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ABSTRACT. This paper presents an efficient 3D shape registration by using
distance maps and stochastic gradient descent method. The proposed algorithm
aims to find the optimal affine transformation parameters (translation, scaling

and rotation) that maps two distance maps to each other. These distance maps
represent the shapes as an interface and we apply level sets methods to calculate
the signed distance to these interfaces. To maximize the similarity between the
two distance maps, we apply sum of squared difference (SSD) optimization and
gradient descent methods to minimize it. To address the shortcomings of the

standard gradient descent method, i.e., many iterations to compute the minimum,
we implemented the stochastic gradient descent method. The outcome of these
two methods are compared to show the advantages of using stochastic gradient
descent method. In addition, we implement computational optimization’s such as
parallelization to speed up the registration process.

1. Introduction

Registration of two shapes means finding a geometrical transformation that
aligns them. This is done so that the same features overlap and differences are
highlighted. Computing this geometrical transformation is a fundamental prob-
lem in computer vision which then can be used for higher level shape processing
methods or analysis.
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We follow the general registration formulation which is as follows: let F,M⊂R3

be the fixed and moving shapes, respectively. Our objective is to find a 3D affine
transformation matrix A that maps M to F while minimizing the dissimilarity
measure between the transformed shape A(M) and the fixed shape F. We use a
sum of squared differences (SSD) as the dissimilarity measure. This dissimilarity
measure determines the quality of the registration process.
In addition, the shape representation has a significant impact on the registra-
tion performance. Some methods are based on explicit representations such as
active contours [6], Fourier descriptors [24], active shapes models [2] while oth-
ers are based on implicit representations such as signed distance functions [14].
These implicit representations have the advantage of natural extension to higher
dimensions over their explicit counterparts [21].

Techniques for registration include those that are contour-based [9, 10, 12]
registration methods which are known to be robust and efficient. But these
techniques require point correspondence for the boundary of the shapes. Other
techniques are gradient descent based registration methods. These are iterative
in nature and converge to the minimum by moving iteratively in the direction
of the steepest gradient. This direction is defined by the negative of the gradient.

This paper proposes usage of distance maps to represent the 3D shapes. Then
we perform registration of the two distance maps. Through this approach, we can
use the level sets method [21]. These methods avoid any explicit reconstruction
of the boundary, which can introduce errors or slow down the process. We adopt
sum of squared difference optimization procedure. This accounts for the dis-
tance maps corresponding to each other and use the gradient descent methods
for minimization. In addition, the standard gradient descent method can take
many iterations to compute a global minimum with required accuracy. This is
true for large domains. Because of this, we have also implemented stochastic gra-
dient descent [19] method, also known as incremental gradient descent method.
This method performs a stochastic approximation of the gradient descent opti-
mization.

Our approach is similar to the methods described in [14,22]. But we go further
and apply successful registration to 3D shapes and implement stochastic gradient
descent method. We also added computational optimization routines to speed
up the registration process.

This paper is organized as follows. In section 2, we present the underlying
transformation model that maps one shape to another. In section 3, we present
a way to describe shapes using the level set methods [21] and use the signed
distance function to such level set. In section 4, we present the optimization
procedure used to measure the similarity between two distance maps being reg-
istered and computational optimizations. In section 5, we present some numerical
experiments and discuss their results.
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2. Transformation model

An important concept in mapping one shape to another shape is the underly-
ing transformation model. Goal of the registration is finding the transformation
that maps one space to another space. Usually the shape we are mapping to is
defined as the fixed shape whereas the shape that we are mapping to the fixed
shape is referred to as the moving shape.

Complexity is determined by what transformation model we are using. In our
case, complexity stands for the number of parameters that have to be solved
for. We chose to use the affine transformation model. This model is invariant
to translation, rotation and scaling transformations. We wish to find the affine
transformation that minimizes the differences between the moving and fixed
shape defined in R3.

Let F,M ⊂ R3 be the fixed and moving shapes, respectively. The objective
is to find the 3D affine transformation matrix, A, that maps M to F.

2.1. 3D Affine Transformation

The transformation matrix A is defined as

A = T · S ·R .

R is the 3D rotation matrix defined as⎡
⎢⎢⎣

cosψ cos θ − cos θ sinψ sin θ 0
cosφ sinψ + cosψ sin φ sin θ cosφ cosψ − sinφ sinψ sin θ − cos θ sin φ 0
sinφ sinψ − cosφ cosψ sin θ cosψ sin φ+ cosφ sinψ sin θ cosφ cos θ 0

0 0 0 1

⎤
⎥⎥⎦ .

The rotation direction is anticlockwise with the angles φ →x direction, θ →y
direction, ψ →z direction. Rotation in 3D is not commutative and the order of
rotation is important. We chose the following XYZ order. The x rotation, rx, y
rotation, ry are defined as:

rx =

⎡
⎢⎢⎣
1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

⎤
⎥⎥⎦ , ry =

⎡
⎢⎢⎣

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

⎤
⎥⎥⎦ ,

and z rotation, rz is defined as:

rz =

⎡
⎢⎢⎣
cosψ − sinψ 0 0
sinψ cosψ 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .
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Therefore R = rx · ry · rz. S, the scaling matrix and T, the translation matrix,
are given by:

S =

⎡
⎢⎢⎣

1
sx

0 0 0

0 1
sy

0 0

0 0 1
sz

0

0 0 0 1

⎤
⎥⎥⎦ , T =

⎡
⎢⎢⎣
1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤
⎥⎥⎦ .

Therefore, the transformation matrix A is given as
⎛
⎜⎜⎜⎝

cos(ψ) cos(θ)
sx

− cos(θ) sin(ψ)
sx

sin(θ)
sx

−tx
cos(φ) sin(ψ)+cos(ψ) sin(φ) sin(θ)

sy

cos(φ) cos(ψ)−sin(φ) sin(ψ) sin(θ)
sy

− cos(θ) sin(φ)
sy

−ty
sin(φ) sin(ψ)−cos(φ) cos(ψ) sin(θ)

sz

cos(ψ) sin(φ)+cos(φ) sin(ψ) sin(θ)
sz

cos(φ) cos(θ)
sz

−tz
0 0 0 1

⎞
⎟⎟⎟⎠ .

The goal is to find the optimal set of parameters φ, θ, ψ, sx > 0 , sy > 0 , sz > 0 ,
tx , ty , tz that minimizes the difference between the fixed shape F and moving
shape A(M). We therefore have to solve a problem with 9 degrees of freedom.

3. Shape representation

To represent the shape, we view it as a curve or surface and use the level set
methods [21] to describe it. The shape representation is given as a zero level set
(interface) of some function. We use signed distance function to such zero level
set in the registration procedure. The information is not only defined on discrete
curve given by small number of points but also in the whole computational
domain.

3.1. Signed distance map for shapes

Let Φ : D ⊂ R
3 → R be a Lipschitz function that refers to signed distance

representation for a given closed interface, Γ, contained in the domain D. The
domain enclosed by Γ will be denoted by Ω, i.e., Γ = ∂Ω. We suppose that the
interface is given implicitly as the zero level set such that:

Φ (x, y, z) =

⎧⎪⎨
⎪⎩

0 (x, y, z) ∈ Γ = ∂Ω,

+d
(
(x, y, z),Γ

)
> 0 (x, y, z) ∈ D− Ω,

−d((x, y, z),Γ) < 0 (x, y, z) ∈ Ω,

(1)

where d((x, y, z),Γ) is the min. Euclidean distance between the point (x, y, z)
and the closed interface Γ = ∂Ω.

• The level set representation (1) is invariant to translation and rotation,
see [15].
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We implemented the Fast Sweeping method [25], an iterative method that is
based on non-linear Gauss-Seidel method with eight (3D case) different
orderings (“sweeps”). The detailed description is given in [25]. This was used
in the standard gradient descent method described in Section 4.1. On the other
hand, in Section 4.2, for the stochastic gradient descent method, we used the so-
called “brute force” method to calculate the Euclidean distance between couple
of points.

Other popular numerical algorithms include the fast marching method [21],
the linearization of Eikonal equation [3]. We do not aim to compare the available
numerical algorithms for the computation of distance maps or for a solution
of stationary linear advection equation with respect to efficiency and accuracy.
Each one is preferable in some special situations, see [4].

4. Optimization procedures

For functional defined on a parameter space, we attempt to quantify the
similarity between two distance maps. For our case we have chosen to use sum
of squared differences (SSD). The optimization criterion E(A) is defined as:

E(A) =

∫
D

[
ΦF (x, y, z)− ΦM

(
A(x, y, z)

)]2
dxdydz, (2)

where

ΦF (x, y, z) , ΦM (x, y, z)

are the fixed and moving distance maps, respectively. A is the 3D affine transfor-
mation matrix and E(A) is the SSD/Energy we want to minimize by applying
the optimal A. Similarly to [15], we reduce the calculation to a narrow band in
the distance δ around the inputs. We define the narrow band as:

Nδ(Φ1,Φ2)) =

⎧⎨
⎩
1, min(|Φ1|, |Φ2|) ≤ δ,

0, min(|Φ1|, |Φ2|) > δ.
(3)

The constrained optimization (2) criterion becomes

E(A) =

∫
D

Nδ(ΦF ,ΦM ) (ΦF (x, y, z)− ΦM ((A(x, y, z)))
2
dxdydz. (4)
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For minimization and calculation of particular components we chose gradient
descent method for ∇E(A)

∂RE(A) = 2

∫
D

Nδ(ΦF ,ΦM )
(∇ΦM · ∇R(Ax)

)(
ΦF − ΦM (A)

)
dxdydz,

∂SE(A) = 2

∫
D

Nδ(ΦF ,ΦM )
(∇ΦM · ∇S(Ax)

)(
ΦF − ΦM (A)

)
dxdydz,

∂TE(A) = 2

∫
D

Nδ(ΦF ,ΦM )
(∇ΦM · ∇T (Ax)

)(
ΦF − ΦM (A)

)
dxdydz. (5)

For better understanding of the formula ∇E(A), the x in (Ax) is defined as

x =

⎛
⎜⎜⎝

x
y
z
1

⎞
⎟⎟⎠ ,

and Ax is

⎛
⎜⎜⎜⎜⎝

x cos(ψ) cos(θ)

sx
− y sin(ψ) cos(θ)

sx
+ z sin(θ)

sx
− tx

x(sin(φ) cos(ψ) sin(θ)+cos(φ) sin(ψ))

sy
+ y(cos(φ) cos(ψ)−sin(φ) sin(ψ) sin(θ))

sy
− z sin(φ) cos(θ)

sy
− ty

x(sin(φ) sin(ψ)−cos(φ) cos(ψ) sin(θ))

sz
+ y(cos(φ) sin(ψ) sin(θ)+sin(φ) cos(ψ))

sz
+ z cos(φ) cos(θ)

sz
− tz

1

⎞
⎟⎟⎟⎟⎠

.

The grad of ΦM , ∇ΦM is the row vector defined as

∇ΦM = (∂xΦM , ∂yΦM , ∂zΦM , 0)

and gradient for the components are the following column vectors

∇R(Ax) =
(
∂rxAx, ∂ryAx, ∂rzAx, 0

)T
,

∇S(Ax) =
(
∂sxAx, ∂syAx, ∂szAx, 0

)T
,

∇T (Ax) =
(
∂txAx, ∂tyAx, ∂tzAx, 0

)T
.

In discrete case, we can obtain optimal affine transformation similarly. Let n
be the number of points in the narrow band and n � N , where N is the total
number of points. Functional (4) can be rewritten in discrete formulation as

ED(A) =
1

n

n∑
i=1

(
ΦF,i − ΦM,i(A)

)2
. (6)
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Approximation of gradient components in (5) are given as

∂RED(A) = 2
1

n

n∑
i=1

(
∇ΦM,i · ∇R(Ax)

(
ΦF,i − ΦM,i(A)

))
,

∂SED(A) = 2
1

n

n∑
i=1

(
∇ΦM,i · ∇S(Ax)

(
ΦF,i − ΦM,i(A)

))
,

∂TED(A) = 2
1

n

n∑
i=1

(
∇ΦM,i · ∇T (Ax)

(
ΦF,i − ΦM,i(A)

))
. (7)

Optimization using gradient methods is highly dependent on the initial condi-
tions. For our case it is the initial position, rotation and scaling of two processed
shapes. These methods seek a local minimum of the functional. Thus, result can
be a transformation that is not what we are looking for.

In addition, gradient descent method can take many iterations to compute
a local minimum with required accuracy. For larger domains, this process can
be significantly slow. Because of this we have also implemented the stochastic
gradient descent [19] method, also known as the incremental gradient descent.
This method performs a stochastic approximation of the gradient descent opti-
mization.

4.1. Standard gradient descent method

The standard gradient descent method computes the gradient of the optimiza-
tion criterion function with respect to the particular component for the entire
domain. For our case, it is the narrow band as it was done in [15]. We can do
it because just the zero isosurface is interesting for us and gradient vector field
of a distance function is well defined. All the samples are selected in the order
that they appear in the domain.

Let w be the vector of parameters of A, the transformation parameters,
that minimizes E(A), the optimization criterion. The standard gradient descent
method performs the following parameter update

wτ := wτ−1 − λ
1

n

n∑
i=1

∂Ei(A
(τ−1))

∂w
,

where λ is the step size, n is the number of points in the narrow band, i is the
grid point and τ is the iteration. Note that n� N , where N is the total number
of data points. The standard algorithm has the following procedure

(1) Choose initial component w0 and the step size λ

(2) Repeat until max no. of iterations, τmax, or accepted tolerance for E(A)
is reached
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(a) For each wτ : τ = {1, 2, . . . , τmax} do:

wτ := wτ−1 − λ
1

n

n∑
i=1

∂Ei(A
(τ−1))

∂w
.

In calculation of the constrained optimization criterion, E(A), we used the fast
sweeping method to calculate the distance maps ΦF and ΦM. This is because
we are calculating distance for all the points in the dataset.

4.2. Stochastic gradient descent method

As previously mentioned, it performs a stochastic approximation [17] of the
gradient descent optimization. The gradient is approximated from a single ran-
domly chosen point. The algorithm repeats this process over the data points,
with each iteration randomly picking a single point at each step. This randomly
chosen point is used to approximate the gradient, until convergence is achieved.
Approximation of the true gradient from a single point is referred to as the
“true” stochastic gradient descent.

In this method, the trade-off is between computational cost versus accuracy
of the component update. This means that the computational costs are signif-
icantly less when compared to the standard gradient descent method. For the
standard gradient descent method, the accuracy of component update is bet-
ter when compared to the stochastic gradient decent method but at a slower
computational speed. These effects are significantly observable as the data size
becomes large.

A compromise between computing the “true” gradient and the gradient at a
single point is to compute the gradient using more than one point, also referred
to as a “mini-batch” [8], at each step. The number of points in the mini-batch
can be in the range 10 to 1000 points. This can perform significantly better than
the “true” stochastic gradient descent method described since it is less affected
by noise [11]. It may also result in a smoother convergence, as the gradient
computed at each step is averaged over more points.

Let w be the vector of parameters of A, the transformation parameters that
minimizes E(A), the optimization criterion. The stochastic gradient descent
method performs the following parameter update

wτ := wτ−1 − λ
1

M

M∑
i=1

∂Ei(A
(τ−1))

∂w
,

where λ is the step size, M is the mini-batch of random points and τ is the
iteration. M � n � N , where n is the number of points in the narrow band
and N is the total number of data points, respectively. In the case when M = 1,
we have the original “true” stochastic gradient descent approach. The stochastic
algorithm is as follows:

88



EFFICIENT 3D SHAPE REGISTRATION BY USING DISTANCE MAPS AND SGD METHOD

(1) Choose an initial component w0 and step size λ;

(2) Repeat until max no. of iterations τmax or accepted tolerance for E(A) is
reached
(a) Choose a set Mτ of random points: Mτ = {x1,x2, . . . ,xM} and

for each wτ : τ = {1, 2, . . . , τmax} do:

wτ := wτ−1 − λ
1

M

M∑
i=1

∂Ei(A
(τ−1))

∂w

where M = card(Mτ ) is the total number of points in Mτ set.

We have chosen mini-batch sizes of 100 and 1000 points for our numerical
experiments. In calculation of the constrained optimization criterion (4), we
have used the brute force method to calculate the distance values ΦF and ΦM ,
since we are calculating distances only for the few points in the mini-batch. The
brute force method calculates the distance for every point in the shape to the
selected random point and then select the shortest distance, see [23]. And due
its simplicity, we can easily parallelize it.

Minimization of the objective function E(A) using the stochastic gradient
descent method fluctuates causing, e.g., jump to new and potentially local min-
ima. From practical experience, reducing the step size by an appropriate rate,
reduces the fluctuation behaviour of the objective function. The convergence
of stochastic gradient descent method has been analysed using the theories of
convex minimization and of stochastic approximation, see [18,20].

4.3. Computational optimization

We carried out additional computational optimization routines that led to the
speed-up of the registration process. They should not affect the outcome of the
registration results except for time speed-up gains. Our optimization procedures
are performed using gradient descent methods, which are the first order iterative
optimization algorithms. These methods can take many iterations to compute
the minimum with a required accuracy. This can be more time-consuming when
computing the minimum over a large domain. Because of these reasons, we
decided to apply the additional computational optimization routines.

The list of areas addressed by computational optimization includes:

(1) Selection of the narrow band size δ.

(2) Bounding box around the region of interest.

(3) Narrow band updated along with transformation update.

(4) Calculation of distance values to the interface only in points required by
stochastic gradient descent method.

(5) Identification and parallelization of resource intensive sections.
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These routines are explained in the follow-up subsections.

4.3.1. Selection of the narrow band size δ

The goal is to have enough input data points to successfully perform the opti-
mization procedure. For a very small δ value, there is not enough data points
to measure the similarity between two distance maps. For a large δ value, there
is an excess of input data points and this slows down the optimization process
since it has to find the minimum over more points.

In addition, when choosing the suitable δ value, we also considered the relative
positions of the two processed shapes. The value chosen was large enough to cover
the overlapping regions of the processed shapes.

4.3.2. Bounding box around the region of interest

Searching through the whole domain for data points that are inside the narrow
band can be time consuming. Instead, we proposed a defining the region of
interest which is called the bounding box and is created from the regions inside
the narrow band of size δ. Then we search for data points inside this smaller
region instead of the whole domain.

Two bounding boxes are created for the fixed and moving shapes, respec-
tively. Then we create a best fit bounding box that encompasses the two created
bounded regions. This becomes the new region of interest, where we calculate
inside the distance map and the optimization procedures. See Figure 1 for illus-
tration of the procedure.

Figure 1. Two 2D heart shapes (red and blue) wrapped by their respective
bounding rectangles, black and green, respectively. On the right, we have
the best fitting box represented by the brown rectangle. The grey box
represents the whole domain.

In every iteration, we evolve the bounding box as we seek a local minimum
with the new transformation parameter updates and recalculate the best fit
region bounding box. See Figure 2 for illustration of this process.
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Figure 2. On the left, we have the original heart shapes (red and blue)
with their respective bounding rectangle boxes. In the middle, we have
the transformed (rotated) heart (blue) and unchanged heart (red) images.
On the right, we have the best fit bounding box covering the new trans-

formed heart (blue) and original heart (red) images.

4.3.3. Narrow band updated along with transformation update

We proposed a new approach of calculating the narrow band area inside a binary
mask representing the data. The binary mask is defined as follows

B (x, y, z) =

{
f, |Φ (x, y, z) | ≤ δ,

b, |Φ (x, y, z) | > δ,
(8)

where Φ (x, y, z) is the distance map, δ is the narrow band size, b and f are the
background and foreground values, respectively.

We define two binary regions of interest from the fixed ΦF and moving ΦM

distance maps, respectively. Similarly to (3), we reduce the calculation to the
narrow band defined by the foreground value, f. We define

Nf(B1, B2) =

{
1, B1 orB2 = f,

0, else.
(9)

The constrained optimization (4) is now defined as

E(A) =

∫
D

Nf(BF , BM )
(
ΦF (x, y, z)− ΦM

(
A(x, y, z)

))2

dxdydz. (10)

In this approach, we only need to calculate the distance maps in the first
iteration. In the subsequent iterations, the binary mask BM is updated using the
new transformation A parameters update corresponding to the moving image.

4.3.4. Calculation of distance values to the interface only
in points required by stochastic gradient descent

The distance map to a shape is usually the distance calculated to the interface
from all other points in the domain. In the stochastic gradient descent method,
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we do not need to evaluate distance values everywhere but just in points con-
sidered in the optimization process. We exploit this advantage and calculate
distance values using the simple brute force method.

4.3.5. Identification and parallelization of resource intensive sections

From our experience, distance map calculation is the most time-consuming task.
In our implementation, we are using brute force method for stochastic gradient
method. Its cost is proportional to the size ofM random points. This cost grows
as we increase the size of M random points.

Due the simplicity of the brute force method, we decided to parallelize the
method using the OpenMP [7]. Other parallelization tools would be using
CUDA [1].

5. Numerical experiments

We present the experiments carried out and discuss their results in this sec-
tion. The purpose of the experiments is to illustrate successful registration of 3D
shapes using the standard and stochastic gradient descent methods. The main
focus will be using few randomly selected points to perform a successful regis-
tration. In addition, we plan to show the overall improvement in the registration
total time with the addition of parallelization to the process.

The setup is as follows: the data used was 3 human bladder cases each having
the dimension 100x100x40 voxels, see Figures 3 and 4. A narrow band of size
δ = 10, step size λ = 0.1 for the rotation and translation and λ = 0.025 for
the scaling components, respectively, belonging to the affine transformation A.
The tests are performed on a known affine transformation A given in Table 1.

Table 1. The affine transformation we are interested to find.

Rotation Scaling Translation

φ θ ψ sx sy sz tx ty tz
-0.17453 0.17453 0.349066 0.8 1.1 1.25 3.0 5.0 -7.0

The first experiment was to test how successful the registration was when ap-
plying either the standard or stochastic gradient descent methods. The stochastic
gradient descent (Sgd.) method was tested with mini-batch sizes M = 100
and M = 1000 random points. In both methods, the step size λ was set
the same as described previously. From Figure 5, the comparison of minimized
E(A), SSD/Energy is done for the standard and stochastic descent methods.

92



EFFICIENT 3D SHAPE REGISTRATION BY USING DISTANCE MAPS AND SGD METHOD

Figure 3. The blue region represents a section through the bladder
in a man’s pelvis region. The anterior view.

Figure 4. The blue region represents a bladder shown in Figure 3
of a man’s pelvis region. The posterior view.

As shown in the figure, both curves converge similarly for the case
of bladder 1. Similar convergence is observed for cases of bladders 2 and 3,
see Figures 6 and 7.

The resultant transformations found after carrying out registration are given
in Tables 2, 3 and 4. The results are comparable to the affine transformation that
we seek to find, see Table 1. It is clear that with fewer points, i.e., mini-batch
size M = 100 and M = 1000, the registration was still successful.

In the next experiment, we compare two registration solutions. The first so-
lution computes the distance map using the fast sweeping approach whereas
the second solution uses the brute force method to compute the distance values
for each point in M. We used M = 100 but the same one is also applicable
to M = 1000. The results in Tables 5, 6 and 6 show that our new approach
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gives comparable results to the affine transformation that we seek to find, see
Table 1. They justify the use of the brute force method. We have only used
few points, M = 100, instead of computing the distance map in the whole best
fitting bounding box.

Figure 5. The case of bladder 1. Sgd. is an acronym for the stochastic

gradient descent.

Figure 6. The case of bladder 2. Sgd. is an acronym for the stochastic
gradient descent.
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Similar to Figures 5, 6 and 7, we have the comparison of minimized E(A),
SSD/Energy done for both approaches. The results of Sgd.+BF and Sgd.+FSM
methods are comparable. See Figures 8, 9 and 10 comparing the convergence
of Sgd.+BF and Sgd.+FSM methods. Sgd.+BF refers to our new approach using
brute force method to calculate the distance values for the M points to the
interface. Sgd.+FSM refers to the original implementation which calculate the
distance map inside the best fitting bounding box.

Figure 7. The case of bladder 3. Sgd. is an acronym for the stochastic
gradient descent.

Table 2. Resultant transformation parameters after registration: The case
of bladder 1. Sgd. is an acronym for the stochastic gradient descent.

Rotation Scaling Translation

φ θ ψ sx sy sz tx ty tz
Standard -0.175 0.173 0.352 0.799 1.103 1.253 2.996 5.039 -6.980

Sgd. - 100pts -0.176 0.175 0.349 0.799 1.103 1.252 2.998 5.038 -6.985

Sgd. - 1000pts -0.175 0.173 0.351 0.799 1.102 1.252 3.003 5.039 -6.980

Table 3. Resultant transformation parameters after registration: The case
of bladder 2. Sgd. is an acronym for the stochastic gradient descent.

Rotation Scaling Translation

φ θ ψ sx sy sz tx ty tz
Standard -0.175 0.181 0.340 0.807 1.110 1.237 3.015 4.883 -7.067

Sgd. - 100pts -0.174 0.180 0.345 0.809 1.097 1.239 3.014 4.899 -7.060

Sgd. - 1000pts -0.175 0.182 0.339 0.808 1.098 1.238 3.009 4.883 -7.063
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Table 4. Resultant transformation parameters after registration:
The case of bladder 3. Sgd. is an acronym for the stochastic gradient descent.

Rotation Scaling Translation

φ θ ψ sx sy sz tx ty tz
Standard -0.175 0.175 0.349 0.800 1.101 1.251 3.001 5.003 -7.000

Sgd. - 100pts -0.173 0.174 0.348 0.800 1.102 1.251 3.011 5.007 -6.996

Sgd. - 1000pts -0.174 0.174 0.349 0.800 1.101 1.251 3.011 5.007 -6.994

Table 5. Resultant transformation parameters after registration: Case of bladder 1.

Rotation Scaling Translation

Sgd. - 100 pts φ θ ψ sx sy sz tx ty tz
Fast Sweeping -0.176 0.175 0.349 0.799 1.103 1.252 2.999 5.038 -6.985

Brute Force -0.177 0.173 0.351 0.783 1.086 1.198 3.072 5.097 -7.285

Table 6. Resultant transformation parameters after registration: Case of bladder 2.

Rotation Scaling Translation

Sgd. - 100 pts φ θ ψ sx sy sz tx ty tz
Fast Sweeping -0.174 0.180 0.345 0.809 1.097 1.239 3.014 4.899 -7.060

Brute Force -0.186 0.190 0.353 0.796 1.082 1.165 2.786 4.876 -7.482

Table 7. Resultant transformation parameters after registration: Case of bladder 3.

Rotation Scaling Translation

Sgd. - 100 pts φ θ ψ sx sy sz tx ty tz
Fast Sweeping -0.173 0.174 0.348 0.800 1.102 1.251 3.011 5.007 -6.996

Brute Force -0.185 0.189 0.362 0.786 1.087 1.164 2.908 5.032 -7.497

Table 8. Running times (s) of critical registration parts: Case of bladder 1.

Distance (s) Transformation (s) Others (s) Total Reg. Time (s)

test 0 0.353 1.95699 0.17401 2.484

test 1 0.098 2.06000 0.18300 2.341

test 2 0.106 1.11500 0.18700 1.408
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In the final experiment, we tested the improvements brought by paralleliza-
tion. We chose to parallelize using the OpenMP [7] application program-
ming interface (API). The computer we tested on had 6 cores (12 Threads),
Intel R© CoreTM i7-5820K [5]. We implemented the following:

(1) Calculation of the distance value for each M point was performed using
the sequential brute force method. The result when using this brute force
method have been shown in Tables 5, 6 and 6. The recorded times are
saved under test 0 row in Table 8 and represented by Sgd. + Bf bar
in Figure 11.

(2) The calculation of the distance value for each M point was done using the
sequential brute force method as the previous step (1). The improvement
was that we parallelize the process, so that each of the calculation was
running on a separate thread. Using 4 threads, we were able to reduce
the calculation from M times to approximately M/4 times. The recorded
times are saved under test 1 row in Table 8 and represented by test 1 bar
in Figure 11.

(3) Building on the previous step (2) improvements, we also parallelized the
transformation function with an additional 2 threads. The recorded times
are saved under test 2 row in Table 8 and represented by test 2 bar
in Figure 11.

Figure 8. The case of bladder 1, where Sgd. is an acronym for the sto-
chastic gradient descent.
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Figure 9. The case of bladder 2, where Sgd. is an acronym for the sto-
chastic gradient descent.

Figure 10. The case of bladder 3, where Sgd. is an acronym for the sto-
chastic gradient descent.
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A total of 4 threads was used for parallelization of the brute force method and
2 threads were used in parallelizing affine transformation of the moving shape.
It was not possible to use all the threads since there were other running system
processes. In addition, creating or using more threads can lead to an increase
in overhead.

From Table 8, it is clear that the total registration time reduced after par-
allelization of the process. The other columns represent the calculation time
for running other tasks during the registration process. The total height of the
each bar in Figure 11 represents the total registration time. The optimal time
was when we performed test 2, see (3) for the description. With just 4 threads
for distance computation and 2 threads for applying transformation, we were
able to achieve lower computation time. We expect that these times will re-
duce significantly if more threads are used when using a computer with more
cores/threads.

Figure 11. Case of bladder 1.

We compared the above results to the original implementation. In the origi-
nal implementation, fast sweeping approach was used to calculate the distance
map inside the whole best fit bounding box. The registration results are shown
in Tables 5, 6 and 6. The improvements in registration times are significantly
higher when compared to this approach. This original implementation is repre-
sented by the Sgd.+FSM bar in Figure 11.

Figure 11 shows the difference between our original approach and the ap-
proach utilizing the brute force method which was also parallelized. Similar
results are obtained for the other human bladders cases.
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6. Conclusion

In this article, we used the gradient descent methods for the optimization
to perform registration of shapes, F,M ⊂ R3 fixed and moving shapes, respec-
tively. Our objective was to find a 3D affine transformation matrix A that maps
M to F.

In our experiments, we have shown that we can perform successful registration
using both the standard and stochastic gradient descent methods. In addition,
our new approach of using the brute force method to compute distance values
for M points gave comparable results. We also performed computational opti-
mization by applying parallelization and achieved significantly shorter the total
registration time.

In future release, we plan to parallelize the methods using CUDA [1]. In ad-
dition, other computational optimization techniques to be considered include
downsampling of the shapes and performing registration to the downsampled
shapes. Also, we plan to consider using some of the interface points instead
of all points in the interface. The selection of interface points will be random.

We used the ImageInLib [13], an open source image processing library that
also contain the Wikis explaining how to use the it. This library is completely
free and supports 3D image processing functionality. The article wiki page [16]
is also available.
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