TATRA
MOUNTOINS

Mathematical Publications

Tatra Mt. Math. Publ. **44** (2009), 105–113 DOI: 10.2478/v10127-009-0051-4

AN INTEGRAL FOR A BANACH VALUED FUNCTION

GIUSEPPA RICCOBONO

ABSTRACT. Using partitions of the unity ((PU)-partition), a new definition of an integral is given for a function $f:[a,b]\to X$, where X is a Banach space, and it is proved that this integral is equivalent to the Bochner integral.

Introduction

Using the idea of an integral given by F e a u v e a u in [5], an integral $((PU)^*$ -integral) for a Banach valued function is defined on an interval [a, b], as a limit of Riemann-type sums, using partitions of the unity ((PU)-partition) rather than the usual partitions of the interval. Using some properties of the (PU)-integral of real valued functions defined on a compact Hausdorff space (see [10]), the measurability of a $(PU)^*$ -integrable function and the equivalence of this integral with the Bochner integral are proved.

We observe that, while the (PU)-integral is equivalent to the Lebesgue integral and hence to the McShane integral, the $(PU)^*$ -integral is equivalent to the Bochner integral but not to the McShane one.

Preliminaries

In this paper, X denotes a Banach space with a norm $|| \cdot ||_X$ and X^* its dual space, [a,b] is a real interval with a < b, \mathcal{M} is a σ -algebra of subsets of [a,b] to which the open sets belong, μ is a non-atomic, finite, complete Radon measure on \mathcal{M} .

DEFINITION 1 ([10]). A partition of the unity ((*PU*)-partition) of [a,b] is a finite collection $P = \{(\theta_i, x_i)\}_{i=1}^p$, where $x_i \in [a, b]$ and θ_i are non negative, μ -measurable and μ -integrable real functions on [a, b] such that $\sum_{i=1}^p \theta_i(x) = 1$ a.e. in [a,b].

Definition 2 ([9]). A gauge δ on [a,b] is a map from [a,b] to $(0,+\infty)$.

DEFINITION 3 ([10]). If δ is a gauge on [a,b], a (PU)-partition $P = \{(\theta_i, x_i)\}_{i=1}^p$ is δ -fine if $S_{\theta_i} \subset (x_i - \delta(x_i), x_i + \delta(x_i))$ (i = 1, 2, ..., p), where $S_{\theta_i} = \{x \in [a, b] \text{ such that } \theta_i(x) \neq 0\}$.

Now, we will give the following definition:

DEFINITION 4. A function $f: [a,b] \to X$ is $(PU)^*$ -integrable on [a,b] if for every given $\epsilon > 0$ there is a gauge δ_{ϵ} such that $\sum_{i=1}^{p} \| (f(x_i) - f(x_i')) \int_a^b \theta_i, d\mu \| < \epsilon$ for each couple $P = \{(\theta_i, x_i)\}_i$ and $P' = \{(\theta_i, x_i')\}_i$ of δ_{ϵ} -fine (PU)-partitions.

We say that δ_{ϵ} is ϵ -adapted to f.

Main results

1. The $(PU)^*$ -integral

PROPOSITION 1.1. Let $f: [a,b] \to X$ be a $(PU)^*$ -integrable function and, for every $\epsilon > 0$, δ_{ϵ} be a gauge ϵ -adapted to f. For every (PU)-partition $P_{\epsilon} = \{(\theta_{i,\epsilon}, x_{i,\epsilon})\}$ δ_{ϵ} -fine, put $\sigma(f, P_{\epsilon}) = \sum_{i} f(x_{i,\epsilon}) \int_{a}^{b} \theta_{i,\epsilon} d\mu$. If ϵ converges to 0, then the function $\epsilon \to \sigma(f, P_{\epsilon})$ converges; this limit does not depend on the chosen family $\{P_{\epsilon}, \epsilon > 0\}$ and it is called the $(PU)^*$ -integral of f. Denote this limit by $(PU)^* \int_{a}^{b} f$.

Proof. The proof is similar to that in [5, Theorem 2.1]. First, consider an increasing family of gauges (δ_{ϵ}) with $\epsilon > 0$, so $\delta_{\alpha} \leq \delta_{\gamma}$ for $0 < \alpha < \gamma$.

For $0 < \alpha < \gamma$, consider two (PU)-partitions $P_{\alpha} = (\theta_{i,\alpha}, x_{i,\alpha})_{i=1}^n$ and $P_{\gamma} = (\theta'_{j,\gamma}, x'_{j,\gamma})_{j=1}^p$ δ_{α} -fine and δ_{γ} -fine respectively, and, since $\delta_{\alpha} \leq \delta_{\gamma}$, P_{α} is also δ_{γ} -fine.

Using the same construction as in [10, Proposition 1.5], it is possible to construct two partitions $P'_{\gamma} = (h_{ij,\gamma}, x_i)_{i,j}$ and $P''_{\gamma} = (h_{ij,\gamma}, x'_j)_{i,j}$ δ_{γ} -fine with $h_{ij} = (\theta_i \cdot \theta'_j)$ $i = 1, 2, \ldots, n$ $j = 1, \ldots, p$ and such that

$$\|\sigma(f, P_{\alpha}) - \sigma(f, P_{\gamma})\| = \|\sigma(f, P_{\gamma}') - \sigma(f, P_{\gamma}'')\| \le \gamma.$$

Since the family $\{\sigma(f, P_{\epsilon})\}_{\epsilon}$ satisfies the Cauchy-property, it converges.

AN INTEGRAL FOR A BANACH VALUED FUNCTION

Now, let $(\delta_{\epsilon})_{\epsilon>0}$ be a general family of gauges adapted to f and $(\epsilon_n)_{n\in\mathbb{N}}$ be a decreasing sequence of positive numbers converging to 0. The sequence $(\sigma(f, P_{\epsilon_n}))_{n\in\mathbb{N}}$ is convergent.

In fact, define a new family of gauges $(\bar{\delta}_{\epsilon})_{\epsilon>0}$ as follows:

 $\bar{\delta}_{\epsilon} = \delta_{\epsilon_0}$ for every $\epsilon \geq \epsilon_0$,

 $\bar{\delta}_{\epsilon} = \min\{\delta_{\epsilon_0}, \delta_{\epsilon_1}, \dots, \delta_{\epsilon_n}\} \text{ for } \epsilon \in [\epsilon_n, \epsilon_{n-1}[\text{ for every } n > 0.$

The family $(\bar{\delta}_{\epsilon})_{\epsilon>0}$ is increasing and adapted to f. So, the family $\{\sigma(f, P_{\epsilon_n})\}_n$ converges, and the function $\epsilon \to \sigma(f, P_{\epsilon})$ is convergent for $\epsilon \to 0$.

Now, we will prove that the limit is independent from the choice of the family $\{P_{\epsilon}\}.$

Let $(\delta_{\epsilon})_{\epsilon>0}$ and $(\delta'_{\epsilon})_{\epsilon>0}$ be two families of gauges adapted to f, and $\mathcal{P}=\left\{P_{\epsilon}=(\theta_{i,\epsilon},x_{i,\epsilon})_{i}\right\}_{\epsilon}$, $\mathcal{P}'=\left\{P'_{\epsilon}=(\theta'_{i,\epsilon},x'_{i,\epsilon})\right\}_{\epsilon}$ be two families of δ_{ϵ} and δ'_{ϵ} -fine (PU)-partitions, respectively, for varying $\epsilon>0$. For every $\epsilon>0$, define a family of gauges $\{\delta''_{\epsilon}\}$ and a family of δ''_{ϵ} -fine (PU)-partitions $\mathcal{P}''=\left\{P''_{\epsilon}=(x''_{i,\epsilon},\theta''_{i,\epsilon})_{i}\right\}_{\epsilon}$ as follows:

 $\delta_{\epsilon}^{\prime\prime} = \delta_{\epsilon}$ and $P_{\epsilon}^{\prime\prime} = P_{\epsilon}$ if ϵ is a positive rational,

 $\delta''_{\epsilon} = \delta'_{\epsilon}$ and $P''_{\epsilon} = P'_{\epsilon}$ if ϵ is a positive irrational.

The function $\epsilon \to \sigma(f, P''_{\epsilon})$ is convergent for $\epsilon \to 0$, and its limit is equal to the limit of $\{\sigma(f, P'_{\epsilon})\}$ and to the limit of $\{\sigma(f, P_{\epsilon})\}$.

PROPOSITION 1.2. If f, g are two $(PU)^*$ -integrable functions on [a, b], the following classical results for an integral are verified:

- α) f + g and kf, for k real number, are $(PU)^*$ -integrable,
- β) the operator $f \to (PU)^* \int_a^b f$ is linear,
- γ) f is $(PU)^*$ -integrable in every subinterval [c,d],
- δ) if $c \in (a,b)$, then f is $(PU)^*$ -integrable in [a,c] and [c,b] and satisfies the Chasles relation

$$(PU)^* \int_{a}^{b} f = (PU)^* \int_{a}^{c} f + (PU)^* \int_{a}^{b} f.$$

PROPOSITION 1.3. If f is $(PU)^*$ -integrable, then for $\epsilon > 0$ and for every δ_{ϵ} -fine partition $\{(\chi_{I_i}, c_i)\}$, where χ_{I_i} is the characteristic function of the interval I_i , we have

$$\sum_{i} \left\| f(c_{i}) \int_{a}^{b} \chi_{I_{i}} d\mu - (PU)^{*} \int_{x_{i-1}}^{x_{i}} f \right\| \leq \epsilon,$$

where $(I_i = [x_{i-1}, x_i], c_i)_i$ is a δ_{ϵ} -fine partition of [a, b].

Proof. The proof follows the idea of the classical Saks-Henstock lemma, (see [5, p. 922]).

PROPOSITION 1.4. If f is $(PU)^*$ -integrable on [a,b], then the function $F: t \to (PU)^* \int_a^t f$ with $t \in [a,b]$ is absolutely continuous.

Proof. The proof is analogous to that in [5, Theorem 3.3], but (PU)-partitions $\{(\chi_{I_i})\}$ are used instead of the usual partitions.

PROPOSITION 1.5. Let $f: [a,b] \to X$ be a continuous and differentiable function with the derivative $f'(PU)^*$ -integrable on [a,b]. Then

$$(PU)^* \int_a^b f' = f(b) - f(a).$$

Proof. The proof is analogous to that in [5, Theorem 3.4].

PROPOSITION 1.6. If f is $(PU)^*$ -integrable, then the function $F(t) = (PU)^* \int_a^t f$ is differentiable a.e. on [a,b] and F'(t) = f(t) a.e. $t \in [a,b]$.

 $\mathrm{P}\,\mathrm{r}\,\mathrm{o}\,\mathrm{o}\,\mathrm{f}.$ The proof is the same as for the real valued functions (see [7, p. 145]).

2. Integrability of the norm

PROPOSITION 2.1. If f is $(PU)^*$ -integrable, then the function $||f||: [a,b] \to [0,+\infty)$ is Lebesque-integrable and we have the relation

$$\left\| (PU)^* \int_a^b f \right\| \le \int_a^b \|f\| \, d\mu.$$

Proof. By [10], a real function is (PU)-integrable on [a,b] if there is a real number λ such that for every $\epsilon > 0$, there exists a gauge δ on [a,b] with the property that for every δ -fine (PU)-partition $\{(\theta_i,c_i)\}_i$ of the interval [a,b], the following inequality

$$\left| \sum_{i} f(c_{i}) \int_{a}^{b} \theta_{i} d\mu - \lambda \right| \leq \epsilon$$

holds.

The $(PU)^*$ -integrability of ||f|| is an immediate consequence of the definition of $(PU)^*$ -integrability of f and the (PU)-integrability of ||f|| (see[10, Prop. 1.5 and 3.3]). Moreover, observe that a gauge δ_{ϵ} , ϵ – adapted to f, is also ϵ – adapted to f, so the last relation is a consequence of the inequality

$$\left\| \sum_{i} f(c_i) \int_{a}^{b} \theta_i d\mu \right\| \leq \sum_{i} \|f(c_i)\| \int_{a}^{b} \theta_i d\mu$$

for every δ -fine (PU)-partition.

3. Measurability of a $(PU)^*$ -integrable function

PROPOSITION 3.1. If f is a.e. a null function then it is $(PU)^*$ -integrable.

Proof. If f is a.e. a null function, the real function ||f|| is null a.e. and, by the completeness of the measure, it is μ -measurable and μ -integrable and, by [10, Proposition 2.2], it is (PU)-integrable on [a,b]. So, for $\epsilon>0$, there exists a gauge δ_{ϵ} such that

$$\sum_{i} \|f(c_{i})\| \int_{c}^{b} \theta_{i} d\mu \leq \epsilon$$

for each δ -fine (PU)-partition $\{(\theta_i, c_i)\}_i$.

Then, for each couple of δ -fine (PU)-partitions $P = \{(\theta_i, c_i)\}_i$ and $P' = \{(\theta_i, c_i')\}_i$, we have

$$\sum_{i} \|f(c_{i}) - f(c'_{i})\| \int_{a}^{b} \theta_{i} d\mu \leq \sum_{i} \|f(c_{i})\| \int_{a}^{b} \theta_{i} d\mu + \sum_{i} \|f(c'_{i})\| \int_{a}^{b} \theta_{i} d\mu \leq 2\epsilon.$$

So, f is $(PU)^*$ -integrable and, by Proposition 2.1, $(PU)^* \int_a^b f = 0$.

PROPOSITION 3.2. If f is $(PU)^*$ -integrable and if g = f a.e. in [a, b], then g is $(PU)^*$ -integrable and $(PU)^* \int_a^b f = (PU)^* \int_a^b g$.

Proof. It is an immediate consequence of the previous proposition and of the linearity of the integral. \Box

Let us recall the classical definition of the measurability in the strong sense.

DEFINITION 3.1. A function $f: [a, b] \to X$ is measurable if it is the limit of a sequence of simple measurable functions a.e. in [a, b].

PROPOSITION 3.3. If f is a $(PU)^*$ -integrable function, then f is measurable.

Proof. We will use the "Petti's measurability theorem" (see [4, p. 42]).

For $x^* \in X^*$, if f is $(PU)^*$ -integrable, the real function $(x^* \circ f)$ is (PU)-integrable; in fact, for $\epsilon > 0$ there is a gauge $\delta > 0$ such that

$$\sum_{i} \left\| \left(f(c_{i}) - f(c'_{i}) \right) \int_{a}^{b} \theta_{i} \, d\mu \right\| \leq \epsilon$$

for each couple of δ -fine partitions $P = \{(\theta_i, c_i)\}_i$, $P' = \{(\theta_i, c_i')\}_i$.

Consider the relation:

$$\left| \sum_{i} \left[x^{*}(f(c_{i})) - x^{*}(f(c'_{i})) \right] \int_{a}^{b} \theta_{i} d\mu \right|$$

$$= \left| x^{*} \left[\sum_{i} \left(f(c_{i}) - f(c'_{i}) \right) \int_{a}^{b} \theta_{i} d\mu \right] \right|$$

$$\leq \|x^{*}\|_{X^{*}} \left\| \sum_{i} \left(f(c_{i}) - f(c'_{i}) \right) \int_{a}^{b} \theta_{i} d\mu \right\|$$

$$\leq \|x^{*}\|_{X^{*}} \sum_{i} \left\| \left(f(c_{i}) - f(c'_{i}) \right) \int_{a}^{b} \theta_{i} d\mu \right\|$$

$$\leq \|x^{*}\|_{X^{*}} \epsilon.$$

So, by [10, Proposition 1.5], $(x^* \circ f)$ is (PU)-integrable and, hence, μ -measurable.

To prove that f is μ -essentially separably valued, observe that the continuity of the function F on [a,b] implies the compactness of F([a,b]). Thus F([a,b]) is separable.

If $\mathcal{V}(F([a,b]))$ is a closed linear space spanned by F([a,b]), then $\mathcal{V}(F([a,b]))$ is separable and contains the set $\mathcal{H} = \{f(t) : F'(t) = f(t), t \in [a,b]\}$.

So, \mathcal{H} is separable and f is measurable.

4. Convergence theorems

DEFINITION 4.1. A sequence f_n of $(PU)^*$ -integrable functions is uniformly $(PU)^*$ -integrable on [a,b] if for each $\epsilon > 0$ there is δ_{ϵ} such that

$$\sum_{i} \left\| \left(f_n(c_i) - f_n(c_i') \right) \int_{a}^{b} \theta_i \, d\mu \, \right\| \le \epsilon$$

AN INTEGRAL FOR A BANACH VALUED FUNCTION

for each n and for each couple of δ -fine (PU)-partitions $P = \{(\theta_i, c_i)\}_i$ and $P' = \{(\theta_i, c_i')\}_i$.

PROPOSITION 4.1. Let f_n be a sequence of uniformly $(PU)^*$ -integrable functions defined on [a,b], pointwise convergent to a function f. Then

- 1) f is $(PU)^*$ -integrable on [a, b],
- 2) $(PU)^* \int_a^b f = \lim_n (PU)^* \int_a^b f_n$,
- 3) $\lim_{n} \int_{a}^{b} \|f_{n} f\| d\mu = 0.$

Proof.

1) Fix $\epsilon > 0$. Let δ_{ϵ} be a gauge ϵ -adapted to every f_n . So, for every couple $P = \{(\theta_i, c_i)\}_i$, $P' = \{(\theta_i, c_i')\}_i$ of δ -fine (PU)-partitions and for every $n \in N$, we have

$$\sum_{i} \left\| \left(f_n(c_i) - f_n(c_i') \right) \int_a^b \theta_i \, d\mu \right\| \le \epsilon$$

and the limit for $n \to +\infty$ gives the condition of integrability for f.

2) If $P = \{(\theta_i, c_i)\}_i$ is a δ -fine partition, then $\sum_i f_n(c_i) \int_a^b \theta_i d\mu$ converges to $\sum_i f(c_i) \int_a^b \theta_i d\mu$. So, for $\epsilon > 0$ fixed, the following relations are verified for all $n > n_{\epsilon}$, with n_{ϵ} suitable:

$$\left\| \sum_{i} f_{n}(c_{i}) \int_{a}^{b} \theta_{i} d\mu - (PU)^{*} \int_{a}^{b} f_{n} \right\| \leq \epsilon,$$

$$\left\| \sum_{i} f(c_{i}) \int_{a}^{b} \theta_{i} d\mu - (PU)^{*} \int_{a}^{b} f \right\| \leq \epsilon,$$

$$\left\| \sum_{i} f_{n}(c_{i}) \int_{a}^{b} \theta_{i} d\mu - \sum_{i} f(c_{i}) \int_{a}^{b} \theta_{i} d\mu \right\| \leq \epsilon.$$

By these three relations, it follows

$$\left\| (PU)^* \int_a^b f_n - (PU)^* \int_a^b f \right\| \le 3\epsilon.$$

3) The sequence $(f_n - f)_n$ is uniformly $(PU)^*$ -integrable, hence, the sequence $||f_n - f||$ is uniformly (PU)-integrable and converges to 0 (see [11, Proposition 1]).

Dominated convergence theorem. Let $f_n: [a,b] \to X$ be a sequence of $(PU)^*$ -integrable functions on [a,b] converging to f, and let $g \ge 0$ be a μ -integrable real function defined on [a,b] such that $||f_n|| \le g$ a.e. in [a,b] for every n. Then f is $(PU)^*$ integrable on [a,b] and we have:

$$\lim_{n} \int_{a}^{b} ||f_{n} - f|| d\mu = 0, \quad \text{and} \quad \lim_{n} (PU)^{*} \int_{a}^{b} f_{n} = (PU)^{*} \int_{a}^{b} f.$$

Proof. The proof is similar to the proof for real valued functions.

5. Equivalence with the Bochner integral

By [4], a measurable function $f:[a,b]\to X$ is Bochner integrable if there exists such a sequence of simple measurable functions $f_n:[a,b]\to X$ that

$$\lim_{n} \int_{a}^{b} ||f_{n} - f|| d\mu = 0,$$

and the Bochner integral of f is

$$B\int_{a}^{b} f = \lim_{n} \int_{a}^{b} f_{n}.$$

We prove the following result.

PROPOSITION 5.1. A function $f:[a,b] \to X$ is $(PU)^*$ -integrable if and only if it is Bochner-integrable. Moreover, the integrals coincide.

Proof. Suppose that f is Bochner-integrable.

By the measurability of f, there exists a sequence $(s_n)_n$ of simple measurable functions such that $\lim_n \|s_n - f\| = 0$ a.e. in [a, b] and it implies that there exists n_{ϵ} such that for all $n > n_{\epsilon}$ we have $\|s_n\| \leq \|f\| + 1$ a.e. in [a, b], and according to the dominated convergence theorem, f is $(PU)^*$ -integrable. \square

The converse is a consequence of the Bochner's Characterization Theorem and the Propositions 2.1 and 3.3.

Finally, since f is the limit of simple functions and the integral of a simple function is the same for any type of integral, by the dominated convergent theorem, we have the equality of the integrals.

AN INTEGRAL FOR A BANACH VALUED FUNCTION

REFERENCES

- [1] AUBIN, J. P.: Applied Abstract Analysis. John Wiley & Sons, New York, 1977.
- [2] CAO, S.: The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math. 16 (1992), 35–40.
- [3] CONGXIN, W.—XIAOBO, Y.: A Riemann-type definition of the Bochner integral, J. Math. Study 27 (1994), 32–36.
- [4] DIESTEL, J.—UHL, J. J., JR.: Vector Measures. Math. Surveys Monogr., Vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [5] FEAUVEAU, J.C.: A generalized Riemann integral for Banach-valued functions, Real Anal. Exchange 25 (2000), 919–930.
- [6] FREMLIN, D. H.: The generalized McShane integral, Illinois J. Math. 39 (1995), 39-67.
- [7] GORDON, R. A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Stud. Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1994.
- [8] GORDON, R. A.: The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), 557–564.
- [9] PFEFFER, W. F.: The Riemann Approach to Integration: Local Geometric Theory, Cambridge University Press, Cambridge, 1993.
- [10] RICCOBONO, G.: A PU-integral on a compact Hausdorff space, Atti Accad. Sci. Lett. Arti Palermo, V. Ser. 22 (2002), 53–69.
- [11] RICCOBONO, G.: Convergent theorems for the PU-integral, Math. Bohemica 125 (2000), 77–86.
- [12] SKVORTSOV, V. A.—SOLODOV, A. P.: Variational integral for Banach-valued functions, Real Anal. Exchange 24 (1998), 799–805.

Received December 1, 2008

Dipartimento di Matematica Universitá di Palermo Via Archirafi 34 90123 Palermo ITALY

E-mail: ricco@math.unipa.it