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ABSTRACT. In this work, we obtain necessary and sufficient conditions for the
oscillation of all solutions of second-order half-linear delay differential equation

of the form (
r(x′)γ

)′
(t) + q(t)xα(τ(t)) = 0 .

Under the assumption
∫∞ (

r(η)
)−1/γ

dη = ∞, we consider the two cases when
γ > α and γ < α. Further, some illustrative examples showing applicability of
the new results are included, and state an open problem.

1. Introduction

The main feature of this article is having an oscillation condition that is
necessary and sufficient at the same time. We mainly consider the following
second-order half-linear delay differential equation(

r(x′)γ
)′
(t) + q(t)xα(τ(t)) = 0 , (1.1)

by considering two cases: γ > α and γ < α. We suppose that the following
assumptions hold:

(A1) γ and α are the quotient of two odd positive integers, r, q ∈ C(R+,R+)
with r(t) > 0 and q is not identically zero eventually, τ ∈ C([t0,∞), R+)
such that τ(t) ≤ t for t ≥ t0, τ(t) → ∞ as t → ∞.

(A2) r(t) > 0 and
∫∞
0

(r(η))−1/γ dη = ∞. Letting R(t) =
∫ t

0
(r(η))−1/γ dη,

we have limt→∞ R(t) = ∞.
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Initially single delay has taken and in the later section one can see the effect for
several delays. As example of function satisfying (A2), we have

r(t) = e−t or r(t) = 1.

The interest in the study of functional differential equations comes from their
applications to engineering and natural sciences. Equations involving arguments
that are delayed, advanced or a combination of both arise in models such as the
lossless transmission lines in high speed computers that interconnect switching
circuits. Moreover, delay differential equations play an important role in mod-
elling virtually every physical, technical, and biological process, from celestial
motion, to bridge design, to interactions between neurons.

In what follows, we provide some background details regarding the study
of oscillation of second-order differential equations which motivated our study.
Brands [5] showed that for bounded delays, the solutions to

x′′(t) + q(t)x(t− τ(t)) = 0 (1.2)

are oscillatory if and only if solutions to x′′(t) + q(t)x(t) = 0 are oscillatory.
Recently, Chatzarakis et al. [6] have established sufficient conditions for the
oscillation and asymptotic behaviour of all solutions of second-order half-linear
differential equations of the form(

r(x′)α
)′
(t) + q(t)yα(τ(t)) = 0. (1.3)

In another paper, Chatzarakis et al. [7] have considered (1.3) and established new
oscillation criteria for (1.3). Fisnarova and Marik [10] considered the half-linear
differential equation(

r(t)Φ(z′(t))
)′
+ c(t)Φ

(
x(τ(t))

)
= 0, z(t) = x(t) + b(t)x(τ(t)) ,

where Φ(t) = |t|p−2t, p ≥ 2. Karpuz and Santra [13] have established sufficient
conditions for oscillation and asymptotic behaviour of solutions to the equation

[
r(t)

(
x(t) + p(t)x(τ(t))

)′]′
+

m∑
i=1

qi(t)Gi

(
x(τi(t))

)
= 0. (1.4)

Wong [23] studied necessary and sufficient conditions for the oscillation of solu-
tions to (

x(t) + px(t− τ)
)′′
+ q(t)H

(
x(t− σ)

)
= 0,

where the constant p satisfies −1 < p < 0.

Oscillation criteria for second-order delay differential equations have been
reported in [1, 2, 3, 4, 8, 9, 12, 15, 16, 19, 20, 22]. Note that most publications
consider only sufficient conditions, and just a few of them consider necessary
and sufficient conditions.
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By a solution to the equation (1.1), we mean a function x ∈ C([Tx,∞),R),
where Tx ≥ t0, such that rx′ ∈ C1([Tx,∞),R), and satisfies (1.1) on the interval
[Tx,∞). A solution x of (1.1) is said to be proper if x is not identically zero
eventually, i.e., sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that
(1.1) possesses such solutions. A solution of (1.1) is called oscillatory if it has
arbitrarily large zeros on [Tx,∞); otherwise, it is said to be non-oscillatory.
(1.1) itself is said to be oscillatory if all of its solutions are oscillatory.

2. Main results

����� 2.1� Assume that (A1) and (A2) hold. If x is an eventually positive
solution of (1.1), then x satisfies

x′(t) > 0 and
(
r(x′)γ

)′
(t) < 0 for all large t. (2.1)

P r o o f. Since x(t) is an eventually positive solution of (1.1). Then there exists
t0 ≥ 0 such that x(t) > 0 and x(τ(t)) > 0 for t ≥ t0. From (1.1), it follows that(

r(x′)γ
)′
(t) = −q(t)xα(τ(t)) ≤ 0 for t ≥ t0. (2.2)

Therefore,
(
r(x′)γ

)
(t) is non-increasing. We claim that

(
r(x′)γ

)
(t) > 0 for t ≥ t0.

On the contrary, assume that
(
r(x′)γ

)
(t) ≤ 0 for some t ≥ t0, then we can find

t∗ ≥ t0 and κ1 > 0 such that
(
r(x′)γ

)
(t) ≤ −κ1 for all t ≥ t∗. Integrating the

inequality x′(t) ≤ (−κ1/r(t))
1/γ , from t∗ to t (t > t∗), by (A2) we obtain

x(t) ≤ x(t∗)− κ
1/γ
1

t∫
t∗

(r(η))−1/γ dη → −∞, as t → ∞.

This contradicts x(t) being a positive solution. So,
(
r(x′)γ

)
(t) > 0 for t ≥ t0.

Since r(t) ≥ 0, then x′(t) ≥ 0 for t ≥ t0. �

2.1. The Case γ > α.

In this subsection, we assume that there exists a constant β such that 0 <
α < β < γ and

uα−β ≥ vα−β , for 0 < u ≤ v . (2.3)

����� 2.2� Assume that all conditions of Lemma 2.1 hold. Then there exists
t1 ≥ t0 and κ > 0 such that for t ≥ t1, the following holds

x(t) ≤ κ1/γR(t) (2.4)

(
R(t)−R(t1)

)⎡⎣ ∞∫
t

q(ζ)
(
κ1/γR(τ(ζ))

)α−β
xβ(τ(ζ)) dζ

⎤
⎦
1/γ

≤ x(t). (2.5)
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P r o o f. By Lemma 2.1, r(t)(x′(t))γ is positive and non-increasing. Then there
exists

κ > 0 and t1 ≥ t0

such that

r(t)(x′(t))γ ≤ κ.

Integrating the inequality x′(t) ≤ (κ/r(t))1/γ , we have

x(t) ≤ x(t1) + κ1/γ
(
R(t)−R(t1)

)
.

Since limt→∞ R(t) = ∞, then the last inequality becomes that

x(t) ≤ κ1/γR(t) for t ≥ t1 ,

which is (2.4). Note that κ depends on the solution x evaluated at a time t0.
Thus, the condition (2.7) must include all possible κ’s.

By (2.4) and the assumption (2.3), we have

xα(τ(t)) = xα−β(τ(t))xβ(τ(t)) ≥ (
κ1/γR(τ(t))

)α−β
xβ(τ(t)) .

Integrating (1.1) from t to ∞, we have

lim
A→∞

[(
r(x′)γ

)
(η)

]A
t
+

∞∫
t

q(η)
(
κ1/γR(τ(η))

)α−β
xβ(τ(η)) dη ≤ 0.

Using that
(
r(x′)γ

)
(t) is positive and non-increasing, we have

∞∫
t

q(η)
(
κ1/γR(τ(η))

)α−β
xβ(τ(η)) dη ≤ (

r(x′)γ
)
(t) for t ≥ t1 .

Therefore,

x′(t) ≥
⎡
⎣ 1

r(t)

∞∫
t

q(η)
(
κ1/γR(τ(η))

)α−β
xβ(τ(η)) dη

⎤
⎦
1/γ

. (2.6)

Since x(t) ≥ 0. Integrating (2.6) from t1 to t, we obtain

x(t) ≥
t∫

t1

⎡
⎣ 1

r(η)

∞∫
η

q(ζ)
(
κ1/γR(τ(ζ))

)α−β
xβ(τ(ζ))dζ

⎤
⎦
1/γ

dη

≥ (
R(t)−R(t1)

)⎡⎣ ∞∫
t

q(ζ)
(
κ1/γR(τ(ζ))

)α−β
xβ(τ(ζ)) dζ

⎤
⎦
1/γ

,

which is (2.5). �
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����	�� 2.1� Under assumptions (A1) and (A2), every solution of (1.1) is
oscillatory if and only if ∞∫

0

q(η)Rα(τ(η))dη = +∞. (2.7)

P r o o f. To prove sufficiency by contradiction, assume that x is a non-oscillatory
solution of (1.1). Without loss of generality we may assume that x(t) is eventually
positive. Then Lemmas 2.1 and 2.2 hold for t ≥ t1. So,

x(t) >
(
R(t)−R(t1)

)
w1/γ(t) for all t ≥ t1,

where

w(t) =

∞∫
t

q(ζ)
(
κ1/γR(τ(ζ))

)α−β
xβ(τ(ζ)) dζ ≥ 0 .

Since limt→∞ R(t) = ∞, there exists t2 ≥ t1, such that R(t) − R(t1) ≥ 1
2R(t)

for t ≥ t2. Then

x(t) >
1

2
(t)w1/γ(t) for t ≥ t2 , and xβ/(κ1/γR)β ≥ wβ/γ/(2κ1/γ)β .

Taking the derivative of w we have

w′(t) = −q(t)
(
κ1/γR(τ(t))

)α−β
xβ(τ(t))

≤ −q(t)
(
κ1/γR(τ(t))

)α
wβ/γ(τ(t))(2κ1/γ)−β ≤ 0 .

Therefore, w(t) is non-increasing so wβ/γ(τ(t))/wβ/γ(t) ≥ 1, and(
w1−β/γ(t)

)′
= (1− β/γ)w−β/γ(t)w′(t) ≤ −(1− β/γ)2−βκ(α−β)/γq(t)Rα(τ(t)) .

Integrating this inequality form t2 to t, we have

[
w1−β/γ(η)

]t
t2

≤ −(1− β/γ)2−βκ(α−β)/γ

t∫
t2

q(η)Rα(τ(η)) dη .

Since β/γ < 1 and w(t) is positive and non-increasing, we have

t∫
t2

q(η)Rα(τ(η)) dη ≤ 2βκ(β−α)/γ

(1− β/γ)
w1−β/γ(t2) .

This contradicts (2.7) and proves the oscillation of all solutions.

Next, we show that (2.7) is necessary. Suppose that (2.7) does not hold; so
for some λ > 0 the integral in (2.7) is finite. Then there exists T ≥ t0 such that

∞∫
T

q(η)Rα(τ(η))dη ≤ λ1−α/γ

2
. (2.8)
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Let us consider the closed subset of continuous functions

M =

{
x ∈ C([t0,+∞),R) : x(t) = 0 for t0 ≤ t < T and(λ

2

)1/γ

[R(t)− R(T )] ≤ x(t) ≤ λ1/γ [R(t)−R(T )] for t ≥ T

}
.

Then we define the operator Φ : M → C([t0,+∞),R) by

(Φx)(t) =

⎧⎪⎨
⎪⎩

0, t0 ≤ t < T,
t∫
T

[
1

r(η)

[
λ
2 +

∞∫
η

q(ζ)xα(τ(ζ))dζ
]]1/γ

dη, t ≥ T.

For x ∈ M and t ≥ T , we have

(Φx)(t) ≥
t∫

T

[
1

r(η)

λ

2

]1/γ
dη =

(λ
2

)1/γ

[R(t)− R(T )] .

For x ∈ M and t ≥ T , we have x(t) ≤ λ1/γR(t) and xα(τ(t)) ≤ (
λ1/γR(τ(t))

)α
.

Then using (2.8) we have

(Φx)(t) ≤
t∫

T

[
1

r(η)

(λ
2
+

λ

2

)]1/γ
dη = λ1/γ [R(t)−R(T )].

Thus, Φx ∈ M . Let us define now a sequence of continuous function vn :
[t0,+∞) → R by the recursive formula

v1(t) =

⎧⎨
⎩

0, t ∈ [t0, T )(
λ
2

)1/γ

[R(t)−R(T )], t ≥ T.

vn(t) = (Φvn−1)(t) for n > 1.

By induction, it is easy to verify that for n > 1,(λ
2

)1/γ

[R(t)−R(T )] ≤ vn−1(t) ≤ vn(t) ≤ λ1/γ [R(t)−R(T )].

Therefore, the point-wise limit of the sequence exists. Let limn→∞ vn(t)=v(t) for
t ≥ t0. By Lebesgue’s dominated convergence theorem v∈M and (Φv)(t) = v(t),
where v(t) is a solution of equation (1.1) on [T,∞). Hence, (2.7) is a necessary
condition. This completes the proof. �
Example 2.1. Consider the delay differential equation

(e−t(x′(t))3/5)′ + (t+ 1)(x(t− 2))1/3 = 0, t ≥ 0 . (2.9)
Here

γ = 3/5, α = 1/3, r(t) = e−t, τ(t) = t−2, R(t) =

t∫
0

e5s/3 ds =
3

5

(
e5t/3−1

)
.
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For β = 1/2, we have

0 < α < β < γ and uα−β = u−1/6

which is a decreasing function. To check (2.7) we have

∞∫
0

q(η)Rα(τ(η))dη =

∞∫
0

(η + 1)

(
3

5

(
e5(η−2)/3 − 1

))1/3

dη = ∞,

because the integrand approaches +∞ as η → +∞. So that all the assumptions
in Theorem 2.1 hold. Thus, every solution of (2.9) oscillates.

2.2. For the Case γ < α.

In this subsection, we assume that there exists α > β > γ > 0 such that

uα−β ≤ vα−β , for 0 < u ≤ v . (2.10)

����� 2.3� Assume that all conditions of Lemma 2.1 hold. Then there exists
t1 ≥ t0 and κ > 0 such that for t ≥ t1, the following holds:

xα(τ(t)) ≥ κα−βxβ(τ(t)) . (2.11)

P r o o f. By Lemma 2.1, it follows that x′(t) > 0, so x is increasing and x(t) ≥
x(t0) for t ≥ t0. Thus

x(τ(t)) ≥ x(τ(t0)) := κ > 0 for t ≥ t1 := t0 .

From (2.10), we have

xα(τ(t)) = xα−β(τ(t))xβ(τ(t)) ≥ κα−βxβ(τ(t)) for t ≥ t1,

which is (2.11). �

����	�� 2.2� Under assumptions (A1), (A2) and r′(t) ≥ 0, every solution
of (1.1) is oscillatory if and only if

∞∫
T

[
1

r(η)

∞∫
η

q(ζ) dζ

]1/γ

dη = +∞ for all T > 0. (2.12)

P r o o f. To prove sufficiency by contradiction, assume that x is a non-oscillatory
solution of (1.1). Without loss of generality we may assume that x(t) is eventually
positive. Then Lemmas 2.1 and 2.3 hold for t ≥ t1. Using (2.11) in (1.1) and
then integrating the final inequality from t to ∞, we have

lim
A→∞

[(
r(x′)γ

)′
(η)

]A
t
+ κα−β

∞∫
t

q(η)xβ(τ(η)) dη ≤ 0.
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Using that
(
r(x′)γ

)
(t) is positive and non-increasing, and r′(t) ≥ 0, we have

κα−β

∞∫
t

q(η)xβ(τ(η)) dη ≤ (
r(x′)γ

)
(t) ≤ (

r(x′)γ
)
(τ(t)) ≤ r(t)

(
x′(τ(t))

)γ
for all t ≥ t1. Therefore,

κ(α−β)/γ

[
1

r(t)

∞∫
t

q(η)xβ(τ(η)) dη

]1/γ

≤ x′(τ(t))

implies that

κ(α−β)/γ

[
1

r(t)

∞∫
t

q(η) dη

]1/γ

≤ x′(τ(t))
xβ/γ(τ(t))

. (2.13)

Integrating (2.13) from t1 to ∞, we have

κ(α−β)/γ

∞∫
t1

[
1

r(η

∞∫
η

q(ζ) dζ

]1/γ

dη ≤ x1−β/γ(τ(t1))

β/γ − 1
< ∞ .

This contradicts (2.12) and proves the oscillation of all solutions.

Next, we show that (2.12) is necessary. Suppose that (2.12) does not hold; so
for each λ > 0, there exists T ≥ t0 such that

∞∫
T

[
1

r(η)

∞∫
η

q(ζ)dζ

]1/γ

dη ≤ λ1−α/γ

2
. (2.14)

Let us consider the closed subset of continuous functions

M=

{
x∈C([t0,+∞),R) : x(t) =

λ

2
for t∈ [t0, T ) and

λ

2
≤x(t)≤λ for t≥T

}
.

Then we define the operator Φ : M → C([t0,+∞),R) by

(Φx)(t) =

⎧⎪⎨
⎪⎩
λ/2, t0 ≤ t < T

λ/2 +
t∫
T

[
1

r(η)

∞∫
η

q(ζ)xα(τ(ζ))dζ

]1/γ
dη t ≥ T .

Note that for x ∈ M , we have (Φx)(t) ≥ λ/2. Also for x ∈ M and t ≥ T , we
have x(t) ≤ λ and by (2.14), (Φx)(t) ≤ λ. Therefore, Φx ∈ M . Analogously
to the proof of Theorem 2.1, the mapping Φ has a fixed point v ∈ M ; that is,
(Φv)(t) = v(t) for t ≥ t0. It can be easily verified that u(t) is a solution of (1.1),
such that λ/2 ≤ v(t) ≤ λ for t ≥ T . Thus, we have a non-oscillatory solution
to (1.1). This completes the proof. �
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Example 2.2. Consider the delay differential equation(
(x′(t))1/5

)′
+ (t+ 1)(x(t− 2))5/3 = 0, t ≥ 0 . (2.15)

Here
γ = 1/5, α = 5/3, τ(t) = t− 2.

For β = 4/3, we have

α > β > γ > 0 and uα−β = u1/3

which is an increasing function. The integral in (2.12) is equal to

∞∫
2

⎡
⎣ ∞∫

η

(ζ + 1)dζ

⎤
⎦
5

dη = ∞.

So, all the assumptions in Theorem 2.2 hold. Thus, every solution of (2.15)
oscillates.

3. Final Comment

In this section, we will be giving one remark and two examples to conclude
the paper.

Remark 3.1. The results of this paper also hold for equations of the form

(
r(x′)γ

)′
(t) +

m∑
i=1

qi(t)x
αi(τi(t)) = 0 , (3.1)

where r, qi, αi, τi (i = 1, 2, . . . ,m) satisfy the assumptions in (A1) and (A2),
(2.3) and (2.10). In order to extend Theorem 2.1 and Theorem 2.2, there exists
an index i such that qi, αi, τi fulfils (2.7) and (2.12).

We finalize the paper by presenting two examples, which show how Remark 3.1
can be applied.

Example 3.1. Consider the delay differential equation(
e−t(x′(t))3/5

)′
+

1

t+ 1
(x(t− 2))1/3 +

1

t+ 2
(x(t− 1))1/5 = 0, t ≥ 0 . (3.2)

Here

γ = 3/5, r(t) = e−t, τ1(t) = t− 2, τ2(t) = t− 1,

R(t) =

t∫
0

e5s/3 ds =
3

5

(
e5t/3 − 1

)
and i = 1, 2.

α1 = 1/3 and α2 = 1/5.
For β = 1/2, we have

0 < α1, α2 < β < γ and uα1−β = u−1/6 and uα2−β = u−3/10

which both are decreasing functions.
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To check (2.7) we have

∞∫
0

m∑
i=1

qi(η)R
αi(τi(η))dη ≥

∞∫
0

q1(η)R
α1(τ1(η))dη

=

∞∫
0

1

η + 1

(3
5

(
e5(η−2)/3 − 1

))1/3

dη

= ∞,

because the integrand approaches +∞ as η → +∞. So that all the assumptions
in Theorem 2.1 hold. Thus, every solution of (3.2) oscillates.

Example 3.2. Consider the delay differential equation(
(x′(t))3/5

)′
+ t(x(t− 2))5/3 + (t+ 1)(x(t− 1))7/3 = 0, t ≥ 0 . (3.3)

Here

γ = 3/5, τ1(t) = t− 2, τ2(t) = t− 1, i = 1, 2.

α1 = 5/3 and α2 = 7/3.
For β = 4/3, we have

α1, α2 > β > γ > 0, uα1−β = u1/3 and uα2−β = u

which both are increasing functions. Clearly, all the assumptions in Theorem 2.2
hold. Thus, every solution of (3.3) oscillates.


��� �	����� From this article and from [3, 4, 7, 8, 9, 13, 19] we have
a common question: Can we find necessary and sufficient conditions for the
oscillation of solutions to second-order differential equation[

r(t)
(
(x(t) + p(t)x(τ(t)))′

)γ]′
+

m∑
i=1

qi(t)x
αi(τi(t)) = 0 for p ∈ C(R+,R)?
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