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ABSTRACT. This paper first gives a brief overview of the Lagrangian forest
fire propagation model [Ambroz, M.—Balažovjech, M.—Medl’a, M.—Mikula, K.:
Numerical modeling of wildland surface fire propagation by evolving surface
curves, Adv. Comput.Math. 45 (2019), no. 2, 1067–1103], which we apply to grass-
field areas. Then, we aim to estimate the optimal model parameters. To achieve
this goal, we use data assimilation of the measured data. From the data, we are

able to estimate the normal velocity of the fire front (rate of spread), dominant
wind direction and selected model parameters. In the data assimilation process,
we use the Hausdorff distance as well as the Mean Hausdorff distance as a crite-
rion. Moreover, we predict the fire propagation in small time intervals.

1. Introduction

Modelling of a forest fire spread is a challenging task since it is a very com-
plex phenomenon. In this paper, we estimate the optimal parameters for the
mathematical model of the forest fire propagation [1] applied on a grassfield.
This empirical mathematical model driving a surface curve considers the het-
erogeneity of fuel burnability, wind speed and direction, terrain slope influence
and the shape of the curve on the terrain. To obtain a reliable output from the
model, we need to find the optimal values of the model parameters. Using data
assimilation for two grassland fires we look for such optimal values.
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Figure 1. Surface curve G, for which we design the mathematical model
and the projected closed planar curve Γ which is used for numerical com-

putations.

2. Forest fire propagation model

We consider the time evolution of a closed planar curve Γ, which is a projection
of a surface curve G, see Fig. 1. The evolution is given by the general equation

∂x

∂t
= v (x, t) , (1)

where x is a position vector of the evolving planar curve, t is time, ∂x
∂t denotes

the speed of the curve motion.

The projected planar curve Γ moves in time by a general planar velocity
vector field v (x, t). We can split such a general motion of any point x of the
curve Γ into the normal and tangential directions, so we consider a general form
of the planar curve evolution in the following form

∂x

∂t
= βN+ αT, (2)

where β is the velocity in the normal direction N and α is the tangential velocity
of the planar curve Γ. While the normal velocity changes the curve shape, the
tangential velocity does not in the continuous form. In the discrete form, we use
the tangential velocity for the redistribution of curve grid points that stabilizes
the numerical model [4,6].
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Note that all the influences to the normal velocity are given for the curve on
the surface ϕ, but the projected planar curve evolution is solved numerically.
Thus, we want to relate the normal velocity V (velocity in the direction of the
normal vector N ) of the surface curve G to the normal velocity β of projected
curve Γ. Following [5] we get that

V = Gt ·N = (xt, yt, ϕt (x, y)) ·N =
(
xt,xt · ∇ϕ

) ·N
=

√
1 + |∇ϕ|2

1 + (∇ϕ ·T)2
β,

(3)

from where we obtain

β = V
√

1 + (∇ϕ ·T)
2

1 + |∇ϕ|2 . (4)

2.1. Normal velocity of the surface curve

Normal velocity V of the surface curve G is given by the external influences,
expressed by the external force F , and the local shape of the curve with respect
to the topography, which is expressed by the curvatures. The external force F
plays the dominant role in the normal velocity, while the geodesic and normal
curvatures can accelerate it or slow it down. Such a normal velocity V in the
outer direction of the curve G is given by

V = F (δF − δgKg + δnKn) , (5)

where δF is the weight of the external force, δg is the weight of the geodesic
curvature and δn is the weight of the normal curvature influence on the fire
spread. The geodesic curvature in the tangent plane to the surface, Kg, smooths
the curve. The normal curvature Kn of the curve evolving in a valley (or on a
ridge) can increase (or decrease) the normal velocity V.

Our design of an external force influencing the fire behaviour is based on the
empirical laws of the wildland fire perimeter propagation. Research indicates
that the wildland fire propagation is influenced by the fuel parameters, weather
conditions and surrounding topography slope. Considering the most important
factors, we suggest the following formula for the external force

F = f fw(w ·N ) fs(s ·N ), (6)

where f is the so-called rate of spread (ROS), fw(w · N ) is the wind influence
and fs(s ·N ) is the terrain slope influence on the rate of spread, with w being
the three dimensional wind vector, s being the three dimensional slope vector
and N being the unit normal vector in the tangent plane to the surface curve.
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A surface fuel is usually not homogeneous and therefore we assume a het-
erogeneous fuel flammability on a topographic surface. Therefore, the spatial
variability in ROS is expressed by a 2-D ROS map, f (x), x ∈ Ω ⊂ R

2, f (x)
gives the rate of spread in a point (xi, ϕ (xi)) on the surface.

The topography slope increases the radiation and convection heat transfer
up the slope and thus accelerates or slows down the fire spread, see Fig. 2 left.
From the digital terrain model (the topography function ϕ) we can easily
obtain a vector function∇ϕ characterizing the topography slope. Now, we adjust
2D vector function ∇ϕ to the tangent plane to get a slope vector s. According
to [11], the slope influences the rate of spread exponentially, depending on the
projection of s to N , therefore we consider

fs (s ·N ) = eλs(s·N ), (7)

where λs is a positive parameter.

According to [11] the wind influences the rate of spread exponentially, so we
consider the scalar product of the wind vector w and the outer normal vector
N as an exponent of the function fw in the form

fw (w ·N ) = eλw(w·N ), (8)

where λw is a positive parameter. If those vectors are perpendicular, w ·N = 0,
the external force F is not influenced by the wind, because fw = 1. If the vectors
are parallel, with the same orientation, w ·N = |w|, fw = eλw|w|, the influence
of the wind is the strongest, see Fig. 2 center and right.

Figure 2. Visualization of slope and wind influences on a simple topo-
graphy. Left: rising terrain slope increases the fire spread while descending

terrain slope slows the fire spread down. Center and right: wind direction,
given by vector w, increases the fire spread in the same direction while
in the opposite direction, the wind slows the fire spread down.
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3. Evolution algorithm

Curve Γ is a close plane curve, Γ : S1 → R2, parametrized by u ∈ S1, where
S1 is a circle with unit length, thus u ∈ [0, 1] and Γ = {x(u), u ∈ S1}, where
x(u) =

(
x1(u),x2(u)

)
is the position vector of the curve Γ for parameter u.

In the sequel, the curve will be discretized to a set of points. An example of a
closed planar curve discretization is displayed in Fig. 3, where x0,x1, . . . ,xn are
discrete curve points which correspond to the uniform discretization of the unit
circle with step h = 1/n and x0 = xn.

Figure 3. Closed planar curve discretization (left) corresponding to uni-
form discretization of the unit circle (right) [1].

Let|xu| > 0, where xu =
(
∂x1

∂u , ∂x2

∂u

)
and g = |xu| =

√(
∂x1

∂u

)2
+
(
∂x2

∂u

)2
.

Let us denote by s the unit arc-length parametrization of the curve Γ. Then
ds = |xu|du = gdu and du = 1

gds. If the curve Γ is parametrized in a counter-

clockwise direction, the unique definition of the unit tangent T and (outer)
normal N vectors to the curve Γ can be done as follows: T = ∂x

∂s (denoted

also by xs), N = x⊥
s and T ∧N = −1, where T ∧ N denotes the determinant

of the matrix with columns T and N. If T = (x1s,x2s), then N = (x2s,−x1s).
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Since we consider outer normal, from the Frenet-Serret formulas we have

Ts = −kN and Ns = kT,

where k is the curvature. From there it follows that −kN = Ts = (xs)s = xss.

In our approach, the curve Γ is given by its position vector x, so its evolution
can be described by the evolution of this vector in time. We consider the general
form of the curve evolution (2) where β = w − εk with

ε =
Fδg

1 + (∇ϕ ·T)
2 , (9)

w = F

⎛⎜⎝δF

√√√√1 +
(∇ϕ ·T)2

1 + |∇ϕ|2 + δg
TTH (ϕ)T (∇ϕ ·N)(

1 + (∇ϕ ·T)
2
)(

1 + |∇ϕ|2
) +

δn
TTH (ϕ)T√

1 + (∇ϕ ·T)
2
(
1 + |∇ϕ|2

)
⎞⎟⎠ , (10)

where H (ϕ) is the square matrix of the second-order partial derivatives of the
topography function ϕ.

Then using the Frenet-Serret formula, mentioned above, we can rewrite (2)
into the form of the so-called intrinsic partial differential equation

xt = (w − δk)N+ αT = wN − δkN+ αT = δxss + αxs + wx⊥
s (11)

which is suitable for numerical discretization. Since x = (x1,x2), (11) represents
a system of two partial differential equations for components x1 and x2 of the
curve position vector x. These two equations are coupled together by the deriva-
tives with respect to the arc-length parametrisation s, because both components
of the position vector x occur in the term ds. The curvature term yields the so-
called intrinsic diffusion along the curve (the term xss), the tangential velocity
yields the so-called intrinsic advection along the curve (the term xs) and the
external driving force in the normal direction is given by the third term on the
right-hand side of (11).

Using the flowing finite volume method, we get the system of linear equations,
which are strictly diagonally dominant, thus it is always solvable by the efficient
cyclic tridiagonal solver (a modification of the Thomas algorithm).
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4. Numerical experiments

Two fires, see Fig. 4 and 5, were set as a training of the fire-fighting units.
The first fire is quite simple. It starts from a small circle and burns along the
non-burnable area boundary, see Fig. 4. The dominant spread direction was
determined by the direction of the west wind. The second fire was also started
from a small circle. However, after some time, another small fire started nearby
and it provided us the opportunity to reconstruct the merging fires. There was
also a small non-burnable area that split the curve.

Figure 4. Image data from quadcopter. Propagation of the first fire
perimeter used in the following experiments.

The whole area and fire progress were documented by the quadcopter. Its im-
ages were used for the extraction of the fire perimeter evolution in time and the
creation of the ROS map. To do so, the technology of the photogrammetry [12]
has been used. First, the digital elevation model was generated from drone im-
ages by the method of Structure from Motion [2] and then, individual images
were redrawing to the reference projection plane [10]. These georeferenced or-
thoimages have been primary output for the next numerical modelling. Then, the
fire perimeters in 2 seconds interval were segmented using the semi-automatic
or automatic segmentation algorithms [7,8], see Fig. 6.
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Figure 5. Image data from quadcopter. Propagation of the second fire
perimeter used in the following experiments.

Figure 6. Segmented fire perimeter evolution of both experimental fires.

Perimeters are plotted over the rate of spread map with the non-burnable
areas (black) with no normal velocity and burnable areas (white) where we
use the normal velocity estimated in Section 2.1.
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To measure the difference between two curves, numerically computed and
segmented, we use the Hausdorff distance (HD) as well as the Mean Hausdorff
distance (MHD) [3, 13]. The HD between two point sets A = {a1, . . . , anA

} and
B = {b1, . . . , bnB

} is defined by the following formula

HD (A,B) = max (hd (A,B) , hd (B,A)) , (12)

where the so-called directed Hausdorff distance hd (A,B) is given by

hd (A,B) = max
ai

(
min
̂b

∥∥∥ai − b̂
∥∥∥) , (13)

where ai is the i-th point from the point set A and b̂ is the linear segment
between two neighbouring points from the point set B.

The MHD between two point sets A = {a1, . . . , anA
} and B = {b1, . . . , bnB

}
is defined by the following formula

MHD(A,B) = max (mhd (A,B) ,mhd (B,A)) , (14)

where the so-called Mean directed Hausdorff distance mhd (A,B) is given by

mhd (A,B) =
1

nA

nA∑
i=1

min
̂b

∥∥∥ai − b̂
∥∥∥ . (15)

In the following subsections, we present our approach to the estimation of the
model parameters, the wind direction and the rate of spread as well as the model
ability to predict the fire evolution. To do so, we use the segmented fire perime-
ters, which we consider to be the “ground truth”. In both experiments, model
parameter estimation and prediction of the evolution, we use data assimilation.
However, in the model parameter estimation we are only looking for the optimal
parameters value, while in the prediction we also update the initial curve.

4.1. Normal velocity estimation

The grassland fires normal velocity (rate of spread - ROS) varies from 0.5 to 1.7
m ·min−1 in the literature [9]. However, we use observed data for the estimation
of the normal velocity. To find the ROS, let us consider the time period (T1, T2)
with nearly constant wind direction. As we explained in section 2.1, there is no
wind influence in the parts of the fire perimeter, that are parallel to the wind
direction. Let Γ1 be a curve at time T1 and Γ2 a curve at time T2 with the
number of points n1, n2, respectively. Let us define an index set

I = {1, . . . , n (T1, T2)} , where i ∈ I

if

|(Γ2)i − (Γ1)i| > d, d =
1

n1

n1∑
i=1

(
(Γ2)i − (Γ1)i

)
.
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Γ1
Γ2

w

Figure 7. Normal velocity estimation. We illustrate the estimated wind
direction w in the time interval (T1, T2) and points (green) with tangent
almost parallel to w. We also visualize their perpendicular distances (grey)

from the points to the curve Γ2, which we use to compute the normal
velocity using (16).

Then we define the wind direction vector

w =
1

n (T1, T2)

∑
i∈I

(
(Γ2)i − (Γ1)i

)
,

see Figure 7 as a dominant wind direction from the observed data.

ROS will be computed from the parts of the curve Γ1, that are almost par-
allel to the wind direction, i.e., from the points fulfilling ∠(w,Ti) < threshold,
where Ti is the tangent vector in the point (Γ1)i. For those points we compute

the average distance D to the curve Γ2 in perpendicular direction to the wind
vector w. Then, measuring time interval in seconds, the estimated value of ROS

is given by the function f (in m ·min−1) as follows

f =
60 D

T2 − T1
. (16)

4.2. Model parameter estimation

In the data assimilation process, we vary selected parameters of our model
to find the best possible fit between the numerically evolved curve and the
corresponding segmented curve, which we consider to be our “ground truth”.
To get the smallest possible HD or MHD we need to find the optimal values
for the parameters λw and δg. Since the wind direction was not constant through-
out the fire propagation, we also vary the wind direction around the estimatedw.
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The other parameters λs, δn are not included in the data assimilation since the
terrain was nearly flat, thus the final formula for the normal velocity V used
in this experiment is

V = f eλw (δF − δgKg) , (17)

where δF = 1.

The initial condition is given by the segmented curve at the time = 0 s. This
curve is numerically evolved for 2 (or 4) seconds time interval and is compared
to the corresponding segmented curve. This evolution is done for every chosen
combination of parameter values and wind direction. The evolution in the next
time interval begins from the curve with the best HD or MHD. The parame-
ter values resulting in the best results are presented in Table 1 for MHD and
in Table 2 for HD. Together with HD and MHD we present also their relative
versions E (in %) with respect to curve perimeter L.

Visual comparison of the curve evolution using the optimal parameters and
the real fire position is shown in Figures 8 and 9. Although the MHD, HD and
E in Tables 1 and 2 are quite similar, visually it is obvious that the data assim-
ilated curves are the nearest to the real fire position when the time intervals are
2 seconds.

Table 1: The overview of the model parameters λw, δg, the Mean Haus-
dorff distance (MHD) between the numerically computed curves and the
real fire position and the error (E=MHD/L, where L is the perimeter)
in 2–s (columns 2–5) and 4-s time intervals (columns 6–9).

Time
2-s intervals 4-s intervals

λw δg MHD E λw δg MHD E
[s] [−] [−] [m] [%] [−] [−] [m] [%]
0–2 0.006 0.9 0.038 0.55

0.007 1.2 0.071 1.01
2–4 0.008 1.3 0.071 1.01
4–6 0.009 0.9 0.107 1.50

0.009 0.9 0.082 1.05
6–8 0.009 0.9 0.082 1.06
8–10 0.012 1.2 0.079 0.93

0.008 0.9 0.074 0.83
10–12 0.003 1.3 0.074 0.83
12–14 0.015 1.2 0.099 0.98

0.015 1.3 0.112 1.01
14–16 0.003 0.9 0.151 1.36
16–18 0.015 1.1 0.145 1.19

0.012 1.3 0.146 1.12
18–20 0.013 1.1 0.138 1.06
20–22 0.014 1.3 0.162 1.12

0.014 0.9 0.196 1.26
22–24 0.011 0.9 0.199 1.28
24–26 0.014 1.3 0.139 0.91

0.011 1.3 0.143 0.91
26–28 0.008 1.3 0.145 0.92

continued . . .
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Table 1 Continued

28–30 0.012 0.9 0.142 0.87
0.011 1.3 0.140 0.85

30–32 0.003 0.9 0.148 0.90
32–34 0.008 1.3 0.156 0.90

0.007 1.1 0.147 0.82
34–36 0.009 1.3 0.152 0.85
36–38 0.004 0.9 0.159 0.87

0.015 0.9 0.161 0.86
38–40 0.015 1.1 0.159 0.84
40–42 0.006 0.9 0.205 1.07

0.003 1.3 0.200 1.02
42–44 0.003 0.9 0.204 1.04
44–46 0.008 1.3 0.217 1.05

0.015 0.9 0.209 0.93
46–48 0.015 1.3 0.220 0.97
48–50 0.015 0.9 0.229 0.96

0.015 1.3 0.211 0.86
50–52 0.012 1.3 0.208 0.85
52–54 0.006 1.3 0.202 0.82

0.003 1.3 0.207 0.82
54–56 0.009 1.3 0.174 0.68
56–58 0.013 1.0 0.170 0.69

0.013 0.9 0.156 0.63
58–60 0.003 0.9 0.182 0.73
60–62 0.003 1.3 0.165 0.64

0.003 1.3 0.173 0.66
62–64 0.006 1.2 0.169 0.65
64–66 0.003 1.3 0.186 0.70

0.005 0.9 0.194 0.72
66–68 0.008 1.3 0.197 0.73
68–70 0.008 1.3 0.206 0.74

0.007 1.3 0.197 0.69
70–72 0.010 1.3 0.198 0.70
72–74 0.014 1.3 0.181 0.60

0.013 1.3 0.201 0.63
74–76 0.012 1.3 0.194 0.61
76–78 0.015 0.9 0.230 0.70

0.014 1.0 0.185 0.54
78–80 0.015 1.3 0.216 0.63
80–82 0.014 1.1 0.202 0.59

0.015 1.2 0.217 0.59
82–84 0.015 1.3 0.188 0.51
84–86 0.012 1.3 0.198 0.52

0.015 1.3 0.249 0.63
86–88 0.015 1.0 0.203 0.51
88–90 0.015 0.9 0.263 0.62

0.012 1.3 0.247 0.58
90–92 0.012 1.2 0.249 0.59
92–94 0.009 0.9 0.222 0.51

0.012 1.1 0.194 0.45
94–96 0.009 0.9 0.208 0.48
96–98 0.011 0.9 0.221 0.50

0.011 0.9 0.214 0.47
98–100 0.015 1.1 0.222 0.49
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Table 2: The overview of the model parameters λw, δg, the Hausdorff
distance (HD) between numerically computed curves and the real fire
position and the error (E=HD/L, where L is the perimeter) in 2–s
(columns 2–5) and 4–s time intervals (columns 6–9).

Time
2–s intervals 4–s intervals

λw δg HD E λw δg HD E

[s] [−] [−] [m] [%] [−] [−] [m] [%]

0–2 0.016 0.9 0.115 1.66
0.015 1.3 0.240 3.47

2–4 0.016 0.9 0.240 3.44

4–6 0.026 1.3 0.397 5.67
0.022 1.3 0.206 2.94

6–8 0.024 1.3 0.440 6.18

8–10 0.016 0.9 0.375 4.81
0.030 1.1 0.176 2.26

10–12 0.017 1.0 0.395 4.65

12–14 0.023 0.9 0.399 4.45
0.028 1.3 0.395 4.41

14–16 0.022 1.3 0.413 4.09

16–18 0.028 1.3 0.472 4.26
0.028 1.3 0.427 3.85

18–20 0.027 1.0 0.429 3.53

20–22 0.022 0.9 0.607 4.64
0.027 1.2 0.735 5.62

22–24 0.022 1.0 0.737 5.10

24–26 0.023 0.9 0.419 2.69
0.020 1.3 0.345 2.22

26–28 0.011 1.3 0.360 2.34

28–30 0.025 1.2 0.345 2.19
0.023 1.3 0.494 3.14

30–32 0.014 1.0 0.353 2.17

32–34 0.017 0.9 0.464 2.81
0.021 1.1 0.539 3.27

34–36 0.013 0.9 0.512 2.96

36–38 0.024 0.9 0.506 2.82
0.022 1.3 0.555 3.10

38–40 0.011 0.9 0.532 2.90

40–42 0.025 1.0 0.530 2.81
0.005 1.3 0.621 3.29

42–44 0.011 0.9 0.531 2.77

44–46 0.020 1.2 0.588 3.00
0.024 0.9 0.648 3.32

46–48 0.028 1.0 0.556 2.68

48–50 0.028 1.3 0.808 3.59
0.030 1.2 0.569 2.53

50–52 0.028 1.1 0.714 2.98

52–54 0.026 1.2 0.676 2.77
0.029 0.9 0.707 2.89

54–56 0.028 0.9 0.678 2.74

continued . . .
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Table 2 Continued

56–58 0.022 0.9 0.657 2.59
0.020 1.0 0.730 2.87

58–60 0.005 0.9 0.695 2.82

60–62 0.020 0.9 0.796 3.20
0.026 1.3 0.841 3.38

62–64 0.028 1.3 0.706 2.76

64–66 0.016 0.9 0.814 3.12
0.021 0.9 0.872 3.35

66–68 0.016 1.3 0.824 3.09

68–70 0.016 0.9 0.880 3.26
0.019 0.9 0.823 3.05

70–72 0.010 0.9 0.884 3.19

72–74 0.022 0.9 0.890 3.14
0.027 0.9 0.957 3.38

74–76 0.028 1.3 0.866 2.85

76–78 0.027 1.3 0.895 2.80
0.023 1.3 0.724 2.27

78–80 0.028 1.3 0.896 2.71

80–82 0.028 0.9 0.981 2.87
0.027 0.9 0.459 1.34

82–84 0.019 1.3 0.904 2.64

84–86 0.023 1.3 0.922 2.51
0.019 1.3 0.150 0.41

86–88 0.023 1.3 0.136 0.36

88–90 0.032 1.1 0.376 0.95
0.028 0.9 0.286 0.72

90–92 0.032 0.9 0.210 0.49

92–94 0.032 1.2 0.167 0.39
0.028 0.9 0.295 0.69

94–96 0.031 1.1 0.144 0.33

96–98 0.032 1.1 0.211 0.49
0.028 0.9 0.469 1.08

98–100 0.032 1.0 0.331 0.74

4.3. Prediction of the evolution

In this experiment, we use the data assimilation results to predict the fire
evolution. The basic idea of our prediction is that we evolve the curve (given
by the current observed fire front position) using the parameters obtained from
data assimilation in the previous time interval. It means, we predict the fire
position in time t+ε, using the observed fire position at time t and the parameters
used in the data assimilation at time interval (t− ε, t).

We visually compare the predictions to the best possible fit on Figures 10-
–11 for the first fire and Figures 12–13 for the second fire. The best possible fit
is found using the data assimilation in time interval (t, t + ε), with the initial
condition given by the curve segmented in time t and the “ground truth” is the
segmented curve at the time t+ ε.
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Figure 8. Visual comparison of numerically computed curves (dashed)
and real fire positions (solid curves). Numerical solution is the best possible
fit with respect to the MHD. The time intervals were 2 seconds on the upper
image and 4 seconds on the bottom image, see also Table 1.
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Figure 9. Visual comparison of numerically computed curves (dashed)
and real fire positions (solid curves). Numerical solution is the best possible

fit with respect to the HD. The time intervals were 2 seconds on the upper
image and 4 seconds on the bottom image, see also Table 2.
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Figure 10. Prediction (black) of a fire evolution compared to the best
possible fit (red) and the real fire position (blue). Parameters used in the
predictions come from the data assimilation from the previous time interval

with the Mean Hausdorff distance (MHD) as a criterion.
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Figure 11. Prediction (black) of a fire evolution compared to the best
possible fit (red) and the real fire position (blue). Parameters used in the
predictions come from the data assimilation from the previous time interval

with the Hausdorff distance (HD) as a criterion.
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Figure 12. Prediction (black) of a fire evolution compared to the best
possible fit (red) and the real fire position (blue). Parameters used in the
predictions come from the data assimilation from the previous time interval

with the Mean Hausdorff distance (MHD) as a criterion.
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Figure 13. Prediction (black) of a fire evolution compared to the best
possible fit (red) and the real fire position (blue). Parameters used in the
predictions come from the data assimilation from the previous time interval

with the Hausdorff distance (HD) as a criterion.
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5. Conclusions

In this paper, we presented data assimilation in the forest fire propagation
model [1]. Model parameter estimation (MPE) showed, that our model is able
to reconstruct fires accurately, i.e., the Mean Hausdorff distance was mostly
below 1% of the fire perimeter length and the Hausdorff distance was mostly
below 5% of the fire perimeter length using 2 second time interval. Besides that,
the output from the MPE is valuable as a reference value for the further use
of the model. One of the possible applications is also in the fire propagation
prediction. In the presented MPE and fire predictions we used the Hausdorff
distance as well as the Mean Hausdorff distance as a criterion. Presented results
showed better prediction performance of the model with the Hausdorff distance
used as a criterion.
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