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SIMPLIFICATION OF PALEOSTRESS GRID SEARCH ALGORITHMS
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Abstract: The paper presents a way to apply the graphic solution for shear stress vector on a generally oriented plane, 
presented by Fry (1992), in a grid search stress method. The analytical form of the Fry’s solution can be used in each of 
the loops of available grid search routines (e.g. Gephait 1990b; Hardcastle & Hills 1991), computing the reactivation of 
the fault data set by each of the tested stress tensors. It provides an alternative way of the stress computation, compared 
with both Bott’s (1959) and Fleischmann & Nemčok’s (1991) approach. This computation involves just a few simple 
equations omitting the time consuming goniometric functions.
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Introduction

Since Carey & Brunier’s (1974) numeric method for stress ten­
sor computation a large number of numeric routines have been 
developed. These methods usually make three basic assump­
tions: 1 - that the stresses were sufficient to cause slip (obeying 
the Coulomb-Mohr concept), 2 - that the direction of slip im­
mediately after failure was parallel to the direction of maximum 
shear stress acting immediately before' failure (implying that 
local heterogeneities that might inhibit the free slip on each fault 
plane - including interactions with other fault planes - are rela­
tively insignificant), and 3 - that the data reflect an uniform 
stress field (both spatially and temporally) in the region of study 
- this requires that there has been no post-slip deformation of 
the region which would alter the fault orientations.

As proposed by Fleischmann & Nemčok (1991), the methods 
can be divided into two characteristic groups: indirect inversion 
methods, which use slip on faults to find the average stress state 
(e.g. Carey & Brünier 1974; Angélier 1979,1984; Etchecopar 
et al. 1981; Lisle 1987,1988; Reches 1987), and direct inver­
sion methods, which use some assumption about the stress con­
figuration and test the slip vectors on the fault planes (Gephait 
& Forsyth 1984; Hardcastle 1989; Gephait 1990a, b; Hard­
castle & Hills 1991; Fleischmann & Nemčok 1991).

In the direct inversion methods, some estimate of the stress 
tensor is given systematically to cover the possible range of 
expected positions (grid of stress tensors). Bott’s (1959) formu­
las were used as a basic tool for the shear stress computation. 
The inversion approach is given by the description of misfit for 
a given stress tensor by the angular difference between pre­
dicted and observed plane and slip direction. It has been dem­
onstrated by Gephait & Forsyth (1984) that direct inversion 
techniques may provide a more robust stress tensor evaluation 
than other methods. They can be improved and speeded up 
either by the new misfit description or by new shear stress ap­
proaches.

The goal of this paper is to implant the new numerical solu­
tion for the shear stress, proposed by Fry (1992) in the geomet­
ric form, to the grid search methods.

Method

The method of Fry (1992) takes the principal stress axes as 
co-ordinate axes. It finds a vector v lying in the 0^ 3  plane at 
an angle V -  arctan [((a3 - a2)n)/((al - a^l)] from the plotted 
Oj direction (Fig. 1). The shear stress vector s is given by the
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Fig. 1. The example used as Fig. 1 of Fry (1992), modified to accord 
with symbols used in this text. The projection is lower hemisphere 
equal-angle stereogram. The fault plane, strike 050, dip 50SE, is repre­
sented by its trace and by its normal p. The direction v, to be calculated, 
lies in the plane of greatest and least principal stress, where in this 
example Gl trends 030, plunge 18 and a 3 trends 274, plunge 55. The 
angle between a, and v is calculated from the angles from p to the 
principal stress axes and the stress ratio (in this example <jj = 400, g2 
= 300, a3 = 210). In this case the calculated v lies in the upper hemi­
sphere, so the direction labeled v is its opposite, q is the pole to the v, 
p plane, and the shear direction s is the pole to the plane containing p 
and q.
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intersection of the v, p plane with the fault plane (Fig. 1). The 
detailed justification of this solution is given in Fry (1992).

Numerical implementation of Fry (1992)

The reduced stress tensor (sensu Angélier 1989) and fault 
plane are the known data. Principal stress orientations provided 
as trend Ta and plunge Pa are converted to direction cosines 
(l0»mo*na):

!0 = smTa cosPa 

ma = cosTa cosPa

na = -sinP<5

(D

and give components of unit vectors: 

° i = (xt* У1» zi>

<*} =  (*з> Уз» 2з) (2)

Each fault plane given by the dip direction D and dip d provides 
the trend Tn and plunge Pn of its normal p as follows:

Tp = D + 180 

Pp = 9 0 - d (3)

They provide directional cosines of the normal p following 
equations (1):

lp = sin(D + 180) cos(90 -  d)

nip = cos(D + 180) cos(90 — d)

Пр = -sin(90 -  d)

Satisfying the unit vector equation:

l£ + mz + n£= l

(4)

(5)

Information on magnitudes of principal stresses is pro­
vided as a stress ratio. Etchecopar et al. (1981) use R = 
(a2 -  о3)/(с г -  <т3) with a range 0 < R < 1 providing reduced 
principal stress magnitudes = 1, a 3 = 0 and o2 = R. If input 
in this form, stress ratio is converted to the form:

E = -R /(l -  R) (6)

or it can be input directly as E, where E = (a3 -  a2)/(o l -  a2). 
Then, cosines 1 and n of angles between p and aľ and p and °3» 
respectively (Fig. 1), are computed:

1=1рх1 + т рУ1 + V i

n =  1p*3 +  m py 3 +  V 3  (7)

Thenanon-unit vector v= (v1, v2, v3) lying in the Oja3 plane 
can be computed as:

v = laj + Eno3 = \ax -  [(a3 * Rn/(1 -  R)] (8)

As proven by Fry (1992), the shear stress vector is given by 
the intersection of the v, p and fault planes. In order to com­
pute this intersection, the non-unit normal q = (qv q2, q3) of 
the v, p plane is first computed as the cross product of v and 
p vectors:

9l = V2% “ V3m p

42 =  У3>р -  VlaV (9 )

43 =  Vl m p - V21p

The intersection of the v, p and fault planes is parallel to non­
unit vectors = (Sj, s3), given by the cross product of the fault
plane normal p and the non-unit normal q of the v, p plane:

s i =  9 2 %  “  9 3 ° ^

®2 =  4 3!p “  qiUp ( 10)

s3 = qtmp -  q2lp

The trend Ts and plunge Ps of the shear stress vector 
s = (sj, s2, s3) are recomputed as:

Ts = arctan (s1/s2)

Ps = arcsin (s3/ ( s i  + Ą  + s^)1/2) (11)

where the denominator in the equation with Ts cannot be 0. If 
the denominator equals 0, the trend is either 90° or 270° and 
will need to be treated specially.

Direct inversion

As discussed by Fleischmann & Nemčok (1991), the tensor 
search tests all possible stress orientations at all possible rela­
tive magnitudes. Magnitudes are simulated by the fixed re­
duced Gj = 1, a 3 = 0 and a2 = R values. The grid search can be 
prescribed by three numbers following Gephait (1990b). The 

axis can be chosen as principal axis and described by its 
trend and plunge. The other two axes are fixed by a pitch of 
a2 in the plane normal to o v The grid search is then imple­
mented by selecting a number of specific primary Gj directions 
on a fixed grid. In the plane perpendicular to each of these Gt 
directions, a number of specific a 3, a2 directions are chosen. 
At each position of the stress tensor, values of R are tested in 
chosen increments through the <0, 1> interval.

The decision, which tensor is the best solution for the given 
fault database can be obtained by various algorithms; e.g. as a 
sum of deviations between various components of the shear 
stress vector s computed for each of the fault planes and the 
measured shear stress direction on each of the fault planes 
(Carey & Brünier 1974; Angélier 1979). Usually, a check by 
Mohr’s construction is used to test, whether each of the stress 
configurations produces the slip on the faults obeying the Cou­
lomb-Mohr criteria.

The suggested shear stress computation can be used for each 
of the tested stress states in the grid search routines to infer the 
shear stress vector on each of the faults of the database. This 
computation with a set of a few simple equations provides 
an efficient alternative way of the shear stress calculation, com­
pared to existing routines (e.g. Bott 1959; Fleischmann & 
Nemčok 1991).
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