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ABSTRACT. In this paper, we propose a novel approach to approximate the
solution of the Laplace equation with an oblique derivative boundary condition
by the finite element method. We present and analyse diverse testing experiments
to study its behaviour and convergence. Finally, the usefulness of this approach is

demonstrated by using it to gravity field modelling, namely, to approximate the
solution of a geodetic boundary value problem in Himalayas.

1. Introduction

A detailed knowledge and analysis of the Earth’s gravity field is one of the
main tasks of geodesy and it has been of interest of many researchers and working
groups. As a result, there have been invented and developed various approaches
to its determination. In this section, some key concepts are concisely given.

A determination of the Earth’s gravity field is formulated in terms of the geo-
detic boundary value problems (BVPs). A combination of terrestrial gravimetric
measurements and precise 3D positioning by GNSS (Global Navigation Satellite
System) directly yields gravity disturbances, i.e., the oblique derivative bound-
ary conditions (BC) of the fixed gravimetric boundary value problem (FGBVP).
Therefore, from the mathematical point of view, the FGBVP represents an ex-
terior oblique derivative geodetic BVP for the Laplace equation, cf. Koch and
Pope [24], Freeden and Kersten [14], Bjerhammar and Svensson [5], Holota [20].
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A standard procedure to solve the oblique derivative BVP has been based on
integral equations using the single-layer potential, cf. Bitzadse [4], Miranda [36].
Koch and Pope [24] applied such an integral equation procedure to solve the
FGBVP. However, the strong nature of the singularities demanding Cauchy’s
principal integral values turned out to be a serious obstacle, see Freeden and Ger-
hards [13]. Later, Freeden and Kersten [14] proposed a new concept of approx-
imations using the generalized Fourier expansions to transfer strongly singular
integrals into regular ones. This approach has been further developed in Free-
den [12], Bauer [2], Gutting [18], [19], Freeden and Michel [15], Freeden and Ger-
hards [13]. Recently, Freeden and Nutz [16] published the conceptual setup of the
Runge-Walsh theorem for the oblique derivative problem of physical geodesy.

A boom of high-performance computing facilities has brought new opportuni-
ties in the field of numerical solutions of various engineering problems. Efficient
numerical methods such as the boundary element method (BEM), the finite ele-
ment method (FEM) or the finite volume method (FVM) can be also applied for
gravity field modelling. Main advantages of these approaches are a straightfor-
ward refinement of the discretization, opportunity to consider real topography
and feasibility for high-resolution modelling.

The BEM applied to gravity field modelling has been widely studied in recent
years, see, e.g., Klees [22], Lehmann and Klees [25], Klees et al. [23], Čunderĺık
et al. [7] or Čunderĺık and Mikula [8]. The oblique derivative problem treated
by BEM was discussed in Čunderĺık et al. [9]. The first application of FVM has
been introduced by Fašková [10] and its parallel implementation by Minare-
chová et al. [35]. However, both papers have studied the geodetic BVP with the
Neumann BC. The first insight of FVM applied to the oblique derivative BVP

has been discussed in Macák et al. [29]. Later this effort was further developed
in Macák et al. [30] and Macák et al. [28], where a treatment of the oblique de-
rivative by the central scheme and the first order upwind scheme, respectively,
were introduced for solving FGBVPs on uniform grids. Recently, Medl’a et al. [33]
presented the FVM for solving the oblique derivative BVP on non-uniform grids.
The FEM applied to gravity field modelling has been innovatively studied
in Meissl [34], then in Shaofeng and Dingbo [39], Fašková et al. [11], Šprlák
at al [40], Mráz et al. [37]. However, none of these approaches has considered
the oblique derivative BC in their concepts. On the other hand, the FEM for el-
liptic partial differential equations with the oblique derivative BC on 2D curved
domains has been studied in [1] and recently in [21] and [17].

This paper has two objectives. First, we propose and analyse a finite element
approximation of a Laplace equation holding on a domain Ω with an oblique
derivative BC given on a part of its boundary ∂Ω. The second objective of the
paper is to apply the proposed numerical scheme to local gravity field modelling.
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2. Formulation of the oblique derivative BVP

Let us consider the FGBVP, cf. [5,20,24]:

ΔT (x) = 0, x ∈ R3 − S, (1)

∇T (x) · s(x) =−δg(x), x ∈ ∂S, (2)

T (x) → 0, as |x|→ ∞, (3)

where S is the Earth or more generally a Lipschitz domain, T (x) is the disturbing
potential defined as a difference between the real and normal gravity potential
at any point x = (x, y, z), δg(x) is the gravity disturbance that is given and
vector s(x) computed as s(x) = −∇U (x)/|∇U (x)| is the unit vector normal
to the equipotential surface of the normal potential U (x) at any point x.

Eqs. (1)–(3) represent an exterior BVP for the Laplace equation, i.e., the
computational domain (outside the Earth) is infinite.

Figure 1. The computational domain Ω. The domain Ω is delimited
by blue edges; the bottom surface Γ ⊂ ∂Ω hatched by green colour rep-

resents a chosen part of the Earth’s surface; B,L,H coordinates denote
ellipsoidal latitude, longitude and height, respectively; L, U indexes label
lower and upper bounds.

On the other hand, FEM requires a discretization of the whole computational
domain into finite elements. To that goal we construct a bounded domain Ω in the
external space above the Earth, see [11]. Such a domain Ω (Fig. 1) is bounded
by the bottom surface Γ ⊂ ∂Ω representing a part of the Earth’s surface and
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an upper surface created at appropriate altitude, e.g., at mean altitude of the
GOCE satellite orbits and side boundaries. Then on the top and side boundaries
the Dirichlet-type BC for disturbing potential can be generated from any GOCE-
-based satellite-only geopotential model [32].

In the bounded domain Ω, we consider the following BVP

ΔT (x) = 0, x ∈ Ω ⊂ R
3, (4)

∇T (x) · s(x) = −δg(x), x ∈ Γ ⊂ ∂Ω, (5)

T (x) = TSAT (x), x ∈ ∂Ω− Γ, (6)

where Γ ⊂ ∂Ω represents the part of the Earth’s topography, ∂Ω− Γ represents
the top boundary together with side boundaries, and TSAT is the disturbing
potential generated from any GOCE-based satellite-only geopotential model.

3. Derivation of the weak formulation of the oblique
derivative BVP

To derive the variational formulation of (4)–(6), we define the Sobolev space

of test functions V , i.e., the space of functions from W
(1)
2 (Ω) which are equal

to 0 on ∂Ω−Γ in the sense of traces [6]. We multiply the differential equation (4)
by w ∈ V and using Green’s identity (we omit (x) to simplify the notation in the
following equations) we get∫

Ω

∇T · ∇w dxdydz =

∫
∂Ω

∇T · nw dσ, w ∈ V. (7)

Now we split the oblique vector s into one normal and two tangential components

s = c1n+ c2t1 + c3t2, (8)

where n is the normal vector and t1, t2 are tangent vectors to Γ ⊂ ∂Ω ⊂ R3.
These three vectors together form an orthonormal basis.

Then we put (8) into (5) to obtain

∇T · s = c1∇T · n+ c2∇T · t1 + c3∇T · t2 = −δg. (9)

From (9) we express the normal derivative

∇T · n =
−δg
c1

− c2
c1

∂T

∂t1
− c3
c1

∂T

∂t2
(10)

and we insert it to (7) to get∫
Ω

∇T · ∇w dxdydz =

∫
Γ

(−δg
c1

− c2
c1

∂T

∂t1
− c3
c1

∂T

∂t2

)
w dσ. (11)
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Let the extension of the Dirichlet BC (6) given by TSAT into the domain Ω be

in W
(1)
2 (Ω) and let δg ∈ L2(Γ). Then we define the weak formulation of BVP as

follows: we look for a function T , T ∈W
(1)
2 (Ω), such that T − TSAT ∈ V and

∫
Ω

∇T · ∇w dxdydz +
c2
c1

∫
Γ

∂T

∂t1
w dσ +

c3
c1

∫
Γ

∂T

∂t2
w dσ =

∫
Γ

−δg
c1

w dσ, (12)

for all w ∈ W
(1)
2 (Ω). The study of weak solution of the oblique derivative BVP

is included in the book by Lieberman [27].

4. Solution by the Finite Element Method

The FEM is a numerical method that assumes discretization of the whole com-
putational domain by a union of a collection of elements. For our two-dimensional
numerical experiments, we will use three nodes linear triangular and four nodes
bilinear quadrilateral elements. For a three-dimensional problem, we use hexa-
hedral elements with eight nodes [6]. A discretization of circular and spherical
domains by polygonal elements results in the so-called discretization error that
can be partially eliminated using finer discretization. Therefore, repeated refin-
ing a mesh will cause the convergence of the finite element domain to the original
one.

If we write
Tn =

n∑
j=1

Tjψj , (13)

i.e., we take an approximation of T as Tn, a linear combination of basis functions
with coefficients Ti, i = 1, . . . , n, then plug it into the weak formulation (12) and
consider test function w = ψi we get

n∑
j=1

Tj

⎛
⎝ ∫

Ω

∂ψj

∂x

∂ψi

∂x
+
∂ψj

∂y

∂ψi

∂y
+
∂ψj

∂z

∂ψi

∂z
dxdydz +

c2
c1

∫
Γ

∂ψj

∂t1
ψi dxdy +

c3
c1

∫
Γ

∂ψj

∂t2
ψi dxdy

⎞
⎠ =

∫
Γ

−δg
c1

ψi dxdy. (14)

Properties of ψi are as follows. In one-dimensional problem, for each node
Ni with coordinate xi we choose the piecewise linear function ψi whose value is
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equal to 1 at Ni and 0 at every Nj , i �= j, i.e.,

ψi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−xi−1

xi−xi−1
if x ∈ [xi−1, xi],

xi+1−x
xi+1−xi

if x ∈ [xi, xi+1], for i = 1, . . . , n.

0, otherwise,

(15)

In two- and three-dimensional problems, we follow the same way, i.e., we choose
one basis function ψi per vertex Ni. Then the function ψi is uniquely determined
by choosing value 1 at Ni and 0 at every Nj, i �= j.

Now to calculate the integral over a computational domain Ω in Eq. (14), we
use the standard FEM procedure. We choose the type of the element depending
on the dimension of the problem and we differentiate the corresponding basis
functions with respect to a position of each node in cartesian coordinates.

To calculate two integrals over a boundary Γ in Eq. (14) which include a
tangential derivative, we approximate derivatives in tangential direction like
in the finite difference method (see Fig. 2 b)), i.e., using values of basis functions
at nodes Ni of element e we have

∂ψ
(e)
j

∂t1
≈ ψ

(e)
j (N3)− ψ

(e)
j (N1)

d(N1, N3)
, (16)

∂ψ
(e)
j

∂t2
≈ ψ

(e)
j (N4)− ψ

(e)
j (N2)

d(N2, N4)
, (17)

where d denotes the distance between nodes, i.e., length of diagonal of side of the
element e that lies on boundary Γ.

a) b)

Figure 2. Illustration of tangent vectors to botom boundary Γ, when com-
putational domain Ω is a) two-dimensional, b) three-dimensional. By Ni

we denote nodes.
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Now let
∫
Γ

−δg
c1
ψi dxdy be denoted byQi, then the column vectors (T1, . . . , Tn)

and (Q1, . . . , Qn) we denote by T and Q, respectively, where derivatives in tan-
gential direction are approximated using (16) and (17). Let K = [Kij ] be matrix
whose entries are

Kij =

∫
Ω

∇ψj · ∇ψi dxdydz +
c2
c1

∫
Γ

∂ψj

∂t1
ψi dxdy +

c3
c1

∫
Γ

∂ψj

∂t2
ψi dxdy, (18)

then we may rephrase (14) as

KT = Q. (19)

It represents the linear system of equations for unknown nodal solution values T.
The matrix K is usually referred to as the stiffness matrix which is sparse since
most of its entries are zero and, in addition, the matrix is positive definite.

5. Numerical experiments

To illustrate the numerical method to cope with an oblique derivative con-
dition we present various experiments implemented in MATLAB software [31].
In them, results of FEM solutions will be compared to either exact (testing ex-
periments) or EGM2008 (experiments with gravity data) solutions. Then the
standard deviations of differences between numerical solutions denoted by TFEM

and the exact solution or EGM2008 value denoted by Texact will be defined as

σnum =

√√√√ 1

n

n∑
i=1

(TFEMi
− Texacti)

2
, (20)

where n is the number of nodes.

Afterwards the numerical scheme will be qualified according to the value
of the so-called experimental order of convergence (EOC). In general, EOC can
be computed as follows. Let us have the grid size h. In FEM approach the grid
size will be the size of elements, so in 1D—the length of element, in 2D—the
area of the element and in 3D—the volume of element. If we assume that the
error of the scheme in some norm is proportional to some power of the grid size,
i.e., Error(h) = chε, with a constant c, then having two grids with sizes h1 and
h2, where h1 > h2, yields two errors Error(h1) = c(h1)

ε and Error(h2) = c(h2)
ε

from where we can simply extract

ε = log h1
h2

(
Error(h1)

Error(h2)

)
. (21)
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If h2 = h1

2 we can simplify

ε = log2

(
Error(h1)

Error(h2)

)
. (22)

Then the value ε is EOC and it can be determined by comparing numerical
solutions and exact solutions on subsequently refined grids.

5.1. Testing numerical experiments

In the following numerical experiments, we have simulated the oblique vector
in the oblique derivative BC by rotating this vector or/and by shifting the center
of gravity of the computational domain which will be denoted by C (see Fig. 3).

a) b)

Figure 3. Illustration of the 2D FEM grid on a sector of a circle.
The oblique vector �s depicted by red arises from a) a shift of the center
C of the computational domain, b) a shift of the centerC of the computa-

tional domain and a rotation by an angle ±α. The ±α means that on one
element we modify the vector �s by a value +α and on its adjacent elements
by −α.

5.1.1. Experiment 1: 2D computational domain - a square

The computational domain has been the rectangular region—a square bounded
by cartesian coordinates

x1 = −1.0 [m], x2 = 1.0 [m], y1 = 1.0 [m] and y2 = 3.0 [m].

The center C for calculating BC has been shifted to C = [0.2, 0]. For these
numerical experiments, we used three nodes linear triangular as well as four
nodes bilinear quadrilateral elements. As the Dirichlet BC (6) on the upper and
side boundaries, the chosen exact solution of (4) in the form Texact = − log r,
where r is the distance from the C, has been applied. Then we have tested two
cases:
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a) oblique vector caused by a shift of the center C

As the oblique derivative BC on the bottom boundary, derivative of this
exact solution in direction of its gradient, which is equal to −1/r, has been
considered. The σnum and EOC for subsequently refined grids can be found
in Table 1. One can observe that the numerical method is approximately
of the second order for both types of elements.

Table 1. σnum and EOC for Experiment 1 a). Domain bounded by:
x1 = −1.0 [m], x2 = 1.0 [m], y1 = 1.0 [m] and y2 = 3.0 [m]; center C shifted
to C = [0.2, 0]; angle α = 0 [deg].

No. of nodes Triangular el. Quadrilateral el.

n1 × n2 σnum EOC σnum EOC

4× 4 0.062932 — 0.012371 —

8× 8 0.012204 2.366397 0.001784 2.793944

16× 16 0.002687 2.183517 0.000343 2.379069

32× 32 0.000631 2.091020 0.000075 2.183775

64× 64 0.000153 2.045292 0.000018 2.090428

128× 128 0.000038 2.022590 0.000004 2.044818

b) oblique vector obtained by adding an angle ±α
We had the same computational domain and BC on the upper and side
boundaries, but the direction of the original vector s1 has been modi-
fied by an angle α to create a new unit vector s, see Fig. 3 b). For
this experiment we have chosen α = 5 [deg] (Table 2) and α = 60 [deg]
(Table 3). Then the oblique derivative BC was given by the projection
∇T · s = −(1/r) cos(α). As we can see in Table 2 and Table 3, the EOC of
the scheme for small values of an angle α is approximately two, however
for larger values of α significantly varies in values.

5.1.2. Experiment 2: 2D computational domain - sector of an annulus

Now the computational domain has been the circular region - a sector of an
annulus bounded by polar coordinates r1 = 1.0 [m], r2 = 2.0 [m], φ1 = 0 [deg]
and φ2 = 90 [deg]. The center C for simulating the oblique vector in BC has been
shifted to C = [0.5, 0.35]. We used four nodes bilinear quadrilateral elements.
As the Dirichlet BC (6) on the upper and side boundaries the exact solution
of (4) in the form Texact = − log r, where r is the distance from the C, has been
applied. Then we had two cases:
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Table 2. σnum and EOC for Experiment 1 b). Domain bounded by:
x1 = −1.0 [m], x2 = 1.0 [m], y1 = 1.0 [m] and y2 = 3.0 [m]; center
C = [0, 0]; angle α = 5 [deg].

No. of nodes Triangular el. Quadrilateral el.

n1 × n2 σnum EOC σnum EOC

4× 4 0.062945 — 0.014058 —

8× 8 0.011988 2.392471 0.002105 2.739195

16× 16 0.002661 2.171835 0.000446 2.239504

32× 32 0.000637 2.062288 0.000118 1.914739

64× 64 0.000162 1.974415 0.000038 1.650359

128× 128 0.000045 1.845852 0.000012 1.624698

Table 3. σnum and EOC for Experiment 1 b). Domain bounded by:
x1 = −1.0 [m], x2 = 1.0 [m], y1 = 1.0 [m] and y2 = 3.0 [m]; center
C = [0, 0]; angle α = 60 [deg].

No. of nodes Triangular el. Quadrilateral el.

n1 × n2 σnum EOC σnum EOC

4× 4 0.661526 — 0.151381 —

8× 8 0.301333 1.134438 8.477170 -5.807325

16× 16 0.095939 1.651172 0.102618 6.368233

32× 32 0.050959 0.912768 0.054637 0.909319

64× 64 0.035304 0.529502 0.009881 2.467113

128× 128 0.011227 1.652923 0.005974 0.725969

a) oblique vector forced by a shift of the center C

As the oblique derivative BC on the bottom boundary, derivative of the
exact solution in direction of its gradient, which is equal to 1/r, has been
considered. The σnum and EOC for subsequently refined grids can be found
in Table 4. One can observe that the numerical method is approximately
of the second order.

b) oblique vector forced by a shift of the center C and a rotation by an an-
gle ±α
Now the direction of the original vector s1 has been modified by an angle
α = 5 [deg] and α = 60 [deg].

As we can see in Table 5, again for small values of α the proposed method
is second order accurate, while for large values of α, the EOC varies.
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Table 4. σnum and EOC for Experiment 2 a). Domain bounded by:
r1 = 1.0 [m], r2 = 2.0 [m], φ1 = 0 [deg] and φ2 = 90 [deg]; center C shifted
to C = [0.5, 0.35].

n1 × n2 σnum EOC

4× 4 0.013438 —

8× 8 0.001811 2.891751

16× 16 0.000372 2.281669

32× 32 0.000086 2.120233

64× 64 0.000021 2.056062

128× 128 0.000005 2.027059

Table 5. σnum and EOC for Experiment 2 b). Domain bounded by:
r1 = 1.0 [m], r2 = 2.0 [m], φ1 = 0 [deg] and φ2 = 90 [deg]; center C shifted
to C = [0.5, 0.35]; angle α = 5 [deg], α = 60 [deg].

No. of nodes α = 5 [deg] α = 60 [deg]

n1 × n2 σnum EOC σnum EOC

4× 4 0.015301 — 0.037844 —

8× 8 0.001843 3.053115 0.005124 2.884784

16× 16 0.000375 2.297875 0.002349 1.125313

32× 32 0.000086 2.120392 0.001176 0.998145

64× 64 0.000021 2.056354 0.000391 1.590127

128× 128 0.000005 2.027237 0.000119 1.716936

5.1.3. Experiment 3: 3D computational domain - a cube

The computational domain has been the rectangular region - a cube bounded
by artesian coordinates x1 = −2.0 [m], x2 = 2.0 [m], y1 = −2.0 [m], y2 = 2.0 [m]
and z1 = 1.0 [m], z2 = 5.0 [m]. The center C has been shifted to C = [−3,−5, 0].
To mesh the computational domain Ω, we used hexahedral elements with eight
nodes. As the Dirichlet BC (6) we have considered the exact solution of (4)
in the form Texact = 1/r, where r is the distance from the center point C. So
the oblique vector in oblique derivative BC was a result of:

a) a shift of the center C

As the oblique BC on the bottom boundary, we have supposed the de-
rivative of this exact solution that is equal to −1/r2. The results can be
seen in Table 6. One can see that the proposed approach is second order
accurate.
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Table 6. σnum and EOC for Experiment 3 a). Domain bounded by carte-
sian coordinates x1 = −2.0 [m], x2 = 2.0 [m], y1 = −2.0 [m], y2 = 2.0 [m],
z1 = 1.0 [m] and z2 = 5.0 [m]; the center C shifted to C = [−3,−5, 0].

n1×n2×n3 σnum EOC

4× 4× 4 0.000356 —

8× 8× 8 0.000051 2.793095

16×16×16 0.000009 2.531285

32×32×32 0.000002 2.274487

64×64×64 0.000000 2.121095

b) a shift of the center C and rotation by an angle ±α
For the second testing experiment on cube we had the same computational
domain and the same BCs as in the previous one, but the oblique vector
s has been rotated by 5 [deg] and 60 [deg]. The standard deviations of dif-
ferences between numerical solutions and the exact solution as well as the
EOC of the method are shown in Table 7. One can see that also in this case
with the rotated oblique vector, the method for small values of α works.

Table 7. σnum and EOC for Experiment 3 b). Domain bounded by carte-
sian coordinates x1 = −1.0 [m], x2 = 1.0 [m], y1 = −1.0 [m], y2 = 1.0 [m],
z1 = 1.0 [m] and z2 = 3.0 [m]; C = [−3,−5, 0]; angle α = 5 [deg], 60 [deg].

No. of nodes α = 5 [deg] α = 60 [deg]

n1 × n2 × n3 σnum EOC σnum EOC

4× 4× 4 0.000357 — 0.005943 —

8× 8× 8 4.981552e-05 2.841373 0.000049 6.916226

16× 16× 16 8.405654e-06 2.567163 0.000160 -1.697974

32× 32× 32 1.702424e-06 2.303770 0.044522 -8.123485

64× 64× 64 3.864044e-07 2.139407 382.506193 -13.068668

5.1.4. Experiment 4: 3D computational domain - tesseroid

Now the computational domain has been a tesseroid bounded by two concentric
spheres with radii r1 = 1 and r2 = 2, and a coaxial cone with dimension (0, π/4)×
(0, π/4). As the Dirichlet BC (6) on the upper and side boundaries, we have
considered the exact solution of (4) in the form Texact = 1/r, where r is the
distance from the center point C.
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a) shift of the center C

The center point has been shifted to C = [0.1,−0.1, 0.1]. As the oblique
derivative BC on the bottom boundary, we have supposed the derivative
of this exact solution, i.e., −1/r2. The results can be seen in Table 8.
One can see that the proposed approach is second order accurate.

Table 8. σnum and EOC for Experiment 4 a). Domain bounded by:
r1 = 1 and r2 = 2, and a coaxial cone with dimension (−π/4, π/4) ×
(−π/4, π/4); the center C shifted to C = [0.1,−0.1, 0.1].

n1×n2×n3 σnum EOC

4× 4× 4 0.001652918715 —

8× 8× 8 0.000295750289 2.482564

16×16×16 0.000058914678 2.327681

32×32×32 0.000013188810 2.159313

64×64×64 0.000003011359 2.130838

b) shift of the center C and a rotation by an angle ±α
The center C has been shifted to C = [0.2,−0.3,−0.2] and the oblique
vector s has been modified by an angle α = ±5 [deg] and then by α =
±60 [deg]. The standard deviations of differences between numerical solu-
tions and the exact solution as well as the EOC of the method are shown
in Table 9. The method performed as we have expected.

Table 9. σnum and EOC for Experiment 4 b). Domain bounded by:
r1 = 1 and r2 = 2, and a coaxial cone with dimension (−π/4, π/4) ×
(−π/4, π/4); the center C shifted to C = [0.2,−0.3,−0.2]; angle α =
±5 [deg], α = ±60 [deg].

No. of nodes α = 5 [deg] α = 60 [deg]

n1 × n2 × n3 σnum EOC σnum EOC

4× 4× 4 0.001664616019 — 0.001354338745 —

8× 8× 8 0.000297491470 2.484269 0.000171918671 2.977790

16× 16× 16 0.000059232690 2.328383 0.000029014762 2.566867

32× 32× 32 0.000013232627 2.162294 0.000023208962 0.322105

64× 64× 64 0.000003260503 2.020933 0.000024858690 -0.099068
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c) Oblique vector has a constant direction on every element.

Now the we had the constant oblique vector s = [−0.5−1−0.5]. The results
can be seen in Table 10. One can see that the proposed approach for a
constant oblique vector s is second order accurate.

Table 10. σnum and EOC for Experiment 4 c). Domain bounded by:
r1 = 1 and r2 = 2, and a coaxial cone with dimension (−π/4, π/4) ×
(−π/4, π/4); Oblique vector s = [−0.5,−1,−0.5].

n1×n2×n3 σnum EOC

4× 4× 4 0.002545212860 —

8× 8× 8 0.000435216353 2.547982

16×16×16 0.000083234911 2.386472

32×32×32 0.000018016813 2.207845

64×64×64 0.000004189318 2.104557

5.2. Numerical experiments with gravity data

Numerical experiments with gravity data were performed in the domain above
the Himalayas bounded by 〈60, 110〉 meridians and 〈20, 50〉 parallels, i.e., in the
computational grid above the extremely complicated Earth’s topography.
The bottom boundary was given by grid points that were located on the Earth’s
surface and their spacing in horizontal directions was uniform. Their heights were
interpolated from the SRTM30PLUS topography model [3]. An upper boundary
was chosen in the height of 240 km above a reference ellipsoid WGS84 corre-
sponding to an average altitude of the GOCE satellite orbits. The EGM2008

based on spherical harmonic up to degree 2160 [38] was used to generate all BCs.
On the bottom boundary, the first derivatives in the radial direction were pre-
scribed. They represented the oblique derivative BC. On the rest of the boundary,
the Dirichlet BC in form of the disturbing potential was prescribed. Then three
experiments with different grid densities were performed, namely the grids with
the densities 76×126×5, 151×251×9 and 301×501×17. These grids approxi-
mately correspond to spacing 0.4 [deg]×0.4 [deg]×60 [km], 0.2 [deg]×0.2 [deg]×
30 [km] and 0.1 [deg]× 0.1 [deg]× 15 [km], respectively.

The statistical characteristics of the corresponding residuals are summarized
in Table 11 and Fig 4. It is evident that refinements of the grid lead to higher
accuracy of the FEM solution giving a better agreement with EGM2008.
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Table 11. Numerical experiments with gravity data —The statistical
characteristics of residuals computed as resi = TFEMi

− Texacti [m
2s−2],

i = 1, . . . n, where n is the number of nodes.

Grid density: 76× 126× 5 151× 251× 9 301×501×17

Min. res. -51.609 -25.090 -8.200

Max. res. 42.950 12.060 3.130

Mean res. -0.864 -0.960 -0.231

σnum 6.193 2.469 0.694

a) b)

c) d)

e) f)

Figure 4. a), c), e) The disturbing potential from our FEM solution;
b),d),f) residuals between the EGM2008 and FEM solution, where grid
density is a),b) 76× 126× 5, c),d) 151× 251× 9, e),f) 301× 501× 17 points

[m2s−2].
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6. Concluding remarks

In this paper, we have derived an original numerical scheme to approximate
the solution of the Laplace equation with an oblique derivative boundary con-
dition by the finite element method. We have tested this approach in various
two- and three-dimensional testing numerical experiments. They have showed
that for small rotations of oblique vector, the proposed scheme is second order
accurate. Then we have applied it to gravity field modelling in Himalayas. The
numerical experiments have demonstrated that the proposed approach is able
to reconstruct a harmonic function.
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[10] FAŠKOVÁ, Z.: Numerical Methods for Solving Geodetic Boundary Value Problems. PhD
Thesis, SvF STU, Bratislava, Slovakia, 2008.
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