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FINITE VOLUME SCHEME FOR AMSS MODEL

Angela Handlovičová

Slovak University of Technology in Bratislava, Bratislava, SLOVAKIA

ABSTRACT. We propose a new finite volume numerical scheme for the approx-
imation of the Affine Morphological Scale Space (AMSS) model. We derive the
basic scheme and its iterative improvement. For both schemes, several numeri-
cal experiments using examples where the exact solution is known are presented.
Then the numerical errors and experimental order of convergence of the proposed

schemes is studied.

1. Introduction

From the mathematical point of view, the AMSS model can be described as
a nonlinear degenerate parabolic equation with prescribed initial and boundary
conditions. Then the goal of this study is to propose a new numerical scheme
based on the finite volume methodology for this problem.

The AMSS model is one of the well-known models that arise in the area
of image processing, with image filtering noisy images. There are several ap-
proaches to study these problems, from theoretical to numerical point of views.
One can find more information e.g. in [1], [3], [4], [12], [16] and references therein.
These problems are of high interest not only from mathematical point of view
but from computer science and computer vision viewpoint as well. We can find
much information for example in [10], [11] and [18]. The proposed model is based
on the Mean Curvature operator and it is also known as Affine Morphologi-
cal Scale Space (AMSS) model. In fact, it is a generalization of classical mean
curvature model well-known in image processing. These models can be repre-
sented using highly nonlinear partial differential equations of parabolic type.
That is why also the question of existence of a solution is worth of interest.
Many important results in this field can be found for example in [2], [5], [7].
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From numerical point of view various numerical schemes are derived especially
for the mean curvature flow level set equation, for example [6], [8], [14], [15].
For the AMSS model one can find numerical scheme and its properties in [3].
This scheme represents Semi-Lagrangian approximation of this model where not
only convergence of the numerical scheme but also numerical experiments which
show the properties of obtained numerical approximation are presented.

The model can be written in the following form

ut − |∇u|
(
div

( ∇u

|∇u|
)) 1

3

= 0, a.e. (t, x)∈ (0, T )× Ω (1)

with the initial condition

u(0, x) = u0(x), a.e. x∈Ω, (2)

and the boundary condition

u(t, x) = 0, a.e. (t, x)∈ (0, T )× ∂Ω, (3)

where Ω ⊂ �2 and ∂Ω is its boundary. As the model is highly nonlinear and
degenerate, we use the so-called Evans-Spruck [7] regularization to avoid zero
values in denominator. Moreover, we use additional regularization, as in [8]. Thus
our regularized problem is of the form

ut − f(|∇u|)
(
div

( ∇u

f(|∇u|)
)) 1

3

= 0, a.e. (t, x)∈ (0, T )× Ω, (4)

where

f(s) = min{
√
s2 + a, b} for some parameters a > 0, b > 0. (5)

The paper is organized as follows. In Section 2 we present the discretization
tools. In Section 3 we propose numerical schemes. Numerical results are given
in Section 4.

2. The finite volume tools

In order to describe the schemes, we now introduce some notations for the
space discretization, see also [8].

���������� 2.1 (Space discretization)� Let Ω be a polyhedral open bounded
connected subset of Rd, with d ∈ N, and ∂Ω = Ω \Ω its boundary. A discretiza-
tion of Ω, denoted by D, is defined as the triplet D = (M, E ,P), where:

(1) M is a finite family of nonempty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪p∈Mp. For any p ∈ M, let ∂p = p \ p
be the boundary of p; let |p| > 0 denote the measure of p and let hp denote
the diameter of p and hD denote the maximum value of (hp)m∈M.
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(2) E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a nonempty open subset of a hyperplane of Rd,
whose (d− 1)-dimensional measure |σ| is strictly positive. We also assume
that, for all p ∈ M, there exists a subset Ep of E such that ∂p = ∪σ∈Ep

σ.
For any σ ∈ E , we denote by Mσ = {p ∈ M, σ ∈ Ep}. We then assume
that, for all σ ∈ E , either Mσ has exactly one element and then σ ⊂ ∂Ω
(the set of these interfaces, called boundary interfaces, is denoted by Eext)
or Mσ has exactly two elements (the set of these interfaces, called interior
interfaces, is denoted by Eint). For all σ ∈ E , we denote by xσ the barycentre
of σ. For all p ∈ M and σ ∈ Ep, we denote by np,σ the unit vector normal
to σ outward to p.

(3) P is a family of points of Ω indexed by M, denoted by P = (xp)p∈M, such
that for all p ∈ M, xp ∈ p and p is assumed to be xp-star-shaped, which
means that for all x ∈ p, the inclusion [xp, x] ⊂ p holds. Denoting by dpσ
the Euclidean distance between xp and the hyperplane including σ, one
assumes that dpσ > 0. We then denote by Dp,σ the cone with vertex xp

and basis σ.

(4) We make the important following assumption:

dpσnp,σ = xσ − xp, ∀p ∈ M, ∀σ ∈ Ep. (6)

Remark 2.2� The preceding definition applies to triangular meshes if d = 2,
with all angles acute, and to meshes build with orthogonal parallelepiped control
volumes (rectangles if d = 2).

We denote
θD = min

p∈M
min
σ∈Ep

dpσ
hp

. (7)

���������� 2.3 (Space-time discretization)� Let Ω be a polyhedral open boun-
ded connected subset of Rd, with d ∈ N and let T > 0 be given. We say that
(D, τ) is a space-time discretization of (0, T ) × Ω if D is a space discretization
of Ω in the sense of Definition 2.1 and if there exists NT ∈ N with T = (NT +1)τ .

Let (D, τ) be a space-time discretization of Ω × (0, T ). We define the set
HD ⊂ R

M × R
E such that uσ = 0 for all σ ∈ Eext.

We define the following functions on HD

Np(u)
2 =

1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)
2, ∀p ∈ M, ∀u ∈ HD. (8)

Let us recall that
‖u‖21,D =

∑
p∈M

|p|Np(u)
2 (9)

defines a norm on HD (see [9]).
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We then define the set HD,τ of all u = (un+1)n=0,...,NT
such that un+1 ∈ HD

for all n = 0, . . . , NT , and we set

‖u‖21,D,τ =

NT∑
n=0

τ‖un+1‖21,D, ∀u ∈ HD,τ . (10)

3. Numerical scheme

The idea to obtain numerical scheme is based on the finite volume metho-
dology. Hence, we first rearrange and then integrate the equation (1) for arbitrary
p ∈ M with the boundary ∂p and a unit outward normal np. We obtain∫

p

(
ut

f(|∇u|)
)3

dx +

∫
∂p

∂u

∂np

1

f(|∇u|)ds = 0. (11)

Using the standard finite volume methodology we have(
(un+1

p − un
p )

τ f(Np(un))

)3

|p| − 1

f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) = 0,

∀p ∈ M, ∀n ∈ N. (12)

To obtain the linear scheme we can approximate the first term as

(un+1
p − un

p )

τ

(Dn
p )

2

f(Np(un))3
|p|, (13)

where Dn
p will be the approximation of the first derivative with respect to time

in the previous time step. We now define the numerical scheme:

u0
p =

1

|p|
∫
p

u0(x)dx, ∀p ∈ M, (14)

u0
σ =

1

|σ|
∫
σ

u0(s)ds, ∀σ ∈ E , (15)

the boundary condition is fulfilled thanks to

un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N (16)

and

(un+1
p − un

p )

τ

(Dn
p )

2

(f(Np(un))3
|p| − 1

f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p ) = 0,

∀p ∈ M, ∀n ∈ N, (17)
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where the following relation is given for the interior edges [8]

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, ∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N.

(18)

There are several possibilities to state the term Dn
p . We use the equation (11)

and approximate it by the fully implicit scheme in the time step n. If we denote
by D̃n

p the approximation of the first derivative with respect to time, we have
analogously to (12)(

D̃n
p

f(Np(un))

)3
|p| − 1

f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p ) = 0,

∀p ∈ M, ∀n ∈ N. (19)

From this equation we can compute the approximation D̃n
p immediately

D̃n
p =

(
f(Np(u

n))2

|p|
∑
σ∈Ep

|σ|
dpσ

(un
σ − un

p )

)1
3

, (20)

and finally to avoid zero values of the approximation we define

Dp
n =

{
max{a1, D̃n

p } if D̃n
p ≥ 0

max{−a1, D̃
n
p } if D̃n

p ≤ 0
∀p ∈ M, ∀n ∈ N. (21)

Now considering a family of values (un
p )p∈M,n∈N, given by (14), (3) and (15),

(17), (18), we define (following [8]) the approximate solution uD,τ in Ω×R+ by

uD,τ (x, 0) = u0
p, uD,τ (x, t) = un+1

p ,

for a.e. x ∈ p, ∀t ∈]nτ, (n+ 1)τ ], ∀p ∈ M, ∀n ∈ N. (22)

Then we define ND,τ and ÑD,τ by

ND,τ (x, t) = Np(u
n+1), ÑD,τ (x, t) = Np(u

n),

for a.e. x ∈ p, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀n ∈ N. (23)

Finally, on Ω ⊂ R
d and the time interval (0, T ) we define GD,τ by

GD,τ (x, t) = d
un+1
σ − un+1

p

dpσ
npσ,

for a.e. x ∈ Dpσ, for a.e. t ∈]nτ, (n+ 1)τ [, ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N.
(24)
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3.1. Semi-implicit scheme

First we can rearrange our numerical scheme in the following way: from (18)
we can express

un+1
σ =

un+1
p f(Nq(u

n)) dpσ + un+1
q f(Np(u

n)) dqσ

f(Np(un)) dpσ + f(Nq(un)) dqσ
,

∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N. (25)

Now substitute un+1
σ into (17) we obtain the scheme with unknowns un+1

p

(un+1
p − un

p )

τ

(Dn
p )

2

(f(Np(un))3
|p| −

∑
σ∈Ep

(un+1
q − un+1

p )|σ|
f(Np(un)) dpσ + f(Nq(un)) dqσ

= 0,

∀p ∈ M, ∀n ∈ N. (26)

Now using the expression (21) for computing the term Dn
p for all n ∈M, and

n ∈ N, we obtain the basic numerical scheme for AMSS model.

3.2. Fully implicit (iterative) scheme

To achieve more accurate results, we can improve our numerical scheme using
iterative method in which the proposed scheme will be the first step of iterations.

Suppose that we have the numerical solution at the nth time step. Then we
denote

un+1,0
p = un

p , and Dn,0
p = Dn

p from (21).

For k = 1, . . . nit we compute un+1,k
p from

(un+1,k
p − un

p )(D
n,k−1
p )2

τ(f(Np(un+1,k−1))3
|p|−∑

σ∈Ep

(un+1,k
q − un+1,k

p )|σ|
f(Np(un+1,k−1)) dpσ + f(Nq(un+1,k−1)) dqσ

= 0,

∀p ∈ M, ∀n ∈ N, (27)

and un+1,k
σ from

un+1,k
σ =

un+1,k
p f(Np(u

n+1,k−1)) dpσ + un+1,k
q f(Nq(u

n+1,k−1)) dqσ

f(Np(un+1,k−1)) dpσ + f(Nq(un+1,k−1)) dqσ
,

∀σ ∈ Eint with Mσ = {p, q}, ∀n ∈ N. (28)

We stop the iterations when either

max
∀p∈M

|un+1,k
p − un+1,k+1

p | ≤ tol or k + 1 = nit,

where tol is a prescribed tolerance.
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4. Numerical experiments

In this section we present several examples to illustrate the numerical prop-
erties of the proposed finite volume (FV) schemes. We focus on the examples
where the exact solution is known to study the errors of our numerical solution
in various functional spaces and experimental convergence orders.

Example 1. In this example, the exact solution of (1) with the homogeneous
Neumann boundary condition is obtained from [3] and is of the form

u(x, y, t) = max

{
1− (x2 + y2)

2
3 − 4

3
t, 0

}2

.

The initial condition is obtained from the exact solution for t = 0.

In this case, our domain Ω is a square Ω = [−2, 2]× [−2, 2]. The time interval
is I = [0, 0.32]. One can see the shape of the solution and cuts of the exact
solution for y = 0 in time T = 0; 0.16; 0.32 in Figure 1.

Figure 1. Example 1. The initial condition (top left) and the exact solu-
tion at time T=0.16 (top right), the exact solution at time T=0.32 (bottom
left) and the shape of cuts (y = 0;) for initial condition (blue) and exact
solution at time T=0.16 (green), T=0.32 (red).

55



ANGELA HANDLOVIČOVÁ

In tables below, we present the errors obtained by the numerical schemes
on various examples, the experimental order of convergence (EOC) in several
functional spaces and CPU times (in seconds) for the methods. The considered
errors are

E2 = ‖uD,τ − ū‖L2(Ω×(0,T )),
and

EG2 = ‖GD,τ −∇ū‖L2(Ω×(0,T ))2 ,

where numerical functions are defined in (22) and (24),

ū(x, t) = u(xp, tn) for x ∈ p and t ∈< tn−1, tn > ,

∇ū(x, t) = ∇u(xp, tn) for x ∈ p and t ∈< tn−1, tn > .

For this example we present results computed by the semi-implicit scheme and
the iterative fully implicit scheme as well. For all experiments we use parameter
of the scheme b = 108. Further by N we denote the number of finite volumes
along one side of the domain Ω. We use the relation τ = h2 where h = |σ| > 0
is the measure of the edge for finite volume (we have uniform mesh). We use
the SOR iterative method for solving the linear algebraic system with parameter
α = 1.3 and tolerance tol = 10−8.

For the semi-implicit scheme we present two experiments. For the first one
we choose a1 = a = 10−14 parameters of the scheme and the results can be seen
in Table 1.

Table 1. Example 1, error reports, EOCs and CPU times for the semi-
implicit FV scheme with a1 = a = 10−14

N τ E2 EOC EG2 EOC CPU

10 1.6e-01 2.83e-02 — 1.49e-01 — 1.70 e-02

20 4.0e-02 1.91e-02 0.568 1.15e-01 0.374 1.33 e-01

40 1.0e-02 9.73e-03 0.974 7.97e-02 0.530 8.93 e-01

80 2.50e-03 3.77-03 1.369 4.30e-02 0.890 8.26 e-00

160 6.25e-04 1.25e-03 1.593 2.31e-02 0.900 1.76e+02

320 1.5625e-04 3.92e-04 1.673 1.37e-02 0.756 1.84e+03

For the second experiment we choose a1 = 10−14 and a = h4. The results
are summarized in Table 2. As one can see the results are very similar for both
experiments concerning EOC. Errors E2 are little bit better in the first experi-
ment. The similar results were obtained for the numerical solution of the mean
curvature level set equation in [8].
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Table 2. Example 1, error reports, EOCs and CPU times for the semi-
implicit FV scheme with a1 = 10−14 and a = h4.

N τ E2 EOC EG2 EOC CPU

10 1.6e-01 1.51e-01 — 1.48e-01 — 0.0e-00

20 4.0e-02 2.96e-02 2.354 1.17e-01 0.341 1.7e-01

40 1.0e-02 1.13e-02 1.384 7.88e-02 0.569 3.1e-01

80 2.5e-03 4.05e-03 1.483 4.23e-02 0.896 4.0e+00

160 6.25e-04 1.30e-03 1.636 2.29e-02 0.888 6.8e+01

320 1.5625e-04 4.04e-04 1.690 1.36e-02 0.748 1.0e+03

Figure 2. Example 1, Semi-implicit method, numerical solution at time
T=0.16 (left) and at time T=0.32 (right).

The shape of the numerical solution obtained using the semi-implicit scheme
can be seen in Figure 2, for N = 40 in visualization results.

For the fully implicit iterative scheme we present again two experiments with
the same parameters as for the semi-implicit scheme. The results for parameters
a1 = a = 10−14 are in Table 3 and for parameters a1 = 10−14 and a = h4

in Table 4.

The shape of the numerical solution obtained using the iterative fully implicit
scheme can be seen in Figure 3. From this first example one can see that the fully
implicit iterative scheme is more accurate but it is much more time-consuming
because in every time step we need, in average, about 40 nonlinear iterations.
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Table 3. Example 1, error reports, EOCs and CPU times for the iterative
fully implicit FV scheme with a1 = a = 10−14.

n τ E2 EOC EG2 EOC CPU

10 1.6e-01 3.75e-02 — 8.01e-02 — 7.8e-02

20 4.0e-02 1.20e-02 0.906 8.04e-02 -0.007 7.2e-01

40 1.0e-02 3.50e-03 2.517 5.20e-02 0.600 7.9e00

80 2.5e-03 1.12e-03 1.608 3.44e-02 0.595 1.4e+02

160 6.25e-04 4.48e-04 1.355 2.38e-02 0.536 1.6e+03

320 1.5625e-04 2.02e-04 1.145 1.68e-02 0.500 2.6e+04

Table 4. Example 1, error reports, EOCs and CPU times for the fully
implicit iterative FV scheme with a1 = 10−14 and a = h4.

n τ E2 EOC EG2 EOC CPU

10 1.6e-01 1.01e-01 — 1.78e-01 — 8.1e-02

20 4.0e-02 2.32e-02 2.127 9.45e-02 0.913 4.4e-01

40 1.0e-02 5.93e-03 1.966 5.55e-02 0.769 6.3e-00

80 2.50e-03 1.66-03 1.832 3.52e-02 0.659 9.39e+01

160 6.25e-04 5.41e-04 1.621 2.38e-02 0.559 1.25e+03

320 1.5625e-04 2.16e-04 1.323 1.68e-02 0.505 2.6e+04

Figure 3. Example 1, Iterative fully implicit method, numerical solution
at time T=0.16 (left) and at time T=0.32 (right)
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Example 2. In this example we compare the evolution of a closed curve for
the cases when we know the exact solution [12]. This curve represents the zero
level set of our numerical solution. The numerical zero level set curve can be
detected using the interpolation method. That means our numerical zero level
set is given by a certain number of interpolating points depending on the dis-
cretization of computational domain and, of course, on the time step, because
the curve is shortening during the time. For the exact solution we define points
on the curve uniformly redistributed. The number of such points, P, depends
on the discretization by the relation P = 2π

h , where h is a mesh discretization
parameter.

In this case for comparison of two closed curves given by two discrete sets
of points, we have used the mean Hausdorff distance [13] given by the following
formula

d̄h(A,B) =
δ̄h(A,B) + δ̄h(B,A)

2
,

where

δ̄h(A,B) =
1

n

n∑
i=1

min
b∈B

d(ai, b) and δ̄h(B,A) =
1

m

m∑
i=1

min
a∈A

d(a, bi), (29)

where d(a, b) is the Euclidean distance of two points a and b and

A = {a1, . . . , an} and B = {b1, . . . , bm}.
We performed two numerical experiments, evolution of the circle and evolu-

tion of the ellipse. The exact solutions of X(u, t) are given by formulas (t ≥ 0 is
the time variable and u ∈< 0, 1 > is the parametrization of a curve):

(1) Circle with initial radius r > 0:

X(u, t) =

(
1− 4

3
r−

4
3 t

) 3
4 (

cos(2πu), sin(2πu)
)

with life-span of a solution is Tmax =
3

4
r

4
3 (30)

(2) Ellipse with initial data a > 0, b > 0:

X(u, t) =

(
1− 4

3
(ab)−

2
3 t

) 3
4 (

a cos(2πu), b sin(2πu)
)

with life-span of a solution is Tmax =
3

4
(ab)

2
3 . (31)

Evolution of circle. This experiment is devoted to the evolving of a cir-
cle given by (30) with initial radius r = 1. In Table 5 we present the mean
Hausdorff distances for the exact curve and the curve obtained by linear inter-
polation of the zero level set for the numerical solution of the AMSS model.
The computational domain Ω is a square Ω = [−1.25, 1.25] × [−1.25, 1.25].
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We use the iterative fully implicit scheme with the following parameters:
a1 =10−14, a=10−12 and tolerance tol= 10−6. We present the results obtained
at the time t = 0.25, the mean Hausdorff distance is denoted by d̄h(0.25) and
at the time t = 0.5 by d̄h(0.5). Computed Hausdorff distances are in Table 5.
Again by N we denote the number of finite volumes along one side of the
domainΩ. We use the relation τ = h2, where h = |σ| > 0 is the measure
of the edge for finite volume.

Table 5. Example 2, evolving circle Hausdorff distances at time t = 0.25

and t = 0.5, EOCs for the fully implicit iterative FV scheme.

N τ d̄h(0.25) EOC d̄h(0.5) EOC

10 6.25e-02 9.433e-02 — 1.7245e-01 —

20 1.5625e-02 2.050e-02 2.202 4.1127e-02 2.068

40 3.90625e-03 2.790e-03 2.877 8.156e-03 2.334

80 9.76563e-04 3.651e-04 2.934 1.090e-03 2.904

160 2.44141e-04 1.520e-04 1.265 2.512e-04 2.119

Evolution of ellipse. This experiment is devoted to the evolution of ellipse
given by (31) with initial parameters a = 1.0, and b = 0.5 . In Table 6 we
present the mean Hausdorff distances for the exact ellipse and the curve obtained
by interpolation of the zero level se tof the numerical solution of AMSS model.
Ω = [−1.25, 1.25] × [−1.25, 1.25]. We use iterative scheme with the following
parameters: a1 = 10−14, a = 10−12 and tolerance tol = 10−6. We present the
result obtained for time t = 0.125 and the Hausdorff distance we denote in the
table by d̄h(0.125) and for the time t = 0.25 we denote the computed Hausdorff
distance by d̄h(0.25).

Table 6. Example 2, evolving ellipse Hausdorff distances at time t = 0.125
and t = 0.25, EOCs for the fully implicit iterative FV scheme.

N τ d̄h(0.125) EOC d̄h(0.25) EOC

10 6.25e-02 1.741e-02 — 6.330e-02 —

20 1.5625e-02 9.760e-03 0.834 1.921e-02 1.720

40 3.90625e-03 3.115e-03 1.648 2.577e-03 2.898

80 9.76563e-04 6.972e-04 2.160 8.321e-04 1.631

160 2.44141e-04 2.301e-04 1.600 2.622e-04 1.667
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5. Conclusion

We studied the regularized AMSS model from the numerical point of view.
We presented two numerical schemes based on the finite volume methodology.
On several experiments we performed the error measurements, and we presented
the experimental order of convergence for the examples where the exact solution
is known. Other experiments concerning image filtering can be found in [17].
In the future, we want to propose and study the nonlinear Crank-Nicolson
scheme, show the numerical Affine Invariance Property of proposed scheme, and
prove the stability estimates and convergence results.
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