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ABSTRACT. In this work, we focused on 3D image segmentation where the
segmented surface is reconstructed by the use of 3D digital image information
and information from thresholded 3D image in a local neighbourhood. To this
end, we applied a mathematical model based on the level set formulation and

numerical method which is based on the so-called reduced diamond cell approach.
The segmentation approach is based on surface evolution governed by a nonlinear
PDE, the modified subjective surface equation. This is done by defining the input
to the edge detector function as the weighted sum of norm of presmoothed 3D
image and norm of presmoothed thresholded 3D image in a local neighbourhood.
For the numerical discretization, we used a semi-implicit finite volume scheme.

The method was applied to real data representing 3D microscopy images of cell
nuclei within the zebrafish pectoral fin.

1. Introduction

In image processing and computer vision, the goal of image segmentation
is to partition the image domain into “meaningful” components. Segmentation
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amounts to finding curves in two dimensional (2D) images and computing sur-
faces in three dimensional (3D) images. It is well known that image segmenta-
tion is one of the fundamental and most studied problems in image process-
ing. Consequently, there are several approaches to image segmentation in liter-
ature. In this paper, we will focus on the so-called subjective surface segmen-
tation method for image segmentation. In the context of image processing, this
method was introduced in [11, 12], studied and applied in several biomedical
research [11, 12, 1, 8, 7, 5, 4, 6, 13, 9]. The Subjective surface segmentation
method is based on the idea of evolution of segmentation function governed
by a geometrical diffusion model. Hence, to segment an object, a segmentation
seed (the starting point which determines the approximate position of an object
in the image) is usually needed. Then an initial segmentation function u0(x) is
constructed with reference to the segmentation seed. This segmentation func-
tion is allowed to evolve to the final state following the subjective surface model.
Ideally, the evolution process ends up with a function whose isosurfaces all have
the shape of the object that is intended to be segmented. At each time step in
the evolution process, we rescale the values of the segmentation function to in-
terval [0, 1]. After the last time step in the evolution, we choose the contour 0.5
as the approximate boundary of the object being segmented.

In real applications where the object that is intended to be segmented has in-
ternal structures or edges, it is usually difficult to obtain optimal result us-
ing the subjective surface segmentation approach. The reason, perhaps, may be
due to the fact that this approach works with edge information throughout the
segmentation process. Hence, edges within the internal structures in an object
of interest are also respected during segmentation. To overcome the effect of the
internal structures or edges, we introduced thresholding of values within a ball
of appropriate radius around the object center. This local thresholding serves
to eliminate the internal structures or edges. Finally, we combined the informa-
tion gotten from thresholding and original image intensities to get a segmentation
result.

2. Mathematical model

Let I0 : Ω −→ R, Ω ⊂ R
3 be the intensity function of a 3D image. Let

α = min
x ∈ B(c,r)

I0(x), β = max
x ∈ B(c,r)

I0(x),

where B(c, r) is a ball with radius r centered at c, a given point inside the object
to be segmented. Then the threshold value (which is used for local thresholding)
may be chosen as thr = λ α + (1 − λ) β, λ ∈ [0, 1] and the ball radius may
be chosen with respect to the approximate size of the object to be segmented.
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So, the idea (of local thresholding) is to set all intensity values in the local
neighbourhood of center c to β if they are above thr and α otherwise.

Our method is based on solution of the following modified subjective surface
equation

ut = |∇u|∇ ·
(
G0 ∇u

|∇u|

)
, (1)

where G0 = g(δ|∇Gσ1
∗ I0| + θ|∇Gσ2

∗ Ithr |); u is the unknown segmentation
function; K > 0 is an empirically chosen parameter [10]; g is the Perona-Malik
function typically defined as g(s) = 1

1+Ks2 ; Ithr is 3D image intensity of thresh-

olded image within a ball of radius r > 0; δ, θ ∈ [0, 1] determine the influence
of information gotten from thresholding and image intensities in the segmenta-
tion process; Gσ1

and Gσ2
are the smoothing kernels. Equation (1) is accompa-

nied by Dirichlet boundary conditions

u(t, x) = uD ∈ [0, T ] × ∂Ω, (2)

and with the initial condition

u(0, x) = u0(x) ∈ Ω. (3)

Without loss of generality, uD = 0 is assumed.

Remark 1. If δ = 1 and θ = 0, then (1) reduces to the subjective surface
segmentation model [11].

3. Numerical discretization

3.1. Time discretization

For time discretization of (1), semi-implicit approach which guarantees un-
conditional stability is used. Suppose that the (1) is solved in time interval
I = [0, T ] and N equal number of time steps. If τ = T

N denotes the time step,
then the time discretization of (1) is given by

1√
ε2 + |∇un−1|2

un − un−1

τ
= ∇ ·

(
G0 ∇un√

ε2 + |∇un−1|2

)
, (4)

where ε is the regularization factor (Evans - Spruck [2]), u0 is given initial
segmentation function, and un, n = 1, · · · , N is the solution of the model in time
step n.
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3.2. Space discretization

For space discretization, we start with introduction of some notations which
will be used subsequently. We have adopted similar notations as those used in
[8] and [7]. Let Th denote finite volume mesh containing the voxels of 3D image,
while Vijk, i= 1, . . . , N1, j = 1, . . . , N2, k= 1, . . . , N3 denote each finite volume.
For each Vijk ∈ Th, let h1, h2, h3 be the size of the volumes in x1, x2, x3

direction. Let the volume of Vijk and its barycenter be denoted by m(Vijk) and
cijk, respectively. Let the approximate value of un in cijk be denoted by un

ijk.

For every Vijk ∈ Th, we denote the set of all (p, q, r) such that p, q, r ∈ {−1, 0, 1},
|p| + |q| + |r| = 1 by Nijk, the set of all (p, q, r), p, q, r ∈ {−1, 1} by Mijk, and
the set of all (p, q, r) such that p, q, r ∈ {−1, 0, 1}, |p| + |q| + |r| = 2 by Pijk.
For each (p, q, r) ∈ Nijk, denote the line connecting the center of Vijk and the
center of its neighbour Vi+p,j+q,k+r by σpqr

ijk and its length m(σpqr
ijk ). We denote

the planar sides, area and normal of finite volume Vijk by epqrijk , m(epqrijk ) and

νpqrijk , respectively. Let xpqr
ijk be the point of intersection between the line σpqr

ijk

and planar side epqrijk . Furthermore, for each (p, q, r) ∈ Mijk , let spqrijk denote the

vertices of the finite volume Vijk, and for each (p, q, r) ∈ Pijk, let the midpoints

of the voxel edges be denoted ypqrijk . The approximate value of un−1 in xpqr
ijk , ypqrijk

and spqrijk , with (p, q, r) belonging to the appropriate index set, is denoted by upqr
ijk ;

the time index is omitted, as only the values from the time level n − 1 will be
needed at these points.

With these notations, integration of (4) over the finite volume Vijk yields∫
Vijk

1√
ε2 + |∇un−1|2

un − un−1

τ
dx =

∫
Vijk

∇ ·
(
G0 ∇un√

ε2 + |∇un−1|2

)
dx. (5)

Let the average value of Aε =
√
ε2 + |∇un−1|2 in the finite volume Vijk be

denoted by Ān−1
ε,ijk. If we consider the fact that un and un−1 are asummed to

be piecewise constant over the finite volume mesh, then using the divergence
theorem we obtain

m(Vijk)
un
ijk − un−1

ijk

τ
= Ān−1

ε,ijk

∑
Nijk

∫
epqrijk

G0 ∇un√
ε2 + |∇un−1|2

· νpqrijk dS. (6)

If we approximate the normal derivative ∇un · νpqrijk by

(un
i+p,j+q,k+r− un

ijk)/m(σpqr
ijk )

and define Apqr;n−1
ε,ijk and Gpqr

ijk to be the average of Aε and G0 on epqrijk , then (6)
reduces to

m(Vijk)
un
ijk − un−1

ijk

τ
= Ān−1

ε,ijk

∑
Nijk

m(epqrijk )Gpqr
ijk

un
i+p,j+q,k+r − un

ijk

Apqr;n−1
ε,ijk m(σpqr

ijk )
. (7)
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Equation (7) can be simplified to

un
ijk = un−1

ijk +
τ

m(Vijk)
Ān−1

ε,ijk

∑
Nijk

m(epqrijk )Gpqr
ijk

un
i+p,j+q,k+r − un

ijk

Apqr;n−1
ε,ijk m(σpqr

ijk )
, (8)

which further simplifies to(
1 +

τ

m(Vijk)
Ān−1

ε,ijk

∑
Nijk

Gpqr
ijk

m(epqrijk )

Apqr;n−1
ε,ijk m(σpqr

ijk )

)
un
ijk−

τ

m(Vijk)
Ān−1

ε,ijk

∑
Nijk

Gpqr
ijk

m(epqrijk )

Apqr;n−1
ε,ijk m(σpqr

ijk )
un
i+p,j+q,k+r = un−1

ijk . (9)

Remark 2 (Global rescaling). For each time step n, let

μ = min
Ω

un
ijk and ξ = max

Ω
un
ijk.

Then the rescaled version of un
ijk given by (9) is obtained by the following relation

un
ijk = 1

ξ−μ
(un

ijk − μ). Consequently, we have that for each time step n, rescaled

version un
ijk ∈ [0, 1] and it is used in the next time step.

Equation (9) accompanied by the zero Dirichlet boundary condition represents
a linear system of equations which can be solved efficiently by the Successive
Overrelaxation (SOR) method. Finally, the average values Gpqr

ijk , Apqr;n−1
ε,ijk and

Ān−1
ε,ijk either in voxels or on voxel sides can be determined. To determine these

quantities, the reduced diamond cell strategy (see [7]) was used. The idea of the
reduced diamond cell approach is to do away with the values in the eight corner
points denoted by ci,j+q,k+r, ci+1,j+q,k+r, with q, r ∈ {−1, 1} and consequently
reducing the stencil from 18 to 10 points. Hence, from the computational point
of view, this approach reduces the computational cost.

Furthermore, in the light of this reduced diamond approach, the values of un−1

are obtained from the midpoints ypqrijk of the voxel edges. These values are

approximated for each (p, q, r) ∈ Pijk by

upq0
ijk =

1

4

(
un−1
ijk + un−1

i+p,j,k + un−1
i,j+q,k + un−1

i+p,j+q,k

)
,

up0r
ijk =

1

4

(
un−1
ijk + un−1

i+p,j,k + un−1
i,j,k+r + un−1

i+p,j,k+r

)
,

u0qr
ijk =

1

4

(
un−1
ijk + un−1

i,j+q,k + un−1
i,j,k+r + un−1

i,j+q,k+r

)
.
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For the components of the averaged gradient on epqrijk , they are approximated

by 2D diamond cell approach in othorgonal planes which use the values upqr
ijk

given above (see also [7]). This implies that

∇p00un−1
ijk =

1

m(ep00ijk )

∫
ep00
ijk

∇un−1dx (10)

≈
(
p
(
un−1
i+p,j,k−un−1

ijk

)
/h1,

(
up,1,0
ijk −up,−1,0

ijk

)
/h2,

(
up,0,1
ijk −up,0,−1

ijk

)
/h3

)
,

∇0q0un−1
ijk =

1

m(e0q0ijk )

∫
e0q0ijk

∇un−1dx (11)

≈
((

u1,q,0
ijk −u−1,q,0

ijk

)
/h1, q

(
un−1
i,j+q,k−un−1

ijk

)
/h2,

(
u0,q,1
ijk −u0,q,−1

ijk

)
/h3

)
,

∇00run−1
ijk =

1

m(e00rijk )

∫
e00rijk

∇un−1dx (12)

≈
((

u1,0,r
ijk −u−1,0,r

ijk

)
/h1,

(
u0,1,r
ijk −u0,−1,r

ijk

)
/h2, r

(
un−1
i,j,k+r−un−1

ijk

)
/h3

)
.

Hence, we obtain the approximations ∇pqrun−1
ijk for the gradient at the points

xpqr
ijk . Here, the approximation of the gradient in the barycenters xpqr

ijk of voxel

side epqrijk has been denoted by ∇pqrun−1
ijk . If the same approach for computation

of gradients of image intensities is used, then the following required approxima-
tions are obtained as

Gpqr
ijk = g

(
δ|∇pqrIσ1;ijk| + θ|∇pqrIthr

σ2;ijk
|
)
, (13)

Apqr;n−1
ε,ijk =

√
ε2 + |∇pqrun−1

ijk |2,

Ān−1
ε,ijk =

√√√√ε2 +
1

6

∑
Nijk

|∇pqrun−1
ijk |2.

4. Numerical experiments

In this section, several experiments were performed on biological data of the
developing pectoral fin in zebrafish embryo to demonstrate the performance
of our mathematical model (1). In all the experiments, isosurface 0.5 was
displayed. 3D microscopy images of cell nuclei in the pectoral fin were provided
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by the group of Nadine Peyriéras, (CNRS BioEmergences, France, in the frame-
work of ImageInLife EC funded project). Pectoral fin in zebrafish serves as a ver-
tebrate model for limb development. To understand how 3D fin shape emerges
during growth, it is important to follow cellular rearrangements in this process.
Individual cells are detected by labeling their nuclei and observing them under
the fluorescence microscope. The nuclei shapes are extracted during segmenta-
tion step. Due to the high density of cells in the fin tissue, manual segmen-
tation is time-consuming, laborious and error-prone. Therefore, it is necessary
to improve the classical subjective surface algorithm to produce accurate results
comparable to manual segmentation. The 3D datasets of the cell nuclei in the
pectoral fin in live zebrafish embryos at about 30 hours post fertilization were
acquired on an upright confocal microscope Zeiss LSM780 at the xy resolution
of 0.55351075μm/pixel and 1.25μm/pixel z-direction. To label cell nuclei, the
wild type embryos were injected with mRNA encoding NLS-EosFP at one-cell
stage. The cell centers were obtained using Difference of Gaussians algorithms
and further validated using the software Mov-IT implemented in the BioEmer-
gences Workflow [3].

Figure 1. The first column of this figure shows the 3D volume rendering
of the original 3D image intensity (up) and the 3D image intensity after
local thresholding (down), while the second column shows their 2D slices

along x, y and z axes.
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Figure 2. The first column of this figure shows the 3D volume rendering
of the 3D image which is intended to be segmented, while the second column
shows the result after application of (1) with δ = 1.0 and θ = 0.0 .

Figure 3. The first column of this figure shows the 3D volume rendering of
the 3D image which is intended to be segmented, while the second column

shows the result after application of (1) with δ = 1.0 and θ = 0.0. In each
column, the cell nuclei of interest is located approximately at the center of
each picture.
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Figure 4. The first column shows the 3D volume rendering of a cell nu-
cleus, its reconstruction using δ = 0.0 and θ = 1.0 in (1) and 0.5 isosurface.
The second column shows the 3D volume rendering of another cell nucleus,

its reconstruction using δ = 0.0 and θ = 1.0 in (1) and 0.5 isosurface.
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Figure 5. The first column shows the 3D volume rendering of a cell nu-
cleus, its reconstruction using δ = 0.5 and θ = 0.5 in (1) and 0.5 isosurface.
The second column shows the 3D volume rendering of another cell nucleus,

its reconstruction using δ = 0.5 and θ = 0.5 in (1) and 0.5 isosurface.
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Figure 6. In this figure, the first column shows the 3D volume rendering
of four different cells nuclei; the second column shows segmentation result
using thresholded image intensity information and original image intensity

information in (1). That is, the result after application of (1) with δ =
0.5 and θ = 0.5. In each column, the cell nuclei of interest is located
approximately at the center of each picture.
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Figure 7. The first column shows the 3D volume rendering of four dif-

ferent cells nuclei whereas the second column shows segmentation result
using thresholded image intensity information and original image intensity
information, that is using δ = 0.5 and θ = 0.5, in (1). In each column, the
cell nuclei of interest is located approximately at the center of each picture.
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Figure 8. In this figure, the first column shows the 3D volume rendering
of three different cells nuclei while the second column shows segmentation
result using thresholded image intensity information and original image
intensity information, that is using δ = 0.5 and θ = 0.5, in (1). In each

column, the cell nuclei of interest is located approximately at the center of
each picture.
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Remark 3. Figure 1 shows the original 3D image intensity and the result of local
thresholding. In the first column of this figure, the first row shows the 3D volume
rendering of the original 3D image intensity while the second row shows the 3D

volume rendering of 3D image intensity after local thresholding. The second
column shows their 2D slices along x, y and z axes.

Remark 4. In all Figures 2−8, the first column shows the 3D volume rendering
of the original 3D image intensity and the second column shows, in black colour,
their corresponding results after segmentation.

Remark 5. In Figures 1−8, the cell nuclei of interest and their correspond-
ing results after segmentation (which are depicted in black colour) are located
approximately at the center of each picture.

For the first numerical experiment, δ = 1.0 and θ = 0.0 were used. This choice
of parameters reduced equation (1) to the classical subjective surface model [11].
Some good segmentation results were obtained, see e.g. Figure 2. However, sev-
eral results obtained using these parameters were not optimal, see, for example,
Figure 3.

In the second experiment, δ = 0.0 and θ = 1.0 were used. The results obtained,
as can be seen from second row of Figure 4, were good. Nevertheless, the problem
with this choice of parameters is that the reconstructed surface is not smooth.
This can be seen in the last row of Figure 4. Moreover, it can be seen from
Figure 5 that the result obtained after applying model (1) is very similar to the
one shown in Figure 4 and the isosurface representing the reconstructed surface
is smooth.

Finally, several examples of 3D image segmentation involving the us
of model (1) with δ = 0.5 and θ = 0.5 were performed. Results of these nu-
merical experiments are shown in Figures 5, 6, 7 and 8. In conclusion, it is easy
to see that mathematical model (1) is a useful and successful generalization
of the classical subjective surface model.

Remark 6. In these numerical experiments, calculations were executed on a
grid with 72×72×32 voxels, and computational method parameters were set to

h = 0.01 , τ = 0.1 , λ = 0.7 ,
r = 12 , K = 5 , N = 100 .
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[12] SARTI, A.—MALLADI, R.—SETHIAN, J. A.: , Subjective Surfaces: a geometric model

for boundary completion, Int. J. Comput. Vis. 46 (2002), no. 3, 201–221.

[13] ZANELLA, C.—RIZZI, B.—MELANI, C.—CAMPANA, M.—BOURGINE, P.—
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