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ABSTRACT. In this paper, necessary and sufficient conditions are obtained for

oscillatory and asymptotic behavior of solutions to second-order nonlinear neutral
delay differential equations of the form

d

dt

[
r(t)

[
d

dt

(
x(t)+ p(t)x(t− τ)

)]α]
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= 0 for t ≥ t0 > 0,

under the assumption
∫∞ (

r(η)
)−1/α

dη = ∞. Our main tool is Lebesque’s dom-
inated convergence theorem. Further, some illustrative examples showing the ap-

plicability of the new results are included.

1. Introduction

Consider the second-order nonlinear neutral delay differential equations of the
form

d

dt

[
r(t)

[
d

dt

(
x(t) + p(t)x(t− τ)

)]α]
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= 0, (1.1)

where α is the quotient of two odd positive integers, σi are positive constants,
qi, r, p ∈ C(R,R) with qi(t) ≥ 0 and r(t) > 0 for i = 1, 2, . . . ,m and t ≥ 0.
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We use the following assumptions:

(A1) H ∈ C(R,R), H is strictly increasing and uH(u) > 0 for u �= 0.

(A2) r(t) > 0 and
∫∞
0

(
r(η)

)−1/α
dη = ∞. Letting

R(t) =

t∫
0

(
r(η)

)−1/α
dη , (1.2)

we have limt→∞ R(t) = ∞.

(A3) Let p ∈ (−1, 0] with −1 + (2/3)1/α ≤ −a ≤ p(t) ≤ 0 for t ∈ R+.

(A4) Let p ∈ (−1, 0] with −1 < −a ≤ p(t) ≤ 0 for t ∈ R+.

As examples, the functions H(u) = uγ with γ that is the quotient of two odd
positive integers and r(t) = e−t, satisfy (A1) and (A2), respectively.

The neutral differential equations find numerous applications in natural
sciences and technology. For instance, they are frequently used for the study
of distributed networks containing lossless transmission lines (see, e.g., [7]).
B r a n d s [2] showed that for bounded delays, the solutions to

x′′(t) + q(t)x
(
t− τ(t)

)
= 0

are oscillatory if and only if solutions to x′′(t) + q(t)x(t) = 0 are oscillatory.
B a c u l i k o v a et al. [3] have studied

d

dt

[
r(t)

d

dt

[
x(t) + p(t)x

(
τ(t)

)]]
+ q(t)H

(
x
(
σ(t)

))
= 0 (1.3)

for 0 ≤ p(t) ≤ p0 < ∞ and (A2), and they have obtained sufficient condi-
tions for oscillation of solutions of (1.3) through some comparison results, where
the comparison results are unpredictable. D ž u r i n a [6] has studied (1.3) when
0 ≤ p(t) ≤ p0 < ∞ and (A3), and he has established sufficient condition for oscil-
lation of solutions of (1.3) by comparison techniques. T r i p a t h y at al. [15] have
considered (1.3) and established several sufficient conditions for oscillation of so-
lutions for (1.3) by considering (C1) H is odd, (C2) Q(t)=min{q(t), q(τ(t))}≥0
with limt→∞ R(t)=+∞ and (C3) inf{τ ′(t) : t≥t0}>0. Unlike the assumptions
(C1), (C2) and (C3), by considering Q(t) = min

{
q(t), q

(
τ(t)

)
τ ′(t)

}
and τ ′ is

allowed to be oscillatory, K a r p u z and S a n t r a [8] have obtained several
sufficient conditions for oscillatory and asymptotic behavior of solutions of

d

dt

[
r(t)

d

dt

[
x(t) + p(t)x

(
τ(t)

)]]
+

m∑
i=1

qi(t)Hi

(
x
(
σi(t)

))
= 0

for t ≥ t0, for different ranges of p.

122



NECESSARY AND SUFFICIENT CONDITIONS . . .

P i n e l a s and S a n t r a [10] have studied necessary and sufficient conditions of

d

dt

(
x(t) + p(t)x(t− τ)

)
+

m∑
i=1

qi(t)H
(
x(t− σi)

)
= 0.

Wo n g [16] has studied necessary and sufficient conditions for the oscillation
of solutions to (

x(t) + px(t− τ)
)′′

+ q(t)f(t− σ) = 0,

where the constant p satisfies −1 < p < 0. The motivation of the present work
has come from the above studies. Hence, in this work, an attempt is made to es-
tablish necessary and sufficient conditions for oscillatory and asymptotic behav-
ior of solutions of (1.1) without making any comparison. For more information
related the oscillation of solutions to this type of equations, we refer the readers
to [1, 4, 5, 9, 11–14, 17, 18]. Note that most publications consider only sufficient
conditions, and just a few of them consider necessary and sufficient conditions.

Let σ = max{σi : i = 1, . . . ,m}, and let T ≥ σ. By a solution to (1.1) we mean
a function x ∈ C([T − σ,∞),R) such that

z(t) = x(t) + p(t)x(t− τ) (1.4)

r(t)z′(t) are continuously differentiable for t≥T , and (1.1) is satisfied. We con-
sider only solutions for which sup{|x(t)| : t ≥ 0} > 0. A solution is called
oscillatory if it has arbitrarily large zeros; otherwise, it is called non-oscillatory.

2. Preliminaries

����� 2.1� Let conditions (A1), (A2), (A3) or (A4) be satisfied and assume
that x is an eventually positive solution of (1.1). Then z satisfies one of the
following two possible cases:

(C1) z(t) < 0 z′(t) > 0 and
(
r(t)

(
z′(t)

)α)′
< 0 for all large t;

(C2) z(t) > 0 z′(t) > 0 and
(
r(t)

(
z′(t)

)α)′
< 0 for all large t.

P r o o f. Suppose that there exists a t1 ≥ t0 such that x(t) > 0, x(t − τ), and
x
(
t− σi

)
> 0 for t ≥ t1 and i = 1, 2, . . . ,m. From (1.1) and (A1), it follows that

(
r(t)

(
z′(t)

)α)′
= −

m∑
i=1

qi(t)H
(
x(t− σi)

)
< 0 for t ≥ t1. (2.1)

Consequently,
(
r(t)(z′(t))α

)
is nonincreasing on [t1,∞). Since r(t) > 0, and thus

either z′(t) < 0 or z′(t) > 0 for t ≥ t2, where t2 ≥ t1.

123



SHYAM SUNDAR SANTRA

If z′(t) > 0 for t ≥ t2, then we have (C1) and (C2). We prove now that
z′(t) < 0 cannot occur.

If z′(t) < 0 for t ≥ t2, then there exists ε > 0 such that r(t)
(
z′(t)

)α ≤ −ε
for t ≥ t2, which yields upon integration over [t2, t) ⊂ [t2,∞) after dividing
through by r that

z(t) ≤ z(t2)− ε1/α
t∫

t2

(
r(η)

)−1/α
dη for t ≥ t2. (2.2)

By virtue of condition (A2), limt→∞ z(t) = −∞. We consider now the following
possibilities separately.

If x is unbounded, then there exists a sequence {tk} such that limk→∞ tk = ∞,
tk − τ ≥ t0 for all sufficiently large k and limk→∞ x(tk) = ∞, where

x(tk) = max{x(η); t0 ≤ η ≤ tk}.
By tk − τ ≤ tk,

x(tk − τ) = max{x(η); t0 ≤ η ≤ tk − τ} ≤ max{x(η); t0 ≤ η ≤ tk} = x(tk).

Therefore, for all large k,

z(tk) = x(tk) + p(tk)x(tk − τ) ≥ (
1 + p(tk)

)
x(tk) > 0,

which contradicts the fact that limt→∞ z(t) = –∞.

If x is bounded, then z is also bounded, which contradicts limt→∞ z(t) = −∞.
Hence, z satisfies one of the cases (C1) and (C2). This completes the proof. �

Remark 2.1. It follows from (C2) of Lemma 2.1 that there exists δ > 0 such
that z(t) ≥ δ for all large t.

We assume that there exists a constant β such that 0 < β < α and

H(u)

uβ
≥ H(v)

vβ
, for 0 < u ≤ v . (2.3)

A typical example of a nonlinear function satisfying (2.3) isH(x) = |x|γ sgn(x)
with 0 < γ < β.

Remark 2.2. The condition (2.3) implies that H(u)/uβ is non-increasing.

We assume that there exists β > α > 0 such that

H(u)

uβ
≤ H(v)

vβ
, for 0 < u ≤ v . (2.4)

A typical example of a nonlinear function satisfying (2.4) isH(x) = |x|γ sgn(x)
with β < γ.

Remark 2.3. The condition (2.4) implies that H(u)/uβ is non-decreasing.
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3. Main Results

����	�� 3.1� Under assumptions (A1)–(A3) and (2.3), every unbounded so-
lution of (1.1) oscillates if and only if

∞∫
0

m∑
i=1

qi(η)H
(
δ1/αR(η − σi)

)
dη = +∞, ∀δ > 0. (3.1)

P r o o f. To prove sufficiency by contradiction, assume that x is a non-oscillatory
solution of (1.1). Then, there exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0
for t ≥ t1. Assume that x(t) > 0, x(t − τ) > 0 and x(t − σi) > 0 for t ≥ t1
and i = 1, 2, . . . ,m. Then we have (2.1). From Lemma 2.1, z satisfies one of the
cases (C1) and (C2) for t ≥ t2, where t2 ≥ t1. We consider each of two cases
separately.

Case 1. Let z satisfies (C1) for t ≥ t2. As x is unbounded, there exists T ≥
t2 such that x(T ) = max{x(η) : t2 ≤ η ≤ T}. Then, from (1.4) we have
x(T ) ≤ z(T ) + {1− (2/3)1/α}x(T − τ) < x(T ), which is a contradiction.

Case 2. Let z satisfies (C2) for t ≥ t2. Since r(t)
(
z′(t)

)α
is positive, non-

increasing, and

z′(t) ≤ (
r(t3)/r(t)

)1/α
z′(t3) for t ≥ t3, where t3 ≥ t2.

Integrating this inequality, we have

z(t) ≤ z(t3) +
(
r(t3)

)1/α
z′(t3)

(
R(t)− R(t3)

)
.

Since limt→∞ R(t) = ∞, there exists δ > 0 and t4 ≥ t3 such that

z(t) ≤ δ1/αR(t) for t ≥ t4 . (3.2)

Note that δ depends on the solution x evaluated at a time t4. Thus condition (3.1)
must include all possible δ’s.

Upon using z(t) ≤ x(t), (3.2) and by assumption (2.3), we have

H
(
x(t− σi)

) ≥ H
(
z(t− σi)

)
=

H(z(t− σi))

zβ(t− σi)
zβ(t− σi)

≥ H(δ1/αR(t− σi))

(δ1/αR(t− σi))β
zβ(t− σi) .

Integrating (1.1) from t to ∞, we have

lim
A→∞

[
r(η)

(
z′(η)

)α]A
t
+

∞∫
t

m∑
i=1

qi(η)
H(δ1/αR(η − σi))

(δ1/αR(η − σi))β
zβ(η − σi) dη ≤ 0. (3.3)
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Using that r(t)(z′(t))α is positive and non-increasing, we have
∞∫
t

m∑
i=1

qi(η)
H(δ1/αR(η − σi))

(δ1/αR(η − σi))β
zβ(η − σi) dη ≤ r(t)

(
z′(t)

)α
for t ≥ t4 .

Therefore,

z′(t) ≥
⎡
⎣ 1

r(t)

∞∫
t

m∑
i=1

qi(η)
H(δ1/αR(η − σi))

(δ1/αR(η − σi))β
zβ(η − σi) dη

⎤
⎦
1/α

. (3.4)

Integrating from t4 to t, we obtain

z(t)− z(t4)! ≥
t∫

t4

⎡
⎣ 1

r(η)

∞∫
η

m∑
i=1

qi(ζ)
H(δ1/αR(ζ − σi))

(δ1/αR(ζ − σi))β
zβ(ζ − σi) dζ

⎤
⎦
1/α

dη

≥
t∫

t4

⎡
⎣ 1

r(η)

∞∫
t

m∑
i=1

qi(ζ)
H(δ1/αR(ζ − σi))

(δ1/αR(ζ − σi))β
zβ(ζ − σi) dζ

⎤
⎦
1/α

dη.

Letting

w(t) =

∞∫
t

m∑
i=1

qi(ζ)
H(δ1/αR(ζ − σi))

(δ1/αR(ζ − σi))β
zβ(ζ − σi) dζ , (3.5)

from the above inequality, and since z(t4) > 0, we have

z(t) >
(
R(t)−R(t4)

)
w1/α(t) .

Because limt→∞ R(t) = ∞, there exists t5 ≥ t4 such that

R(t)−R(t4) ≥ 1

2
R(t) for t ≥ t5 . (3.6)

Then

z(t) >
1

2
R(t)w1/α(t) for t ≥ t5 ,

(3.7)

and zβ/(δ1/αR)β ≥ wβ/α/(2δ1/α)β . Taking the derivative we have

w′(t) = −
m∑
i=1

qi(t)
H(δ1/αR(t− σi))

(δ1/αR(t− σi))β
zβ(t− σi)

≤ −
m∑
i=1

qi(t)H
(
δ1/αR(t− σi)

)
wβ/α(t− σi)

1

(2δ1/α)β
≤ 0 .

Therefore, w(t) is non-increasing so wβ/α(t− σi)/w
β/α(t) ≥ 1, and

(
w1−β/α(t)

)′
= (1−β/α)w−β/α(t)w′(t) ≤−(1−β/α)

(2δ1/α)β

m∑
i=1

qi(t)H
(
δ1/αR(t− σi)

)
.
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Integrating this inequality form t5 to t, we have

[
w1−β/α(η)

]t
t5

≤ − (1− β/α)

(2δ1/α)β

t∫
t5

m∑
i=1

qi(η)H
(
δ1/αR(η − σi)

)
dη .

Since β/α < 1 and w(t) is positive and non-increasing, we have

t∫
t2

m∑
i=1

qi(η)H
(
δ1/αR(η − σi)

)
dη ≤ (2δ1/α)β

(1− β/α)
w1−β(t5) < ∞ .

This contradicts (3.1).

If x(t) < 0 for t ≥ t1, then we set y(t) := −x(t) for t ≥ t1 in (1.1). Using (A1),
we find

d

dt

[
r(t)

[
d

dt

(
y(t) + p(t)y(t− τ)

)]α]
+

m∑
i=1

qi(t)G
(
y(t− σi)

)
= 0 for t ≥ t1,

where G(u) = −H(−u) and G is also satisfies (A1). Then, proceeding as above,
we find the same contradiction. This proves the oscillation of all solutions

Next, we show that (3.1) is necessary. Suppose that (3.1) does not hold;
so for some δ > 0 the integral in (3.1) is finite. Then there exists T ≥σ such that

∞∫
T

m∑
i=1

qi(η)H
(
δ1/αR(η − σi)

)
dη ≤ δ/3. (3.8)

Let us consider the closed subset of continuous functions

M =
{
x ∈ C([T − σ,+∞),R) :(

δ/3
)1/α

[R(t)−R(T )] ≤ x(t) ≤ δ1/α[R(t)−R(T )]
}
.

Then we define the operator Φ : M → C([T − σ,+∞),R) by

(Φx)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Φx)(T ), t ∈ [T − σ, T ),

−p(t)x
(
t− τ

)
+

t∫
T

[
1

r(η)

[
δ/3 +

∞∫
η

m∑
i=1

qi(ζ)H
(
x(ζ − σi)

)
dζ

]]1/α
dη, t ≥ T.

For x ∈ M and t ≥ T , we have

(Φx)(t) ≥
t∫

T

[
1

r(η)

[
δ/3 +

∫ ∞

η

m∑
i=1

qi(ζ)H
(
x(ζ − σi)

)
dζ

]]1/α

dη

≥
t∫

T

[
1

r(η)

δ

3

]1/α
dη =

(
δ/3

)1/α
[R(t)−R(T )].
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For x ∈ M and t ≥ T , we have x(t) ≤ δ1/αR(t) and H(x) ≤ H
(
δ1/α(R(t))

)
.

Then using (3.8) and (A3) we have

(Φx)(t) ≤ −p(t)x
(
t− τ

)
+

∫ t

T

[
1

r(η)
(δ/3 + δ/3)

]1/α
dη

≤ aδ1/α
[
R(t− τ)−R(T )

]
+(2δ/3)1/α

[
R(t)−R(T )

]
≤ aδ1/α

[
R(t)−R(T )

]
+ (2δ/3)1/α

[
R(t)− R(T )

]
=

(
a+ (2/3)1/α

)
δ1/α

[
R(t)−R(T )

]
≤ δ1/α

[
R(t)−R(T )

]
.

Thus Φx ∈ M . Define un : [T − σ,+∞) → R by the recursive formula

u1(t) =

{
0, t ∈ [t− σ, T ],(
δ/3

)1/α
[R(t)−R(T )], t ≥ T.

un(t) =
(
Φun−1

)
(t) for n > 1.

Using that H is non-decreasing it is easy to verify that for n > 1(
δ/3

)1/α[
R(t)−R(T )

] ≤ un−1(t) ≤ un(t) ≤ δ1/α
[
R(t)−R(T )

]
.

Therefore, the pointwise limit of the sequence exists. Let limn→∞ un(t) = u(t)
for t ≥ T − σ. By Lebesgue’s dominated convergence theorem u ∈ M and
(Φu)(t) = u(t), where u(t) is a solution of equation (1.1) on [T − σ,∞). Hence,
(3.1) is a necessary condition. This completes the proof. �

����	�� 3.2� Under assumptions (A1)–(A3) and (2.3), every solution of (1.1)
oscillates or converges to zero if and only if (3.1) holds for every δ > 0.

P r o o f. To prove sufficiency by contradiction, we assume that x is an eventually
positive solution of (1.1) which does not converges to zero. Then, there exists
t1 ≥ t0 such that x(t) > 0, x(t − τ) > 0 and x(t − σi) > 0 for t ≥ t1 and
i = 1, 2, . . . ,m. Then we have (2.1). From Lemma 2.1, z satisfies one of the
cases (C1) and (C2) for t ≥ t2, where t2 ≥ t1. We consider each of two cases
separately.

Case 1. Let z satisfies (C1) for t ≥ t2. Therefore,

0 ≥ lim
t→∞ z(t) = lim sup

t→∞
z(t) ≥ lim sup

t→∞

(
x(t)− ax(t− τ)

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞
(−ax(t− τ)

)
= (1− a) lim sup

t→∞
x(t)

implies that lim supt→∞ x(t) = 0 and hence limt→∞ x(t) = 0, which contradicts
the assumption that x does not converges to zero.

Case 2. Let z satisfies (C2) for t ≥ t2. The case follows from Theorem 3.1.
Hence, (3.1) is a sufficient condition.
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The case where x is negative solution is similar and we omit it here.

The necessary part is the same as in the Theorem 3.1. Thus, the proof of the
theorem is complete. �

����	�� 3.3� Under assumptions (A1), (A2), (A4), (2.4) and r(t) > 0
on [−σj,∞), every solution of (1.1) either oscillates or converges to zero if

∞∫
0

⎡
⎣ 1

r(η − σj)

∞∫
η

qj(ζ)dζ

⎤
⎦
1/α

dη = +∞ for some j. (3.9)

P r o o f. To prove it by contradiction, suppose that x is an eventually positive
solution of (1.1) which does not converges to zero and we use same type of argu-
ment as in the proof of Theorem 3.2 for the case (C1). Let us consider z satisfies
(C2) for t ≥ t2. By Remark 2.1, there exists a constant δ > 0 and t3 ≥ t2 such
that z(t− σi) ≥ δ for t ≥ t3 and i = 1, 2, . . . ,m.

Upon using z(t) ≤ x(t) and by assumption (2.4), we have

H
(
x(t− σi)

) ≥ H(z(t− σi)) =
H(z(t− σi))

zβ(t− σi)
zβ(t− σi) ≥ H(δ)

δβ
zβ(t− σi).

Integrating (1.1) from t to ∞, we have

lim
A→∞

[
r(η)

(
z′(η)

)α]A
t
+

∞∫
t

m∑
i=1

qi(η)
H(δ)

δβ
zβ(η − σi) dη ≤ 0. (3.10)

Using that r(t)(z′(t))α is positive and non-increasing, we have

∞∫
t

m∑
i=1

qi(η)
H(δ)

δβ
zβ(η − σi) dη ≤ r(t)

(
z′(t)

)α ≤ r(t − σj)
(
z′(t− σj)

)α
for all t ≥ t3 and all j in {1, . . . ,m}. Therefore,⎡

⎣ 1

r(t − σj)

∞∫
t

m∑
i=1

qi(η)
H(δ)

δβ
zβ(η − σi) dη

⎤
⎦
1/α

≤ z′(t− σj) . (3.11)

Dividing by zβ/α(t− σj) and then integrating from t3 to ∞, we have

(
H(δ)

δβ

)1/α ∞∫
t3

⎡
⎣ 1

r(η − σj)

∞∫
η

m∑
i=1

qi(ζ)
zβ(ζ − σi)

zβ(η − σj)
dζ

⎤
⎦
1/α

dη ≤
∞∫

t3

z′(η − σj)

zβ/α(η − σj)
dη .

Since z is increasing, for ζ ≥ η we have zβ(ζ − σi) ≥ zβ(η − σi). Note that the
summands zβ(η−σi)/z

β(ζ−σj) are positive for all i, j, and equal 1 when i = j.
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Then considering only the summand when i = j, integrating on the right-hand
side, and using that the integrand is positive, we have

(
H(δ)

δβ

)1/α
∞∫

t3

⎡
⎣ 1

r(η − σj)

∞∫
η

qi(ζ) dζ

⎤
⎦
1/α

dη ≤ z1−β/α(t3 − σj)

β/α− 1
< ∞ .

This contradicts (3.9). The case where x is eventually negative solution is omitted
since it can be dealt similarly. This proves the oscillation of all solutions. �

����	�� 3.4� Assume that (A1), (A2) and (A4) hold. If

∞∫
0

⎡
⎣ 1

r(η)

∞∫
η

m∑
i=1

qi(ζ)dζ

⎤
⎦
1/α

dη < ∞ (3.12)

holds, then (1.1) admits a positive bounded solution.

P r o o f. Due to (3.12), it is possible to find T ≥ σ such that

∞∫
T

⎡
⎣ 1

r(η)

∞∫
η

m∑
i=1

qi(ζ)dζ

⎤
⎦
1/α

dη ≤ 1− a

5(H(1))1/α
, δ > 0. (3.13)

Let us consider the closed subset of continuous functions

M =
{
x ∈ C([T − σ,+∞),R) :

1− a

5
≤ x(t) ≤ 1

}
.

Then we define the operator Φ : M → C([T − σ,+∞),R) by

(Φx)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Φx)(T ), t ∈ [t− σ, T )

−p(t)x
(
t− τ

)
+ 1−a

5

+
t∫
T

[
1

r(η)

∞∫
η

m∑
i=1

qi(ζ)H
(
x(ζ − σi)

)
dζ

]1/α
dη, t ≥ T.

Note that for x ∈ M and t ≥ T , we have (Φx)(t) ≥ 1−a
5 . Also for x ∈ M and

t ≥ T , we have

(Φx)(t) ≤ a+
1− a

5
+

(
H(1)

)1/α t∫
T

[
1

r(η)

∫ ∞

η

m∑
i=1

qi(ζ)dζ

]1/α

dη

≤ a+
1− a

5
+

1− a

5
=

(
3a+ 2

5

)
< 1.

Thus Φx ∈ M . The rest of the proof follows from Theorem 3.1. This completes
the proof of the theorem. �
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We illustrate our main results with the next two examples.

Example 3.1. Consider the delay differential equation(
e−t

(
x(t) + p(t)x(t− τ)

)5/7)′
+

1

t+ 1

(
x(t− 2)

)1/3
+

1

t+ 2

(
x(t− 1)

)1/3
= 0,

t ≥ 0 . (3.14)

Here

α = 5/7, r(t)=e−t, p(t)=−e−t, R(t)=

t∫
0

e7s/5 ds=
5

7

(
e7t/5 − 1

)
and i = 1, 2.

H(u) = u1/3. For β = 1/2, we have H(u)/uβ = u−1/6 which is a decreasing
function. To check (3.1) we have

∞∫
0

m∑
i=1

qi(η)H
(
δ1/αR(η − σi)

)
dη ≥

∞∫
0

q1(η)H
(
δ1/αR(η − σ1)

)
dη

≥
∞∫
0

1

η + 1

(
δ7/5

5

7

(
e7(η−2)/5 − 1

))1/3

dη = ∞ ∀δ > 0,

because the integrand approaches +∞ as η → +∞. So that all the assumptions
in Theorem 3.1 hold; hence every unbounded solution of (3.14) oscillates.

Example 3.2. Consider the delay differential equation(
e−t

(
x(t)+p(t)x(t−τ)

)3/5)′
+

1

(t+ 1)2
(
x(t−2)

)5/3
+

1

(t+ 2)2
(
x(t−1)

)5/3
= 0,

t ≥ 0 . (3.15)

Here

α = 3/5, r(t) = e−t, p(t) = −e−t, R(t) =

t∫
0

e5s/3 ds =
3

5

(
e5t/3−1

)
and i = 1, 2.

H(u) = u5/3. For β = 4/3, we have H(u)/uβ = u1/3 which is an increasing
function. The integral in (3.9) is greater than or equal to

∞∫
2

⎡
⎣eη−σ1

∞∫
η

1

(ζ + 1)2

⎤
⎦
5/3

dη =

∞∫
2

[
eη−2 1

η + 1

]5/3
dη = ∞,

because the integrand approaches +∞ as η → +∞. So that all the assumptions
in Theorem 3.3 hold; hence every solution of (3.15) either oscillates or converges
to zero.
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4. Final comment

It is worth observation that we have established the oscillation of all
solutions of the nonlinear equation (1.1), when −1 < p(t) ≤ 0. We failed to
obtain the necessary and sufficient conditions in the other ranges of p . Therefore,
the undertaken problem is incomplete for all range of p(t).

Here, we will be giving two remarks and two examples to conclude the paper.

Remark 4.1. The Banach’s contraction principle can be applied for the Theo-
rem 3.3.

Remark 4.2. The results of this paper also hold for equations of the form

d

dt

[
r(t)

[
d

dt

(
x(t) + p(t)x(t− τ)

)]α]
+

m∑
i=1

qi(t)Hi

(
x(t− σi)

)
= 0 .

In order to extend Theorem 3.1–Theorem 3.3, there exists an index i such
that Hi (i = 1, 2, . . . ,m) fulfills (A1)–(A4), (2.3), (2.4) and (3.1).

We finalize the paper by presenting two examples, which show how Remark 4.2
can be applied.

Example 4.1. Consider the delay differential equation(
e−t

(
x(t) + p(t)x(t− τ)

)3/5)′
+

1

t+ 1

(
x(t− 2)

)1/3
+

1

t+ 2

(
x(t− 1)

)1/5
= 0,

t ≥ 0 . (4.1)
Here

α = 3/5, r(t) = e−t, p(t) = −e−t, R(t) =

t∫
0

e5s/3 ds =
3

5

(
e5t/3−1

)
and i = 1, 2.

H1(u) = u1/3 and H2(u) = u1/5. For β = 1/2, we have H1(u)/u
β = u−1/6 and

H2(u)/u
β = u−3/10 which both are decreasing functions. To check (3.4) we have

∞∫
0

m∑
i=1

qi(η)Hi

(
δ1/αR(η − σi)

)
dη ≥

∞∫
0

q1(η)H1

(
δ1/αR(η − σ1)

)
dη

=

∞∫
0

1

η + 1

(
δ5/3

3

5

(
e5(η−2)/3 − 1

))1/3

dη = ∞ ∀δ > 0,

because the integrand approaches +∞ as η → +∞. So that all the assumptions
in Theorem 3.1 hold; hence every unbounded solution of (4.1) oscillates.
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Example 4.2. Consider the delay differential equation(
e−t

(
x(t)+p(t)x(t−τ)

)5/7)′
+

1

(t+ 1)2
(
x(t−2)

)5/3
+

1

(t+ 2)2
(
x(t−1)

)3
= 0,

t ≥ 0 . (4.2)

Here

α = 5/7, r(t) = e−t, r(t) = −e−t, R(t) =
5

7

(
e7t/5 − 1

)
.

H1(u) = u5/3 and H2(u) = u3. For β = 4/3, we have H1(u)/u
β = u1/3 and

H2(u)/u
β = u5/3 which both are increasing functions. Clearly, all the assump-

tions in Theorem 3.3 hold; hence every solution of (4.2) either oscillates or
converges to zero.
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