𝔄𝔄v1(c)𝜔𝜔𝜔𝜔′: v1𝜔𝜔′(B) = 1. Accordingly, for all 𝜔𝜔′ such that 
𝔄𝔄v2(c)𝜔𝜔𝜔𝜔′: v2𝜔𝜔′(B) = 1 [by assumption and the IH]. Furthermore, v2𝜔𝜔(Rc) 
= 1. Hence, v2𝜔𝜔(WcB) = 1. And vice versa. Consequently, v1𝜔𝜔(WcB) = 1 iff 
v2𝜔𝜔(WcB) = 1. 
 The case for AcB is similar. 
 (Π). v1𝜔𝜔(ΠxB) = 1 iff for all kd ∈ L(M), v1𝜔𝜔(B[kd/x]) = 1 iff for all kd ∈ 
L(M), v2𝜔𝜔(B[kd/x]) = 1 [by the IH, and the fact that v1𝜔𝜔(kd) = v2𝜔𝜔(kd) = d] 
iff v2𝜔𝜔(ΠxB) = 1. 

The case for the particular quantifier is similar. ∎ 

Lemma 12 (Denotation): Let M = ⟨D, W, ℜ, 𝔄𝔄, 𝔖𝔖, v⟩ be any supplemented 
model (the lemma for unsupplemented models is similar). Let A be any 
formula of L(M) with at most one free variable, x, and a and b be any two 
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constants such that v(a) = v(b). Then for any 𝜔𝜔 ∈ W: v𝜔𝜔(A[a/x]) = 
v𝜔𝜔(A[b/x]). 

 Proof. The proof is by induction on the complexity of A. 
 Atomic formulas. (To illustrate, we assume that the formula has one 
occurrence of ‘a,’ distinct from each ai.) v𝜔𝜔(Pa1. . . a. . . an) = 1 iff 
⟨v(a1), . . . , v(a), . . . , v(an)⟩ ∈ v𝜔𝜔(P) iff ⟨v(a1), . . . , v(b), . . . , v(an)⟩ ∈ v𝜔𝜔(P) 
iff v𝜔𝜔(Pa1. . . b. . . an) = 1. 
 Suppose v𝜔𝜔(Ram) = 0, that M is a matrix where xm is the first free 
variable in M and that am is the constant in M[a1, . . . , a, . . . , an/𝑥𝑥]⃗ 
(M[a1, . . . , b, . . . , an/𝑥𝑥]⃗) that replaces xm. (To illustrate, we assume that the 
formula has one occurrence of ‘a’ distinct from each ai and that am is not 
a (b).) Then: v𝜔𝜔(M[a1, . . . , a, . . . , an/𝑥𝑥]⃗) = 1 iff ⟨v(a1), . . . , v(a), . . . , v(an)⟩ 
∈ v𝜔𝜔(M) iff ⟨v(a1), . . . , v(b), . . . , v(an)⟩ ∈ v𝜔𝜔(M) iff v𝜔𝜔(M[a1, . . . , b, . . . , an/𝑥𝑥]⃗) 
= 1. 
 Truth-functional connectives. Straightforward. 
 (□). v𝜔𝜔(□B[a/x]) = 1 iff for all 𝜔𝜔′ such that ℜ𝜔𝜔𝜔𝜔′, v𝜔𝜔′(B[a/x]) = 1 iff 
for all 𝜔𝜔′ such that ℜ𝜔𝜔𝜔𝜔′, v𝜔𝜔′(B[b/x]) = 1 [the IH] iff v𝜔𝜔(□B[b/x]) = 1. 
 The arguments for the other primitive alethic and deontic operators are 
similar. 
 (Wt). A is of the form WtB. Either v𝜔𝜔(Rt) = 1 or v𝜔𝜔(Rt) = 0. We have 
already shown that the result holds if v𝜔𝜔(Rt) = 0. Accordingly, suppose that 
v𝜔𝜔(Rt) = 1. Since x is the only free variable, t cannot be a variable distinct 
from x. So, t is either x or a constant. Suppose t is x. Then v𝜔𝜔(WxB[a/x]) = 
1 iff v𝜔𝜔(WaB[a/x]) = 1 iff for all 𝜔𝜔′ such that 𝔄𝔄v(a)𝜔𝜔𝜔𝜔′, v𝜔𝜔′(B[a/x]) = 1 iff 
for all 𝜔𝜔′ such that 𝔄𝔄v(b)𝜔𝜔𝜔𝜔′, v𝜔𝜔′(B[b/x]) = 1 [by the fact that v(a) = v(b) 
and the IH] iff v𝜔𝜔(WbB[b/x]) = 1 iff v𝜔𝜔(WxB[b/x]) = 1. Suppose t is a con-
stant, say c. Then v𝜔𝜔(WcB[a/x]) = 1 iff for all 𝜔𝜔′ such that 𝔄𝔄v(c)𝜔𝜔𝜔𝜔′, 
v𝜔𝜔′(B[a/x]) = 1 iff for all 𝜔𝜔′ such that 𝔄𝔄v(c)𝜔𝜔𝜔𝜔′, v𝜔𝜔′(B[b/x]) = 1 [by the IH] 
iff v𝜔𝜔(WcB[b/x]) = 1. 
 The case for At is similar. 
 (Π). Let A be of the form ΠyB. If x = y, then A[a/x] = A[b/x] = A, so 
the result is trivial. Accordingly, suppose that x and y are distinct. Then, 
(ΠyB)[b/x] = Πy(B[b/x]) and (B[b/x])[a/y] = (B[a/y])[b/x]. v𝜔𝜔((ΠyB)[a/x]) 
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= 1 iff v𝜔𝜔(Πy(B[a/x])) = 1 iff for all kd ∈ L(M), v𝜔𝜔((B[a/x])[kd/y]) = 1 iff 
for all kd ∈ L(M), v𝜔𝜔((B[kd/y])[a/x]) = 1 iff for all kd ∈ L(M), 
v𝜔𝜔((B[kd/y])[b/x]) = 1 [the IH] iff for all kd ∈ L(M), v𝜔𝜔((B[b/x])[kd/y]) = 1 
iff v𝜔𝜔(Πy(B[b/x])) = 1 iff v𝜔𝜔((ΠyB)[b/x]) = 1. 

The case for the particular quantifier (Σ) is similar. ∎ 

6.1. Soundness theorem 

 Let M = ⟨D, W, ℜ, 𝔄𝔄, 𝔖𝔖, v⟩ be any (supplemented) model and B any 
branch of a tableau. Then B is satisfiable in M iff there is a function f from 
0, 1, 2, . . .  to W such that 

 (i)  A is true in f(i) in M, for every node A,i on B, 
 (ii)  if irj is on B, then ℜf(i)f(j) in M, 
 (iii) if isj is on B, then 𝔖𝔖f(i)f(j) in M, and 
 (iv) if iAcj is on B, then 𝔄𝔄v(c)f(i)f(j) in M. 

If these conditions are fulfilled, we say that f shows that B is satisfiable in 
M. 

Lemma 13 (Soundness Lemma): Let B be any branch of a tableau and M 
be any model. If B is satisfiable in M and a tableau rule is applied to it, 
then there is a model M′ and an extension of B, B′, such that B′ is satis-
fiable in M′. 

 Proof. The proof is by induction on the height of the derivation. Let f 
be a function that shows that the branch B is satisfiable in M. 
 Connectives and the modal operators. Straightforward. 
 (W). Suppose that Rc,i, WcB,i, and iAcj are on B, and that we apply 
the W-rule. Then we get an extension of B that includes B,j. Since B is 
satisfiable in M, WcB is true in f(i) and Rc is true in f(i). Moreover, for 
any i and j such that iAcj is on B, 𝔄𝔄v(c)f(i)f(j). Hence by the truth condi-
tions for WcB, B is true in f(j). 
 (A). Suppose that Rc,i, AcB,i are on B and that we apply the A-rule 
to get an extension of B that includes nodes of the form iAcj and B,j. Since 
B is satisfiable in M, AcB is true in f(i) and Rc is true in f(i). Hence, for 
some w in W, 𝔄𝔄v(c)f(i)w and B is true in w [by the truth conditions for 
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AcB and the fact that Rc is true in f(i)]. Let f ′ be the same as f except that 
f ′(j) = w. Since f and f ′ differ only at j, f ′ shows that B is satisfiable in M. 
Moreover, by definition 𝔄𝔄v(c)f ′(i)f ′(j), and B is true in f ′(j). 
 (¬W) and (¬A). Similar. 
 (Π). Suppose that ΠxA,i is on B and that we apply the Π-rule to get an 
extension of B that includes a node of the form A[a/x],i. M makes ΠxA 
true in f(i). For B is satisfiable in M. Hence, A[kd/x] is true in f(i) in M, 
for all kd ∈ L(M). Let d be such that v(a) = v(kd). By the Denotation 
Lemma, A[a/x] is true in f(i) in M. Accordingly, we can take M′ to be M. 
 (Σ). Suppose that ΣxA,i is on B and that we apply the Σ-rule to get an 
extension of B that includes a node of the form A[c/x],i (where c is new). 
Since B is satisfiable in M, ΣxA is true in f(i) in M. Hence, there is some 
kd ∈ L(M) such that M makes A[kd/x] true in f(i). Let M′ = ⟨D, W, ℜ, 
𝔄𝔄, 𝔖𝔖, v′⟩ be the same as M except that v′(c) = d. Since c does not occur 
in A[kd/x], A[kd/x] is true in f(i) in M′, by the Locality Lemma. By the 
Denotation Lemma and the fact that v′(c) = d = v′(kd), A[c/x] is true in 
f(i) in M′. Furthermore, M′ makes all other formulas on the branch true 
at their respective worlds as well, by the Locality Lemma. For c does not 
occur in any other formula on the branch. 
 (¬Π) and (¬Σ). Straightforward. 
 Accessibility rules. I will go through three examples to illustrate the 
method. 
 (T – MW). Suppose we have iAcj on B, and that we apply (T – MW) to 
obtain an extension of B that includes irj. Since B is satisfiable in M, 
𝔄𝔄v(c)f(i)f(j). It follows that ℜf(i)f(j), since M satisfies the condition C – MW. 
 (T – WC). Suppose that i is on B, and that we apply (T – WC) to give 
an extended branch containing iAcj and irj, where j is new. Since B is 
satisfiable in M, f(i) is in W and v(c) is in D. Hence, for some w in W, 
𝔄𝔄v(c)f(i)w and ℜf(i)w, since M satisfies condition C – WC. Let f ′ be the 
same as f except that f ′(j) = w. Since j does not occur on B, f ′ shows that 
B is satisfiable in M. Moreover, 𝔄𝔄v(c)f ′(i)f ′(j) and ℜf ′(i)f ′(j) by construc-
tion. Hence, f ′ shows that the extension of B is satisfiable in M. 
 (T – A=). Suppose we have a = b,i and jAak on a branch and that we 
apply (T – A=) to obtain an extension that includes jAbk. Since f shows 
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that the branch is satisfiable in M, a = b is true in f(i) and 𝔄𝔄v(a)f(j)f(k) in 
M. Accordingly, v(a) = v(b). Hence, 𝔄𝔄v(b)f(j)f(k), and we may take M′ to 
be M. ∎ 

Theorem 14 (Soundness Theorem): Every system S in this paper is sound 
with respect to its semantics. 

 Proof. Suppose that B does not follow from Γ in M, where M is the 
class of models that corresponds to S. Then every premise in Γ is true and 
the conclusion B false at some world w in some model in M. Consider an S-
tableau whose initial list consists of A,0 for every A ∈ Γ and ¬B,0, where 
‘0’ refers to w. Then the initial list is satisfiable in M. Every time we apply 
a rule to this list it produces at least one extension that is satisfiable in M 
(by the Soundness Lemma). Hence, we can find a whole branch such that 
every initial section of this branch is satisfiable in M. This branch cannot 
be closed, for then some sentence would be both true and false in some 
possible world in some model in M. Accordingly, the tableau is open. Con-
sequently, B is not derivable from Γ in S. In conclusion, if B is derivable 
from Γ in S, then B follows from Γ in M. ∎ 

6.2. Completeness theorem 

 In this section, I will show that every system in this paper is complete 
with respect to its semantics. However, first we must define some important 
concepts. 
 Informally, a complete tableau is a tableau where every rule that can be 
applied has been applied. Since different systems include different rules, 
a tableau can be complete in one system even though it is not complete in 
another system. Furthermore, since the tableau rules may be applied in 
different orders, there may be several different (complete) tableaux for the 
same sentence or set of sentences in one and the same system, some longer 
than others, some shorter. To produce a complete tableau (in our complete-
ness proofs) we shall use the following method.36 (1) For every open branch 

                                                      
36  Note that it is often possible to produce shorter proofs by using some more 
intuitive method instead. 
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on the tree, we shall do the following. We shall begin at its root and move 
towards its tip. We shall apply any rule that produces something that has 
not appeared on the branch before. For example, there is no point in ap-
plying Σ more than once to a node of the form ΣxA,i. We shall not apply 
any rules to a branch that is already closed. Some rules can be applied more 
than once, for example, □ and Π. When we arrive at a node of the form 
□A,i and it is possible to apply □ several times, then we shall make all 
applications at once and we shall do the same for all similar nodes. (2) 
When we have extended all open branches on the tree in this way, we shall 
repeat the procedure. Some rules introduce new ‘possible worlds,’ for exam-
ple T – aD and T – WC. If a rule introduces a new possible world, then we 
shall apply it once at the tip of every open branch at the end of every cycle 
(that is, when we have gone through all nodes). If a system includes several 
different rules that introduce new possible worlds (R1, R2, . . . ), we shall 
alternate between them. The first time, we shall use R1 once; the second 
time we shall use R2 once, etc. Before we conclude a cycle and start to 
move through all nodes again, we shall apply CUTR. We shall split the end 
of every open branch in the tree and add Rc,i to the left node and ¬Rc,i to 
the right node, for every constant c that occurs as an index to some boulesic 
operator on the tree and i on the branch. The tableau is incomplete precisely 
when there is still something to do according to this method. A tableau is 
complete iff it is not incomplete. 

Definition 15 (Induced Model): Let B be an open complete branch of a tab-
leau, let i, j, k, etc. be numbers on B, and let I be the set of numbers on B. 
Furthermore, let C be the set of all constants on B. Define a ∼ b to mean 
that a = b,0 is on the branch. a ∼ b is obviously an equivalence relation. 
Let [a] be the equivalence class of a under ∼. The (supplemented) model, 
M = ⟨D, W, ℜ, 𝔖𝔖, 𝔄𝔄, v⟩, induced by B is defined as follows. D = {[a]∶ a ∈ 
C} (or, if C = ∅, D = {o} for an arbitrary o). (o is not in the extension of 
anything.) W = {𝜔𝜔i∶ i occurs on B}, ℜ𝜔𝜔i𝜔𝜔j iff irj occurs on B, 𝔖𝔖𝜔𝜔i𝜔𝜔j iff isj 
occurs on B, 𝔄𝔄v(a)𝜔𝜔i𝜔𝜔j iff iAaj occurs on B. v(a) = [a], and ⟨[a1], . . . , [an]⟩ 
∈ v𝜔𝜔i(P) iff Pa1. . . an,i is on B, given that P is any n-place predicate other 
than identity. If ¬Ram,i occurs on B and M is an n-place matrix with  
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instantiations on the branch (where xm is the first free variable in M and 
am is the constant in M[a1, . . . , an/𝑥𝑥]⃗ that replaces xm), then ⟨[a1], . . . , [an]⟩ 
∈ v𝜔𝜔i(M) iff M[a1, . . . , an/𝑥𝑥]⃗,i occurs on B. (Due to the identity rules this is 
well defined.) When we have a = b,0, b = c,0, etc. we choose one single 
object for all constants to denote. 

Lemma 16 (Completeness Lemma): Let B be an open branch in a complete 
tableau and let M be a (supplemented) model induced by B. Then, for every 
formula A: 
(i)  if A,i is on B, then v𝜔𝜔i(A) = 1, and 
(ii)  if ¬A,i is on B, then v𝜔𝜔i(A) = 0. 

 Proof. The proof is by induction on the complexity of A. 
 Atomic formulas. 
 Pa1. . . an,i is on B ⇒ ⟨[a1], . . . , [an]⟩ ∈ v𝜔𝜔i(P) ⇒ ⟨v(a1), . . . , v(an)⟩ ∈ 
v𝜔𝜔i(P) ⇒ v𝜔𝜔i(Pa1. . . an) = 1. 
 ¬Pa1. . . an,i is on B ⇒ Pa1. . . an,i is not on B (B open) ⇒ ⟨[a1], . . . , [an]⟩ 
∉ v𝜔𝜔i(P) ⇒ ⟨v(a1), . . . , v(an)⟩ ∉ v𝜔𝜔i(P) ⇒ v𝜔𝜔i(Pa1. . . an) = 0. 
 a = b,i is on B ⇒ a ∼ b (T – N=) ⇒ [a] = [b] ⇒ v(a) = v(b) ⇒ v𝜔𝜔i(a = 
b) = 1. 
 ¬a = b,i is on B ⇒ a = b,0 is not on B (B open) ⇒ it is not the case 
that a ∼ b ⇒ [a] ≠ [b] ⇒ v(a) ≠ v(b) ⇒ v𝜔𝜔i(a = b) = 0. 
 Suppose that M is a matrix where xm is the first free variable and am is 
the constant in M[a1, . . . , an/𝑥𝑥]⃗ that replaces xm and that v𝜔𝜔i(Ram) = 0. 
Then: M[a1, . . . , an/𝑥𝑥]⃗,i occurs on B ⇒ ⟨[a1], . . . , [an]⟩ ∈ v𝜔𝜔i(M) ⇒ 
⟨v(a1), . . . , v(an)⟩ ∈ v𝜔𝜔i(M) ⇒ v𝜔𝜔i(M[a1, . . . , an/𝑥𝑥]⃗) = 1. 
 ¬M[a1, . . . , an/𝑥𝑥]⃗,i occurs on B ⇒ M[a1, . . . , an/𝑥𝑥]⃗,i is not on B (B open) 
⇒ ⟨[a1], . . . , [an]⟩ ∉ v𝜔𝜔i(M) ⇒ ⟨v(a1), . . . , v(an)⟩ ∉ v𝜔𝜔i(M) ⇒ 
v𝜔𝜔i(M[a1, . . . , an/𝑥𝑥]⃗) = 0. 
 Other truth-functional connectives and modal operators. Straightforward. 
 Boulesic operators. (A). Suppose AcB,i is on B. Furthermore, suppose 
that Rc,i is not on B. Then ¬Rc,i is on B [by CUTR (or CUT )]. Hence, 
AcB is true in 𝜔𝜔i by definition and previous steps. Suppose Rc,i is on B. 
Then the A-rule has been applied to AcB,i, since the branch is complete. 
So, for some new j, iAcj and B,j occur on B. By the induction hypothesis, 
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𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j, and B is true in 𝜔𝜔j. Since Rc,i is on B, v(c) is perfectly rational 
in 𝜔𝜔i. Hence, AcB is true in 𝜔𝜔i, as required. Suppose ¬AcB,i is on B. Fur-
thermore, suppose that Rc,i is not on B. Then ¬Rc,i is on B [by CUTR (or 
CUT)]. Consequently, AcB is false in 𝜔𝜔i by definition and previous steps. 
Suppose Rc,i is on B. Then the ¬A-rule has been applied, and Wc¬B, i is 
on B since the branch is complete. Again, since Rc,i is on B and the branch 
is complete, the W-rule has been applied and for every j such that iAcj is 
on B, ¬B,j is on B. By the induction hypothesis, B is false in every 𝜔𝜔j such 
that 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j. Since Rc,i is on B, v(c) is perfectly rational in 𝜔𝜔i. It follows 
that AcB is false in 𝜔𝜔i, as required. 
 (W). Similar as for (A). 
 Quantifiers. (Σ). Suppose that ΣxA,i is on the branch. Since the tableau 
is complete (Σ) has been applied. Accordingly, for some c, A[c/x],i is on the 
branch. Hence, v𝜔𝜔i(A[c/x]) = 1, by (IH). For some kd ∈ L(M), v(c) = d, 
and v(kd) = d. Consequently, v𝜔𝜔i(A[kd/x]) = 1, by the Denotation Lemma. 
It follows that v𝜔𝜔i(ΣxA) = 1. Suppose that ¬ΣxA,i is on the branch. Since 
the tableau is complete (¬Σ) has been applied. So, Πx¬A,i is on the branch. 
Again, since the tableau is complete (Π) has been applied. Thus, for all c ∈ 
C, ¬A[c/x],i is on the branch. Consequently, v𝜔𝜔i(A[c/x]) = 0 for all c ∈ C 
[by the induction hypothesis]. If kd ∈ L(M), then for some c ∈ C, v(c) = 
v(kd). By the Denotation Lemma, for all kd ∈ L(M), v𝜔𝜔i(A[kd/x]) = 0. Con-
sequently, v𝜔𝜔i(ΣxA) = 0. 

The case for Π is similar. ∎ 

Theorem 17 (Completeness Theorem): Every system in this paper is com-
plete with respect to its semantics. 

 Proof. First we prove that the theorem holds for our weakest system V. 
Then we extend the theorem to all extensions of this system. Let M be the 
class of models that corresponds to V. 
 Suppose that B is not derivable from Γ in V: then it is not the case that 
there is a closed V-tableau whose initial list comprises A,0 for every A in Γ 
and ¬B,0. Let t be a complete V-tableau whose initial list comprises A,0 for 
every A in Γ and ¬B,0. Then t is not closed—i.e. it is open. Since t is open, 
there is at least one open branch in t. Let B be an open branch in t. The 
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model induced by B makes all the premises in Γ true and B false in 𝜔𝜔0. 
Hence, it is not the case that B follows from Γ in M. Consequently, if B 
follows from Γ in M, then B is derivable from Γ in V. 
 To prove that all extensions of V are complete with respect to their 
semantics, we have to check that the model induced by the open branch B 
is of the right kind. To do this we first check that this is true for every 
single semantic condition. Then we combine each of the individual argu-
ments. I will go through some steps to illustrate the method. 
 C – bD. Suppose that 𝜔𝜔i is in W. Then i occurs on B [by the definition 
of an induced model]. Since B is complete (T – bD) has been applied. Hence, 
for some j, iAcj is on B. Accordingly, for some 𝜔𝜔j, 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j, as required [by 
the definition of an induced model]. 
 C – b4. Suppose that 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j and 𝔄𝔄v(c)𝜔𝜔j𝜔𝜔k. Then iAcj and jAck occur 
on B [by the definition of an induced model]. Since B is complete, (T – b4) 
has been applied and iAck occurs on B. It follows that 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔k, as required 
[by the definition of an induced model]. 
 C – HW. Suppose that 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j. Then iAcj occurs on B [by the defini-
tion of an induced model]. Since B is complete, (T – HW) has been applied 
and iAdj occurs on B. Consequently, 𝔄𝔄v(d)𝜔𝜔i𝜔𝜔j, as required [by the defini-
tion of an induced model]. 
 C – MW. Suppose that 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j. Then iAcj occurs on B [by the defini-
tion of an induced model]. Since B is complete, (T – MW) has been applied 
and irj occurs on B. Consequently, ℜ𝜔𝜔i𝜔𝜔j, as required [by the definition of 
an induced model]. 

 C – WC. Suppose that 𝜔𝜔i is in W. Then i occurs on B [by the definition 
of an induced model]. Since B is complete (T – WC) has been applied. Ac-
cordingly, for some j, iAcj and irj are on B. Thus, for some 𝜔𝜔j, 𝔄𝔄v(c)𝜔𝜔i𝜔𝜔j 
and ℜ𝜔𝜔i𝜔𝜔j, as required [by the definition of an induced model]. ∎ 

7. Conclusion 

 In this paper, I have developed a set of boulesic and boulesic-deontic 
tableau systems and I have investigated some possible connections between 
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boulesic logic and deontic logic. Boulesic logic is a new kind of logic that 
deals with ‘boulesic’ concepts and expressions, such as wanting and accept-
ing, and ‘boulesic’ sentences, arguments and systems. I have shown how 
deontic logic, the logic of norms, might be grounded in boulesic logic. I have 
used a kind of possible world models to define the systems semantically and 
I have shown that all systems are sound and complete with respect to their 
semantics. Intuitively, we can think of our semantics as a description of the 
structure of a perfectly rational will. Finally, I have mentioned some inter-
esting theorems that can be proved in our systems, including some versions 
of the so-called hypothetical imperative. 
 The deontic fragments of the systems in this paper are pretty standard 
monadic deontic systems. For a long time, systems of this kind have been 
criticised and various deontic ‘paradoxes’ have been introduced, for exam-
ple, Ross’s paradox, the paradox of derived obligations, the contrary-to-
duty paradox, the good Samaritan paradox, the paradox of epistemic obli-
gation and the free choice permission paradox.37 Some think that these puz-
zles show that normal deontic logic is seriously defective. However, I am 
inclined to believe that most of the so-called ‘deontic paradoxes’ can be 
‘solved’ and that they do not show that we have to abandon classical deon-
tic logic. Of course, some of the puzzles are quite serious, for example, the 
contrary-to-duty paradox. It does not seem to be possible to solve this puz-
zle adequately in normal monadic deontic systems. This does not necessarily 
imply that we have to abandon classical deontic logic, but it indicates that 
the systems in this paper should be expanded or supplemented.38 
 I would now like to mention two ways in which the systems in this paper 
can be improved.  

                                                      
37  For more on deontic paradoxes, see, for example, (Åqvist 1967; Castañeda 1981; 
Chisholm 1963; Hilpinen and McNamara 2013; Prior 1954, 1958; Ross 1941, 1944; 
and von Wright 1968). 
38  In (Rönnedal 2018), I discuss the contrary-to-duty paradox and suggest a solu-
tion. This solution, which is attractive in many respects, does not require that we 
abandon normal monadic deontic logic. The systems in the present paper are com-
patible with this solution. For more on the contrary-to-duty paradox and various 
possible solutions, see Rönnedal (forthcoming). 
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 First, the systems in this paper can be combined with temporal logic. In 
a quantified temporal alethic boulesic deontic system, it is possible to in-
vestigate ‘diachronistic’ rationality and the relationships between temporal, 
alethic, boulesic and deontic concepts. I am currently trying to develop a set 
of quantified temporal alethic boulesic deontic systems. 
 Second, there appears to be a close connection between the logic of wish-
ing/not accepting and the logic of good/bad. Good and bad are usually 
strongly connected in formal systems to the logic of preference (see, for 
example, Chisholm and Sosa 1966; Lenzen 1983; and Hansson 1990). In 
future work, I hope that I will be able to combine boulesic logic with the 
logic of preference and construct a set of boulesic-preference systems. Such 
systems might be used to overcome some of the shortcomings with the kind 
of monadic systems that I have investigated in this paper. Systems of this 
kind might, for example, perhaps be used to solve the contrary-to-duty 
paradox. 
 No doubt there are other possible extensions, but these examples seem 
to me to be among the most interesting ones. I hope to return to these 
topics in future work. 

Acknowledgements 

 The first sketch of what has turned into the present paper was written in 2010. 
However, I only seriously started to work on the project in 2016. The first version of 
the text was finished in 2017. I would like to thank all colleagues who have commented 
on earlier versions of this paper since then. I would also like to thank two anonymous 
reviewers for Organon F for some very detailed and interesting comments. 

References 

Åqvist, Lennart. 1967. “Good Samaritans, Contrary-to-duty Imperatives, and Epis-
temic Obligations.” Noûs 1 (4): 361–79. https://doi.org/10.2307/2214624  

Åqvist, Lennart. 1987. Introduction to Deontic Logic and the Theory of Norma- 
tive Systems. Naples: Bibliopolis. 

Åqvist, Lennart. 2002. “Deontic Logic.” In Handbook of Philosophical Logic, 2nd 
Edition, vol. 8, edited by D. M. Gabbay and F. Guenthner, 147–264. Dordrecht/ 
Boston/London: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-
010-0387-2_3  

https://doi.org/10.2307/2214624
https://doi.org/10.1007/978-94-010-0387-2_3
https://doi.org/10.1007/978-94-010-0387-2_3


Boulesic Logic, Deontic Logic and the Structure of … 257 

Organon F 27 (2) 2020: 187–262  

Åqvist, Lennart, and Hoepelman, Jaap. 1981. “Some Theorems about a ‘Tree’ Sys-
tem of Deontic Tense Logic.” In New Studies in Deontic Logic: Norms, Ac-
tions, and the Foundation of Ethics, edited by R. Hilpinen, 187–221. Dor-
drecht: D. Reidel Publishing Company. https://doi.org/10.1007/978-94-009-
8484-4_9  

Aristotle. 1992. The Nicomachean Ethics. Translated by Sir David Ross. Oxford 
and New York: Oxford University Press. 

Barcan (Marcus), Ruth. C. 1946. “A Functional Calculus of First Order Based on 
Strict Implication.” Journal of Symbolic Logic 11 (1): 1–16. 
https://doi.org/10.2307/2269159  

Bedke, Matthew S. 2009. “The Iffiest Oughts: A Guise of Reasons Account of End-
Given Conditionals.” Ethics 119 (4): 672–98. https://doi.org/10.1086/600130  

Björklund, Fredrik, Björnsson, Gunnar, Eriksson, John, Francén Olinder, Ragnar, 
and Strandberg, Caj. 2012. “Recent Work on Motivational Internalism.” Anal-
ysis 72 (1): 124–37. https://doi.org/10.1093/analys/anr118  

Björnsson, Gunnar, Strandberg, Caj, Francén Olinder, Ragnar, Eriksson, John, 
and Björklund, Fredrik. Eds. 2015. Motivational Internalism. Oxford Univer-
sity Press. https://doi.org/10.1093/acprof:oso/9780199367955.001.0001  

Blackburn, Patrick, de Rijke, Maarten, and Venema, Yde. 2001. Modal Logic. 
Cambridge University Press. https://doi.org/10.1017/CBO9781107050884  

Blackburn, Patrick, van Benthem, Johan, and Wolter, Frank. Eds. 2007. Handbook 
of Modal Logic. Elsevier. 

Bratman, Michael E. 1999. Intention, Plans, and Practical Reason. CSLI Publica-
tions. 

Broersen, Jan M. 2011. “Making a Start with the stit Logic Analysis of Intentional 
Action.” Journal of Philosophical Logic 40 (4): 499–530. 
https://doi.org/10.1007/s10992-011-9190-6  

Broersen, Jan M., Dastani, Mehdi, and van der Torre, Leendert. 2001. “Resolving 
Conflicts between Beliefs, Obligations, Intentions, and Desires.” In Symbolic 
and Quantitative Approaches to Reasoning with Uncertainty, edited by Salem 
Benferhat, and Philippe Besnard, 568–79. Springer. https://doi.org/10.1007/3-
540-44652-4_50  

Broome, John. 1999. “Normative Requirements.” Ratio (new series) 12 (4): 398–
419. https://doi.org/10.1111/1467-9329.00101  

Broome, John. 2013. Rationality through Reasoning. Wiley-Blackwell. 
https://doi.org/10.1002/9781118609088  

Brunero, John. 2010. “Self-Governance, Means-Ends Coherence, and Unalterable 
Ends.” Ethics 120 (3): 579–91. https://doi.org/10.1086/652448  

Carnap, Rudolf. 1946. “Modalities and Quantification.” Journal of Symbolic Logic 
11 (2): 33–64. https://doi.org/10.2307/2268610  

https://doi.org/10.1007/978-94-009-8484-4_9
https://doi.org/10.1007/978-94-009-8484-4_9
https://doi.org/10.2307/2269159
https://doi.org/10.1086/600130
https://doi.org/10.1093/analys/anr118
https://doi.org/10.1093/acprof:oso/9780199367955.001.0001
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/s10992-011-9190-6
https://doi.org/10.1007/3-540-44652-4_50
https://doi.org/10.1007/3-540-44652-4_50
https://doi.org/10.1111/1467-9329.00101
https://doi.org/10.1002/9781118609088
https://doi.org/10.1086/652448
https://doi.org/10.2307/2268610


258  Daniel Rönnedal 

Organon F 27 (2) 2020: 187–262 

Castañeda, Héctor-Neri. 1981. “The Paradoxes of Deontic Logic: the Simplest Solu-
tion to all of them in one Fell Swoop.” In New Studies in Deontic Logic: 
Norms, Actions, and the Foundation of Ethics, edited by R. Hilpinen, 37–85. 
Dordrecht: D. Reidel Publishing Company. https://doi.org/10.1007/978-94-
009-8484-4_2  

Chellas, Brian. F. 1969. The Logical Form of Imperatives. Stanford: Perry Lane 
Press. 

Chellas, Brian. F. 1980. Modal Logic: An Introduction. Cambridge: Cambridge 
University Press. https://doi.org/10.1017/CBO9780511621192  

Chisholm, Roderick M. 1963. “Contrary-to-duty Imperatives and Deontic Logic.” 
Analysis 24 (2): 33–36. https://doi.org/10.1093/analys/24.2.33  

Chisholm, Roderick M. and Sosa, Ernest. 1966. “On the Logic of ‘Intrinsically Bet-
ter.’” American Philosophical Quarterly 3 (3): 244–49. 

Cohen, Philip R. and Levesque, Hector J. 1990. “Intention is Choice with Commit-
ment.” Artificial Intelligence 42 (2–3): 213–61. https://doi.org/10.1016/0004-
3702(90)90055-5  

D’Agostino, Marcello, Gabbay, Dov M., Hähnle, Reiner, and Posegga, Joachim. 
Eds. 1999. Handbook of Tableau Methods. Dordrecht: Kluwer Academic Pub-
lishers. https://doi.org/10.1007/978-94-017-1754-0  

Downie, Robin S. 1984. “The Hypothetical Imperative.” Mind (New Series) 93 
(372): 481–90. https://doi.org/10.1093/mind/XCIII.372.481  

Feldman, Fred. 1986. Doing the Best We Can: An Essay in Informal Deontic 
Logic. Dordrecht: D. Reidel Publishing Company. https://doi.org/10.1007/978-
94-009-4570-8  

Feldman, Fred. 2004. Pleasure and the Good Life. Oxford, New York: Oxford Uni-
versity Press. https://doi.org/10.1093/019926516X.001.0001  

Firth, Roderick. 1952. “Ethical Absolutism and the Ideal Observer.” Philosophy 
and Phenomenological Research 12 (3): 317–45. 
https://doi.org/10.2307/2103988  

Fitting, Melvin, and Mendelsohn, Richard L. 1998. First-Order Modal Logic. 
Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-5292-1  

Foot, Philippa. 1972. “Morality as a System of Hypothetical Imperatives.” The 
Philosophical Review 81 (3): 305–16. https://doi.org/10.2307/2184328  

Gabbay, Dov M. 1976. Investigations in Modal and Tense Logics with Applica- 
tions to Problems in Philosophy and Linguistics. Dordrecht: Reidel. 
https://doi.org/10.1007/978-94-010-1453-3  

Gabbay, Dov M., Horty, John, Parent, Xavier, van der Meyden, Ron, and van der 
Torre, Leendert. Eds. 2013. Handbook of Deontic Logic and Normative Sys-
tems. London: College Publications. 

https://doi.org/10.1007/978-94-009-8484-4_2
https://doi.org/10.1007/978-94-009-8484-4_2
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1093/analys/24.2.33
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1007/978-94-017-1754-0
https://doi.org/10.1093/mind/XCIII.372.481
https://doi.org/10.1007/978-94-009-4570-8
https://doi.org/10.1007/978-94-009-4570-8
https://doi.org/10.1093/019926516X.001.0001
https://doi.org/10.2307/2103988
https://doi.org/10.1007/978-94-011-5292-1
https://doi.org/10.2307/2184328
https://doi.org/10.1007/978-94-010-1453-3


Boulesic Logic, Deontic Logic and the Structure of … 259 

Organon F 27 (2) 2020: 187–262  

Garson, James W. 1984. “Quantification in Modal Logic.” In Handbook of Philo- 
sophical Logic 2 (2nd edition 3, 2001), edited by D. M. Gabbay and F. 
Guenthner, 249–307. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-
6259-0_5  

Garson, James W. 2006. Modal Logic for Philosophers. New York: Cambridge Uni-
versity Press. https://doi.org/10.1017/CBO9780511617737  

Gensler, Harry J. 1985. “Ethical Consistency Principles.” The Philosophical Quar-
terly 35 (139): 156–70. https://doi.org/10.2307/2219341  

Gensler, Harry J. 2002. Introduction to Logic. London and New York: Routledge. 
Greenspan, Patricia S. 1975. “Conditional Oughts and Hypothetical Imperatives.” 

The Journal of Philosophy 72 (10): 259–76. https://doi.org/10.2307/2024734  
Hansson, Sven Ove. 1990. “Defining ‘Good’ and ‘Bad’ in Terms of ‘Better.’” Notre 

Dame Journal of Formal Logic 31 (1): 136–49. 
https://doi.org/10.1305/ndjfl/1093635338  

Harsanyi, John C. 1958. “Ethics in Terms of Hypothetical Imperatives.” Mind 67 
(267): 305–16. https://doi.org/10.1093/mind/LXVII.267.305  

Hill, Jr. Thomas E. 1973. “The Hypothetical Imperative.” The Philosophical Re-
view 82 (4): 429–50. https://doi.org/10.2307/2183709  

Hill, Jr. Thomas E. 1989. “Kant’s Theory of Practical Reason.” The Monist 72 (3): 
363–83. https://doi.org/10.5840/monist198972320  

Hilpinen, Risto. Ed. 1971. Deontic Logic: Introductory and Systematic Readings. 
Dordrecht: D. Reidel Publishing Company. https://doi.org/10.1007/978-94-
010-3146-2  

Hilpinen, Risto. Ed. 1981. New Studies in Deontic Logic: Norms, Actions, and the 
Foundation of Ethics. Dordrecht: D. Reidel Publishing Company. 
https://doi.org/10.1007/978-94-009-8484-4  

Hilpinen, Risto, and McNamara, Paul. 2013. “Deontic Logic: A Historical Survey 
and Introduction.” In Handbook of Deontic Logic and Normative Systems, ed-
ited by D. M. Gabbay, J. Horty, X. Parent, R. van der Meyden and L. van der 
Torre, 3–136. London: College Publications. 

Hintikka, Jaakko. 1961. “Modality and Quantification.” Theoria 27 (3): 117–28. 
https://doi.org/10.1111/j.1755-2567.1961.tb00020.x  

Horty, John F. 2015. “Requirements, Oughts, Intentions.” Philosophy and Phe-
nomenological Research 91 (1): 220–29. https://doi.org/10.1111/phpr.12204  

Hughes, George E. and Cresswell, Max J. 1968. An Introduction to Modal Logic. 
London: Routledge. https://doi.org/10.4324/9780203028100  

Jeffrey, Richard C. 1967. Formal Logic: Its Scope and Limits. New York: McGraw-
Hill. https://doi.org/10.2307/2271990  

Kant, Immanuel. 1991. Grundlegung zur Metaphysik der Sitten. In The Moral Law: 
Kant’s Groundwork of the Metaphysics of Morals. Translated and analysed by 

https://doi.org/10.1007/978-94-009-6259-0_5
https://doi.org/10.1007/978-94-009-6259-0_5
https://doi.org/10.1017/CBO9780511617737
https://doi.org/10.2307/2219341
https://doi.org/10.2307/2024734
https://doi.org/10.1305/ndjfl/1093635338
https://doi.org/10.1093/mind/LXVII.267.305
https://doi.org/10.2307/2183709
https://doi.org/10.5840/monist198972320
https://doi.org/10.1007/978-94-010-3146-2
https://doi.org/10.1007/978-94-010-3146-2
https://doi.org/10.1007/978-94-009-8484-4
https://doi.org/10.1111/j.1755-2567.1961.tb00020.x
https://doi.org/10.1111/phpr.12204
https://doi.org/10.4324/9780203028100
https://doi.org/10.2307/2271990


260  Daniel Rönnedal 

Organon F 27 (2) 2020: 187–262 

H. J. Paton. London and New York: Routledge (Reprinted 1991; originally 
published 1785). 

Kawall, Jason. 2013. “Ideal Observer Theories.” In The International Encyclopedia 
of Ethics, edited by H. LaFollette, 2523–30. Blackwell Publishing. 
https://doi.org/10.1002/9781444367072.wbiee548  

Knuuttila, Simo. 2004. Emotions in Ancient and Medieval Philosophy. Oxford: Ox-
ford University Press. https://doi.org/10.1093/0199266387.001.0001  

Korsgaard, Christine M. 2008. “The Normativity of Instrumental Reason.” In The 
Constitution of Agency: Essays on Practical Reason and Moral Psychology, 
Oxford/New York: Oxford University Press. https://doi.org/10.1093/ac-
prof:oso/9780199552733.003.0002  

Kracht, Marcus. 1999. Tools and Techniques in Modal Logic. Amsterdam: Else-
vier. 

Lenzen, Wolfgang. 1983. “On the Representation of Classificatory value Struc-
tures.” Theory and Decision 15 (4): 349–69. 
https://doi.org/10.1007/BF00162113  

Lewis, Clarence I., and Langford, Cooper H. 1932. Symbolic Logic. New York: The 
Century Company. 

Lorini, Emiliano, and Herzig, Andreas. 2008. “A Logic of Intention and Attempt.” 
Synthese 163 (1): 45–77. https://doi.org/10.1007/s11229-008-9309-7  

Mally, Ernst. 1926. Grundgesetze des Sollens: Elemente der Logik des Willens. 
Leuschner and Lubensky. 

Marra, Alessandra, and Klein, Dominik. 2015. “Logic and Ethics: An Integrated 
Model for Norms, Intentions and Actions.” In International Workshop on 
Logic, Rationality and Interaction, edited by Wiebe van der Hoek, Wesley H. 
Holliday, and Wen-fang Wang, 268–81. Berlin, Heidelberg: Springer. 
https://doi.org/10.1007/978-3-662-48561-3_22  

Marshall, John. 1982. “Hypothetical Imperatives.” American Philosophical Quar-
terly 19 (1): 105–14. 

Mele, Alfred R. Ed. 2004. The Oxford Handbook of Rationality. Oxford: Oxford 
University Press. https://doi.org/10.1093/0195145399.001.0001  

Parks, Zane. 1976. “Investigations into Quantified Modal Logic I.” Studia Logica 
35 (2): 109–25. 

Paton, Herbert J. 1948. The Moral Law: Kant’s Groundwork of the Metaphysics of 
Morals. London and New York: Routledge (Reprinted 1991). 

Priest, Graham. 2005. Towards Non-Being. Oxford: Oxford University Press. 
https://doi.org/10.1093/acprof:oso/9780198783596.001.0001  

Priest, Graham. 2008. An Introduction to Non-Classical Logic. Cambridge: Cam-
bridge University Press. https://doi.org/10.1017/CBO9780511801174  

Prior, Arthur N. 1954. “The Paradoxes of Derived Obligation.” Mind 63: 64–65. 

https://doi.org/10.1002/9781444367072.wbiee548
https://doi.org/10.1093/0199266387.001.0001
https://doi.org/10.1093/acprof:oso/9780199552733.003.0002
https://doi.org/10.1093/acprof:oso/9780199552733.003.0002
https://doi.org/10.1007/BF00162113
https://doi.org/10.1007/s11229-008-9309-7
https://doi.org/10.1007/978-3-662-48561-3_22
https://doi.org/10.1093/0195145399.001.0001
https://doi.org/10.1093/acprof:oso/9780198783596.001.0001
https://doi.org/10.1017/CBO9780511801174


Boulesic Logic, Deontic Logic and the Structure of … 261 

Organon F 27 (2) 2020: 187–262  

Prior, Arthur N. 1958. “Escapism: The Logical Basis of Ethics.” In Essays in 
Moral Philosophy, edited by Abraham I. Melden, 135–46. Seattle: University of 
Washington Press. 

Rönnedal, Daniel. 2009. “Counterfactuals and Semantic Tableaux.” Logic and Log-
ical Philosophy 18 (1): 71–91. https://doi.org/10.12775/LLP.2009.006  

Rönnedal, Daniel. 2012. “Bimodal Logic.” Polish Journal of Philosophy. VI (2): 
71–93. https://doi.org/10.5840/pjphil20126214  

Rönnedal, Daniel. 2018. “Temporal Alethic Dyadic Deontic Logic and the Con-
trary-to-Duty Obligation Paradox.” Logic and Logical Philosophy 27 (1): 3–52. 
https://doi.org/10.12775/LLP.2017.012  

Rönnedal, Daniel. Forthcoming. “Contrary-to-Duty Obligations and the Contrary-
to-Duty (Obligation) Paradox.” The Internet Encyclopedia of Philosophy.  

Ross, Alf. 1941. “Imperatives and Logic.” Theoria 7: 53–71. 
Ross, Alf. 1944. “Imperatives and Logic.” Philosophy of Science 11 (1): 30–46. 

https://doi.org/10.2307/2268025  
Schroeder, Mark. 2004. “The Scope of Instrumental Reason.” Philosophical Per-

spectives 18 (1): 337–64. https://doi.org/10.1111/j.1520-8583.2004.00032.x  
Schroeder, Mark. 2005. “The Hypothetical Imperative?” Australasian Journal of 

Philosophy 83 (3): 357–72. https://doi.org/10.1080/00048400500191958  
Schroeder, Mark. 2009. “Means-End Coherence, Stringency, and Subjective Rea-

sons.” Philosophical Studies 143 (2): 223–48. https://doi.org/10.1007/s11098-
008-9200-x  

Schroeder, Mark. 2015. “Hypothetical Imperatives.” In Reason, Value, and Re- 
spect: Kantian Themes from the Philosophy of Thomas E. Hill, Jr., edited by 
Mark Timmons and Robert N. Johnson, Chapter 4. Oxford: Oxford University 
Press. https://doi.org/10.1093/acprof:oso/9780199699575.003.0005  

Semmling, Caroline, and Wansing, Heinrich. 2008. “From BDI and stit to bdi-stit 
Logic.” Logic and Logical Philosophy 17 (1–2): 185–207. 
https://doi.org/10.12775/LLP.2008.011  

Shaver, Robert. 2006. “Korsgaard on Hypothetical Imperatives.” Philosophical 
Studies 129 (2): 335–47. https://doi.org/10.1007/s11098-004-1646-x  

Smullyan, Raymond M. 1968. First-Order Logic. Heidelberg: Springer-Verlag. 
https://doi.org/10.1007/978-3-642-86718-7  

Sumner, Leonard W. 1996. Welfare, Happiness, and Ethics. Oxford: Clarendon 
Press. https://doi.org/10.1093/acprof:oso/9780198238782.001.0001  

Sumner, Leonard W. 2000. “Something in Between.” In Well-Being and Morality: 
Essays in Honour of James Griffin, edited by Roger Crisp and Brad Hooker, 
1–19. Oxford: Clarendon Press. 

 

https://doi.org/10.12775/LLP.2009.006
https://doi.org/10.5840/pjphil20126214
https://doi.org/10.12775/LLP.2017.012
https://doi.org/10.2307/2268025
https://doi.org/10.1111/j.1520-8583.2004.00032.x
https://doi.org/10.1080/00048400500191958
https://doi.org/10.1007/s11098-008-9200-x
https://doi.org/10.1007/s11098-008-9200-x
https://doi.org/10.1093/acprof:oso/9780199699575.003.0005
https://doi.org/10.12775/LLP.2008.011
https://doi.org/10.1007/s11098-004-1646-x
https://doi.org/10.1007/978-3-642-86718-7
https://doi.org/10.1093/acprof:oso/9780198238782.001.0001


262  Daniel Rönnedal 

Organon F 27 (2) 2020: 187–262 

van Roojen, Mark. 2013. “Internalism, Motivational.” In International Encyclope-
dia of Ethics, edited by H. LaFollette, 2693–706. Malden, MA: Wiley Black-
well. 

von Wright, Georg H. 1968. An Essay in Deontic Logic and the General Theory of 
Action. Amsterdam: North-Holland. 

Wallace, R. Jay. 2001. “Normativity, Commitment, and Instrumental Reason.” 
Philosophers’ Imprint 1 (3): 1–26. 

Way, Jonathan. 2010. “Defending the Wide-Scope Approach to Instrumental Rea-
son.” Philosophical Studies 147 (2): 213–33. https://doi.org/10.1007/s11098-
008-9277-2 

https://doi.org/10.1007/s11098-008-9277-2
https://doi.org/10.1007/s11098-008-9277-2

	Terms
	Predicates
	Connectives
	Operators
	Quantifiers
	Parentheses

