Tatra Mt. Math. Publ. **46** (2010), 55–64 DOI: 10.2478/v10127-010-0019-4



# STRICT DENSITY TOPOLOGY OF THE PLANE. CATEGORY CASE

Małgorzata Filipczak — Władysław Wilczyński

ABSTRACT. We study the properties of category density topology of the plane generated by a restricted convergence in the category of double sequences of characteristic functions

$$\{\chi_{((n,m)\cdot(A-(x_0,y_0)))\cap([-1,1]\times[-1,1])}\}_{n,m\in\mathbb{N}}$$

and more interesting topology generated by a strict convergence in the category of the same sequences, which is a natural modification of a previous one. Similar problems for measure density were considered in [M. Filipczak, W. Wilczyński: Strict density topology on the plane. Measure case (in preparation)].

It is well-known that if  $(X, S, \mu)$  is a finite measure space, then the sequence  $\{f_n\}_{n\in\mathbb{N}}$  of S-measurable real functions defined on X converges in measure to a function  $f: X \to \mathbb{R}$  if and only if for each increasing sequence  $\{n_m\}_{m \in \mathbb{N}}$ of positive integers there exists a subsequence  $\{n_{m_p}\}_{p\in\mathbb{N}}$  such that  $\{f_{n_{m_p}}\}_{p\in\mathbb{N}}$ converges to f  $\mu$ -almost everywhere. From the above it follows that the convergence in measure can be described in terms of  $\sigma$ -algebra S and  $\sigma$ -ideal of  $\mu$ -null sets (without the measure  $\mu$  itself). Suppose now that  $(X,\tau)$  is a topological space,  $\mathcal{B} \subset 2^X$  is a  $\sigma$ -algebra of the sets having the Baire property, and  $\mathcal{I} \subset \mathcal{B}$ - a  $\sigma$ -ideal of the sets of first category. We will say that the sequence  $\{f_n\}_{n\in\mathbb{N}}$  of  $\mathcal{B}$ -measurable (having the Baire property) real functions defined on X converges to a function  $f: X \to \mathbb{R}$  in category if and only if for each increasing sequence  $\{n_m\}_{m\in\mathbb{N}}$  of positive integers there exists a subsequence  $\{n_{m_p}\}_{p\in\mathbb{N}}$  such that  $\{f_{n_{m_p}}\}_{p\in\mathbb{N}}$  converges to f except on a set of first category (in abbr. *I*-a.e.). This kind of convergence has been studied in [W]. In the sequel, we will use the convergence in category when  $X = \mathbb{R}$  or  $\mathbb{R}^2$ , in both cases equipped with the natural topology.

The classical density topology has been described in [GNN]. For the convenience of the reader, we will recall basic definition and properties of this topology (compare [O, Chapter 22]).

<sup>2010</sup> Mathematics Subject Classification: Primary 54A10; Secondary 54D10, 54E52. Keywords: category density of the plane, convergence in the restricted sense, separation axioms.

Let  $\mathcal{L}$  be a  $\sigma$ -algebra of Lebesgue measurable subsets of  $\mathbb{R}$  and  $\lambda$ —a linear Lebesgue measure. A point  $x_0 \in \mathbb{R}$  is called a density point of a set  $A \in \mathcal{L}$  if and only if

 $\lim_{h\to 0^+}\frac{\lambda(A\cap[x_0-h,x_0+h])}{2h}=1.$ 

If  $\Phi(A) = \{x \in \mathbb{R} : x \text{ is a density point of } A\}$  for  $A \in \mathcal{L}$ , then the operator  $\Phi \colon \mathcal{L} \to 2^{\mathbb{R}}$  has the following properties:

- 1) for each  $A \in \mathcal{L}$ ,  $\lambda(A \triangle \Phi(A)) = 0$  (the Lebesgue Density Theorem),
- 2) for each  $A, B \in \mathcal{L}$ , if  $\lambda(A \triangle B) = 0$ , then  $\Phi(A) = \Phi(B)$ ,
- 3)  $\Phi(\emptyset) = \emptyset$ ,  $\Phi(\mathbb{R}) = \mathbb{R}$ ,
- 4) for each  $A, B \in \mathcal{L}$ ,  $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$ .

Moreover, the family  $\mathcal{T}_d = \{A \in \mathcal{L} : A \subset \Phi(A)\}$  is a topology of the real line stronger than the natural topology ( $\mathcal{T}_d$  is called the density topology). Observe that  $\mathcal{T}_d \subset \mathcal{L}$  is closed under arbitrary unions, while  $\mathcal{L}$  is only a  $\sigma$ -algebra. Observe also that in fact  $\Phi \colon \mathcal{L} \to \mathcal{L}$ , which follows immediately from LDT.

In [PWW], it was observed that the definition of a density point can be formulated in terms of the convergence in measure. Indeed, if we denote  $n \cdot A =$  $\{nt:t\in A\}$  and  $A-x=\{t-x:t\in A\}$  for  $n\in\mathbb{N},\,x\in\mathbb{R}$  and  $A\subset\mathbb{R}$ , then the following conditions are equivalent for  $A \in \mathcal{L}$  and  $x_0 \in \mathbb{R}$ :

- $\begin{array}{l} \text{a)} \ \lim_{h \to 0^+} \frac{\lambda(A \cap [x_0 h, x_0 + h])}{2h} = 1, \\ \text{b)} \ \lim_{n \to \infty} \frac{\lambda(A \cap [x_0 \frac{1}{n}, x_0 + \frac{1}{n}])}{2 \cdot \frac{1}{n}} = 1, \end{array}$
- c)  $\lim_{n\to\infty} \lambda(n\cdot (A-x_0)\cap [-1,1])=2$ ,
- d) a sequence  $\{\chi_{(n\cdot(A-x_0)\cap[-1,1])}\}_{n\in\mathbb{N}}$  of characteristic functions converges in measure to  $\chi_{[-1,1]}$ .

Since the convergence in measure (as we observed earlier) can be formulated without using the measure, it follows that the definition of a density point requires only to take subsequences from subsequences of the sequence of characteristic functions of expanded and translated sets. This observation was the starting point in [PWW] for the construction of a category analogue of the density topology of the real line. Namely, a point  $x_0$  is an  $\mathcal{I}$ -density point of a set  $A \subset \mathbb{R}$  having the Baire property if and only if the sequence of characteristic functions described in d) converges in category to  $\chi_{[-1,1]}$ . The  $\mathcal{I}$ -density topology is defined as  $\mathcal{T}_{\mathcal{I}} = \{A \in \mathcal{B} : A \subset \Phi_{\mathcal{I}}(A)\}$ , where  $\Phi_{\mathcal{I}}(A)$  denotes the set of all  $\mathcal{I}$ -density points of A.

In this paper, we present a category density-type topology of the plane related to the strong  $\mathcal{I}$ -density topology considered in [CW]. To make the text more selfexplaining, we start with the definition of the strong density topology in  $\mathbb{R}^2$  and its category analogue.

#### STRICT DENSITY TOPOLOGY OF THE PLANE. CATEGORY CASE

Let  $\mathcal{L}_2$  be a  $\sigma$ -algebra of Lebesgue measurable subsets of  $\mathbb{R}^2$  and  $\lambda_2$ —a two-dimensional Lebesgue measure. We say that  $(x_0, y_0) \in \mathbb{R}^2$  is a strong density point of  $A \in \mathcal{L}_2$  if and only if

$$\lim_{\substack{h \to 0+\\ h \to 0+}} \frac{\lambda_2(A \cap ([x_0 - h, x_0 + h] \times [y_0 - k, y_0 + k]))}{4hk} = 1.$$

It is known that if  $\Phi_s(A) = \{(x,y) : (x,y) \text{ is a strong density point of } A\}$  for  $A \in \mathcal{L}_2$ , then the operator  $\Phi_s \colon \mathcal{L}_2 \to 2^{\mathbb{R}^2}$  has the following properties:

- 1) for each  $A \in \mathcal{L}_2$ ,  $\lambda_2(A \triangle \Phi_s(A)) = 0$  (the Lebesgue Density Theorem, see [S, p. 129]),
- 2) for each  $A, B \in \mathcal{L}_2$ , if  $\lambda_2(A \triangle B) = 0$ , then  $\Phi_s(A) = \Phi_s(B)$ ,
- 3)  $\Phi_s(\emptyset) = \emptyset$ ,  $\Phi_s(\mathbb{R}^2) = \mathbb{R}^2$ ,
- 4) for each  $A, B \in \mathcal{L}_2$ ,  $\Phi_s(A \cap B) = \Phi_s(A) \cap \Phi_s(B)$ .

Moreover, the family  $\mathcal{T}_s = \{A \in \mathcal{L}_2 : A \subset \Phi_s(A)\}$  is a topology stronger than the natural topology of the plane called the strong density topology (compare [GNN]).

For our purposes, it will be more convenient to use the following (equivalent) definition of a strong density point (compare [FW]):  $(x_0, y_0) \in \mathbb{R}^2$  is a strong density point of  $A \in \mathcal{L}_2$  if and only if

$$\lim_{\substack{n \to \infty \\ m \to \infty}} \frac{\lambda_2(A \cap ([x_0 - \frac{1}{n}, x_0 + \frac{1}{n}] \times [y_0 - \frac{1}{m}, y_0 + \frac{1}{m}]))}{4 \cdot \frac{1}{n} \cdot \frac{1}{m}} = 1.$$

The following observation will also be useful: a double sequence of real numbers  $\{s_{n,m}\}_{n,m\in\mathbb{N}}$  converges to g if and only if for all increasing sequences of positive integers  $\{n_k\}_{k\in\mathbb{N}}$ ,  $\{m_k\}_{k\in\mathbb{N}}$ , we have  $\lim_{k\to\infty} s_{n_k,m_k} = g$ .

Let now  $\mathcal{B}_2$  be a  $\sigma$ -algebra of subsets of  $\mathbb{R}^2$  having the Baire property and  $\mathcal{I}_2$ —a  $\sigma$ -ideal of first category subsets of  $\mathbb{R}^2$ . We shall use the following denotation:  $(n,m)\cdot A=\left\{(nx,my):(x,y)\in A\right\}$  and  $A-(x_0,y_0)=\left\{(x-x_0,y-y_0):(x,y)\in A\right\}$  for  $A\subset\mathbb{R}^2$ ,  $n,m\in\mathbb{N}$  and  $(x_0,y_0)\in\mathbb{R}^2$ . We say (compare [CW]) that  $(x_0,y_0)\in\mathbb{R}^2$  is a strong  $\mathcal{I}_2$ -density point of  $A\in\mathcal{B}_2$  if and only if a sequence  $\{f_{n,m}\}_{n,m\in\mathbb{N}}$ , where  $f_{n,m}=\chi_{((n,m)\cdot(A-(x_0,y_0))\cap([-1,1]\times[-1,1]))}$ , converges in category to  $\chi_{[-1,1]\times[-1,1]}$ . We will use the following denotation:

$$\chi((n,m)\cdot (A-(x_0,y_0))\cap ([-1,1]\times [-1,1])) \xrightarrow[n,m\to\infty]{\mathcal{I}_2} \chi[-1,1]\times [-1,1]$$

Observe that it means that for all increasing sequences  $\{n_k\}_{k\in\mathbb{N}}$ ,  $\{m_k\}_{k\in\mathbb{N}}$  there exists an increasing sequence  $\{k_p\}_{p\in\mathbb{N}}$  such that  $\{f_{n_{k_p},m_{k_p}}\}_{p\in\mathbb{N}}$  converges to  $\chi_{[-1,1]\times[-1,1]}$   $\mathcal{I}_2$ -a.e. If  $\Phi_{\mathcal{I}_s}(A)=\{(x,y):(x,y)\text{ is a strong }\mathcal{I}_2$ -density point of  $A\}$  for  $A\in\mathcal{B}_2$ , then the operator  $\Phi_{\mathcal{I}_s}\colon\mathcal{B}_2\to 2^{\mathbb{R}^2}$  has the following properties (see [CW]):

- 1) for each  $A \in \mathcal{B}_2$ ,  $A \triangle \Phi_{\mathcal{I}_s}(A) \in \mathcal{I}_2$ ,
- 2) for each  $A, B \in \mathcal{B}_2$ , if  $A \triangle B \in \mathcal{I}_2$ , then  $\Phi_{\mathcal{I}_s}(A) = \Phi_{\mathcal{I}_s}(B)$ ,
- 3)  $\Phi_{\mathcal{I}_a}(\emptyset) = \emptyset$ ,  $\Phi_{\mathcal{I}_a}(\mathbb{R}^2) = \mathbb{R}^2$ ,
- 4) for each  $A, B \in \mathcal{B}_2$ ,  $\Phi_{\mathcal{I}_s}(A \cap B) = \Phi_{\mathcal{I}_s}(A) \cap \Phi_{\mathcal{I}_s}(B)$ .

Also, the family  $\mathcal{T}_{\mathcal{I}_s} = \{A \in \mathcal{B}_2 : A \subset \Phi_{\mathcal{I}_s}(A)\}$  is a topology stronger than the natural topology in the plane  $(\mathcal{T}_{\mathcal{I}_s}$  is called the strong  $\mathcal{I}_2$ -density topology).

In [Ch, p. 18] one can find the following definition: a double sequence

$$\{s_{n,m}\}_{n,m\in\mathbb{N}}$$

of real numbers converges in the restricted sense to s if and only if for each  $\epsilon > 0$  there exists  $n_0 \in \mathbb{N}$  such that  $|s_{n,m} - s| < \epsilon$  whenever  $n + m \ge n_0$ . It is not difficult to observe that the above condition is equivalent to the conjunction of the following three conditions:

- a)  $\lim_{n\to\infty} s_{n,m} = s$  for each  $m \in \mathbb{N}$ ,
- b)  $\lim_{m\to\infty} s_{n,m} = s$  for each  $n \in \mathbb{N}$ ,
- c)  $\lim_{\substack{n\to\infty\\m\to\infty}} s_{n,m} = s$ .

The convergence in the restricted sense of the mean density of A on rectangles has been used for the construction of topologies in [FW].

It is natural also to consider the convergence in the restricted sense of a double sequence of real functions. Using the above observations, we will introduce the following definition:

**DEFINITION 1.** We say that a point  $(x_0, y_0) \in \mathbb{R}^2$  is a point of restricted  $\mathcal{I}_2$ -density of a set  $A \in \mathcal{B}_2$  if and only if:

$$1^o \text{ for each } m \in \mathbb{N}, \ \chi_{((n,m) \cdot (A-(x_0,y_0)) \cap ([-1,1] \times [-1,1]))} \xrightarrow[n \to \infty]{\mathcal{I}_2} \chi_{[-1,1] \times [-1,1]},$$

$$2^o \text{ for each } n \in \mathbb{N}, \ \chi_{((n,m)\cdot (A-(x_0,y_0))\cap ([-1,1]\times [-1,1]))} \xrightarrow[m\to\infty]{\mathcal{I}_2} \chi_{[-1,1]\times [-1,1]},$$

$$3^o \chi_{((n,m)\cdot(A-(x_0,y_0))\cap([-1,1]\times[-1,1]))} \xrightarrow[n,m\to\infty]{\mathcal{I}_2} \chi_{[-1,1]\times[-1,1]}.$$

We say that a point  $(x_0, y_0)$  is a point of restricted  $\mathcal{I}_2$ -dispersion of a set  $A \in \mathcal{B}_2$  if and only if it is a point of restricted  $\mathcal{I}_2$ -density of  $\mathbb{R}^2 \setminus A$ .

EXAMPLE 1. There exists a set  $A \subset \mathbb{R}^2$  having the Baire property such that (0,0) is a point of restricted  $\mathcal{I}_2$ -dispersion of A and for any h > 0, the set  $A \cap ([-h,h] \times [-h,h])$  is of second category.

Let

$$A = \big\{ (x,y) : 0 \le x, \, 0 \le y, \, x \le y \le x + x^2 \big\}.$$

#### STRICT DENSITY TOPOLOGY OF THE PLANE. CATEGORY CASE

For any fixed m and n > m,

$$\begin{split} (n,m)\cdot A\cap \left([-1,1]\times [-1,1]\right) = \\ \left\{(x,y)\in \left([0,1]\times [0,1]\right): \frac{m}{n}x\leq y\leq \frac{m}{n}\bigg(x+\frac{x^2}{n}\bigg)\right\}. \end{split}$$

Hence,  $\lim_{n\to\infty} ((n\cdot m)\cdot A\cap ([-1,1]\times [-1,1])) = \{(0,0)\}\in \mathcal{I}_2$ , and

$$\chi((n,m)\cdot A\cap([-1,1]\times[-1,1]))\xrightarrow[n\to\infty]{\mathcal{I}_2}\chi\phi$$

It means that the set  $\mathbb{R}^2 \setminus A$  fulfills condition 1°. In an analogous way, we check that  $\mathbb{R}^2 \setminus A$  fulfills 2°.

We will prove that (0,0) is a strong  $\mathcal{I}_2$ -dispersion point of A.

Take two increasing sequences  $\{n_k\}_{k\in\mathbb{N}}, \{m_k\}_{k\in\mathbb{N}}$ . We want to show that there exists an increasing sequence  $\{k_p\}_{p\in\mathbb{N}}$  such that

$$\limsup_{p \to \infty} ((n_{k_p}, m_{k_p}) \cdot A) \cap ([-1, 1] \times [-1, 1]) \in \mathcal{I}_2.$$

Observe that there exists a sequence  $\{k_p\}_{p\in\mathbb{N}}$  such that either

$$\lim_{p\to\infty}\frac{m_{k_p}}{n_{k_p}}=a\in(0,\infty),\quad\text{or}\quad\lim_{p\to\infty}\frac{m_{k_p}}{n_{k_p}}=0,\quad\text{or}\quad\lim_{p\to\infty}\frac{m_{k_p}}{n_{k_p}}=+\infty.$$

In the first case, we have

$$\lim_{p\to\infty} \left( (n_{k_p}, m_{k_p}) \cdot A \right) \cap \left( [-1, 1] \times [-1, 1] \right) \subset \left\{ (x, ax) : x \in \left[ 0, \frac{1}{a} \right] \right\} \in \mathcal{I}_2.$$

Indeed, the Hausdorff distance between the set

$$((n_{k_p}, m_{k_p}) \cdot A) \cap ([-1, 1] \times [-1, 1])$$
 and  $\{(x, ax) : x \in \left[0, \frac{1}{a}\right]\}$ 

tends to zero when p tends to infinity. Similarly, one can prove that in the second and the third case, we have

$$\limsup_{p\to\infty} \left( (n_{k_p}, m_{k_p}) \cdot A \right) \cap \left( [-1, 1] \times [-1, 1] \right) \subset \left\{ (0, 0) \right\}.$$

Thus, the set  $\mathbb{R}^2 \setminus A$  fulfils  $3^o$ .

EXAMPLE 2. Let  $B = \{(x, y) : x^2 \le |y| \le \sqrt{|x|}\}$  and  $A = \mathbb{R}^2 \setminus B$ . It is easy to verify that conditions  $1^o$  and  $2^o$  are fulfilled for (0, 0) while (0, 0) is not a strong  $\mathcal{I}_2$ -density point of A.

Let  $\Phi_{\mathcal{I}_r}(A) = \{(x,y) \in \mathbb{R}^2 : (x,y) \text{ is a restricted } \mathcal{I}_2\text{-density point of } A\}$  for  $A \in \mathcal{B}_2$ . We observe at once that  $\Phi_{\mathcal{I}_r}(A) \subset \Phi_{\mathcal{I}_s}(A)$  for each  $A \in \mathcal{B}_2$ .

Remark 1. Observe also that condition 1° holds if and only if

$$\chi((n,1)\cdot (A-(x_0,y_0))\cap ([-1,1]\times [-1,1])) \xrightarrow[n\to\infty]{\mathcal{I}_2} \chi[-1,1]\times [-1,1]$$

The necessity is obvious. To prove the sufficiency, take  $m \in \mathbb{N}$ . To simplify the denotations, put

$$f_{n,m} = \chi_{((n,m)\cdot(A-(x_0,y_0))\cap([-1,1]\times[-1,1]))}.$$

Then, we have

$$f_{n,1} \xrightarrow[n \to \infty]{\mathcal{I}_2} \chi_{[-1,1] \times [-1,1]},$$

SO

$$f_{n,1|[-1,1]\times[-\frac{1}{m},\frac{1}{m}]}\xrightarrow[n\to\infty]{\mathcal{I}_2}\chi_{[-1,1]\times[-\frac{1}{m},\frac{1}{m}]}.$$

However,

$$f_{n,m}(x,y) = f_{n,1}\left(x, \frac{y}{m}\right)$$
 for  $(x,y) \in [-1,1] \times [-1,1]$ ,

SO

$$f_{n,m} \xrightarrow[n \to \infty]{\mathcal{I}_2} \longrightarrow \chi_{[-1,1] \times [-1,1]}.$$

The same remark concerns  $2^{\circ}$ .

**THEOREM 1.** The operator  $\Phi_{\mathcal{I}_r} \colon \mathcal{B}_2 \to 2^{\mathbb{R}^2}$  has the following properties:

- 2) for each  $A, B \in \mathcal{B}_2$ , if  $A \triangle B \in \mathcal{I}_2$ , then  $\Phi_{\mathcal{I}_r}(A) = \Phi_{\mathcal{I}_r}(B)$ ,
- 3)  $\Phi_{\mathcal{I}_r}(\emptyset) = \emptyset$ ,  $\Phi_{\mathcal{I}_r}(\mathbb{R}^2) = \mathbb{R}^2$ ,
- 4) for each  $A, B \in \mathcal{B}_2$ ,  $\Phi_{\mathcal{I}_r}(A \cap B) = \Phi_{\mathcal{I}_r}(A) \cap \Phi_{\mathcal{I}_r}(B)$ .

The proof is straightforward.

**Remark 2.**  $\Phi_{\mathcal{I}_r}((-\infty, 1] \times \mathbb{R}) = (-\infty, 0] \times \mathbb{R}$ , so the analogon of LDT does not hold.

**THEOREM 2.** The family  $\mathcal{T}_{\mathcal{I}_r} = \{A \in \mathcal{B}_2 : A \subset \Phi_{\mathcal{I}_r}(A)\}$  is a topology.

Proof.  $\emptyset$  and  $\mathbb{R}^2$  belong to  $\mathcal{T}_{\mathcal{I}_r}$  by virtue of 3.  $\mathcal{T}_{\mathcal{I}_r}$  is closed under finite intersections by virtue of 4. If  $\mathcal{A} \subset \mathcal{T}_{\mathcal{I}_r}$ , then also  $\mathcal{A} \subset \mathcal{T}_{\mathcal{I}_s}$ , because  $\Phi_{\mathcal{I}_r}(A) \subset \Phi_{\mathcal{I}_s}(A)$  for  $A \in \mathcal{B}_2$ . Hence,  $\cup \mathcal{A} \in \mathcal{T}_{\mathcal{I}_s} \subset \mathcal{B}_2$ . Since  $A \subset \Phi_{\mathcal{I}_r}(A)$  for  $A \in \mathcal{A}$ , we have also  $A \subset \Phi_{\mathcal{I}_r}(\cup \mathcal{A})$  for  $A \in \mathcal{A}$ , because  $\Phi_{\mathcal{I}_r}$  is monotone (which follows immediately from 4)). Finally,  $\cup \mathcal{A} \subset \Phi_{\mathcal{I}_r}(\cup \mathcal{A})$ , which finishes the proof.

**THEOREM 3.** If  $A \in \mathcal{B}_2$ , then  $\Phi_{\mathcal{I}_r}(A) \in \mathcal{B}_2$ .

Proof. Suppose that  $A \in \mathcal{B}_2$  and put

$$\Psi_1(A) = \left\{ (x,y) \in \mathbb{R}^2 : \chi_{((n,1)\cdot(A-(x,y))\cap([-1,1]\times[-1,1]))} \xrightarrow[n\to\infty]{\mathcal{I}_2} \chi_{[-1,1]\times[-1,1]} \right\},\,$$

 $\Psi_2(A)$ 

$$= \left\{ (x,y) \in \mathbb{R}^2 : \chi_{((1,m)\cdot (A-(x,y))\cap ([-1,1]\times [-1,1]))} \xrightarrow[n \to \infty]{\mathcal{I}_2} \chi_{[-1,1]\times [-1,1]} \right\}.$$

Since  $\Phi_{\mathcal{I}_r}(A) = \Psi_1(A) \cap \Psi_2(A) \cap \Phi_{\mathcal{I}_s}(A)$ , it is sufficient to prove that  $\Psi_1(A) \in \mathcal{B}_2$  and  $\Psi_2(A) \in \mathcal{B}_2$ . We shall prove this for  $\Psi_1$ , the proof for  $\Psi_2$  remains being similar.

If  $A \in \mathcal{B}_2$ , then  $A = (G \setminus P_1) \cup P_2$ , where G is a regular open set in the natural topology in  $\mathbb{R}^2$ ,  $P_1, P_2 \in \mathcal{I}_2$ . It is easy to check that  $\Psi_1(A) = \Psi_1(G)$ , so it is sufficient to prove that  $\Psi_1(G) \in \mathcal{B}_2$ .

Let  $G_1 = \operatorname{Int}(\mathbb{R}^2 \setminus G)$ . We have  $\mathbb{R}^2 = G \cup \operatorname{Fr} G \cup G_1$  (a disjoint union).

For any square  $Q = (a, b) \times (c, d)$  we will denote by  $Q^*$  the rectangle

$$(a,b) \times (c-1,d+1).$$

Let  $G_2 = \bigcup Q^*$ , where the union is taken over all squares  $Q \subset G_1$ . Obviously,  $G_2$  is an open set. We will show that  $\Psi_1(G) \cap G_2 = \emptyset$ .

Fix a point  $(x,y) \in G_2$ . There exists a square  $Q = (a,b) \times (c,d) \subset G_1$  such that  $(x,y) \in Q^*$ . There are three cases:  $d \le y < d+1$ , c < y < d or  $c-1 < y \le c$ . If d < y < d+1, then d-y > -1, and

$$(n,1) \cdot (G - (x,y)) \cap ([-1,1] \times (-1,d-y)) = \emptyset$$

for sufficiently big n (such that  $\frac{1}{n} < \min\{b-x, x-a\}$ ). Hence (in the denotation of Remark 1), the sequence  $\{f_{n,1}\}$  does not converge in category to  $\chi_{[-1,1]\times[-1,1]}$  and  $(x,y) \notin \Psi_1(G)$ .

If c < y < d then, for sufficiently big n,

$$(n,1)\cdot (G-(x,y))\cap ([-1,1]\times (c-y,d-y))=\emptyset$$

and again,  $(x, y) \notin \Psi_1(G)$ . The third case is analogous to the first one.

Let  $G_3 = \operatorname{Int}(\mathbb{R}^2 \setminus G_2)$ . Since  $\mathbb{R}^2 \setminus G_2 \subset \mathbb{R}^2 \setminus G_1 = G \cup \operatorname{Fr} G = \overline{G}$  and G is a regular open set, we have  $G_3 \subset G$ . Obviously,  $G_3$  is an open set, so for any  $(x,y) \in G_3$  there exists a square

$$Q = (x - h, x + h) \times (y - h, y + h) \subset G_3.$$

It is not difficult to observe that  $Q^* \subset G$ . From this it immediately follows that  $(x,y) \in \Psi_1(G)$ .

Finally, we have  $G_3 \subset \Psi_1(G) \subset \mathbb{R}^2 \setminus G_2$  and  $\mathbb{R}^2 \setminus G_2 = G_3 \cup \operatorname{Fr} G_2$ , so  $\mathbb{R}^2 \setminus G_2$  differs from  $G_3$  on nowhere dense set. Hence,  $\Psi_1(G) \in \mathcal{B}_2$ .

Theorem 4.  $\mathcal{T}_{\mathcal{I}_r} = \{\emptyset\} \cup \{\mathbb{R}^2 \setminus P : P \in \mathcal{I}_2\}.$ 

Proof. Suppose that  $A \in \mathcal{T}_{\mathcal{I}_r}$  and  $\mathbb{R}^2 \setminus A \notin \mathcal{I}_2$ . Then there exists a square  $Q = (a, b) \times (c, d)$  such that  $Q \cap A \in \mathcal{I}_2$ .

From the proof of the previous theorem, it follows that  $Q^* \cap \Phi_{\mathcal{I}_r}(A) = \emptyset$ , so also  $Q^* \cap A = \emptyset$ . If  $Q_1 = (a, b) \times (e, f)$  is an arbitrary square included in  $Q^*$ ,

then again we have  $Q_1^* \cap A = \emptyset$ . Repeating this argument, we obtain that the vertical strip  $(a, b) \times \mathbb{R}$  is disjoint with A. Starting from the square  $(a, b) \times (c, d)$  for arbitrary  $(c, d) \subset \mathbb{R}$ , we similarly obtain that the horizontal strip  $\mathbb{R} \times (c, d)$  is disjoint with A. Hence,  $A = \emptyset$ .

A similar result for measure has been obtained in [FW].

From the latter theorem, it follows that the topology  $\mathcal{T}_{\mathcal{I}_r}$  is not very interesting. We will consider some modification of definition which leads to the topology between the natural topology and the strong  $\mathcal{I}_2$ -density topology in  $\mathbb{R}^2$ .

**DEFINITION 2.** We say that a point  $(x_0, y_0)$  is a strict  $\mathcal{I}_2$ -density point of a set  $A \in \mathcal{B}_2$  if and only if:

- $1^o \text{ there exists } m_0 \in \mathbb{N} \text{ such that} \\ \chi_{((n,m_0)\cdot (A-(x_0,y_0))\cap ([-1,1]\times [-1,1]))} \xrightarrow[n\to\infty]{\mathcal{I}_2} \chi_{[-1,1]\times [-1,1]},$
- $\begin{array}{ll} 2^o \ \ \text{there exists} \ n_0 \in \mathbb{N} \ \text{such that} \\ \chi((n_0,m) \cdot (A-(x_0,y_0)) \cap ([-1,1] \times [-1,1])) \ \xrightarrow[m \to \infty]{} \chi_{[-1,1] \times [-1,1]}, \end{array}$
- $3^{o} \chi_{((n,m)\cdot(A-(x_{0},y_{0}))\cap([-1,1]\times[-1,1]))} \xrightarrow[n,m\to\infty]{\mathcal{I}_{2}} \chi_{[-1,1]\times[-1,1]}.$

Observe that (similarly like after the previous definition) the convergence for  $m_0$  in  $1^o$  implies the convergence for each  $m \ge m_0$ , and similarly in  $2^o$ .

Let 
$$\Phi_{\mathcal{I}_{st}}(A) = \{(x, y) : (x, y) \text{ is a strict } \mathcal{I}_2\text{-density point of } A \in \mathcal{B}_2\}.$$

**Theorem 5.** The operator  $\Phi_{\mathcal{I}_{st}} \colon \mathcal{B}_2 \to 2^{\mathbb{R}^2}$  has the following properties:

- 1) for each  $A \in \mathcal{B}_2$ ,  $A \triangle \Phi_{\mathcal{I}_{st}}(A) \in \mathcal{I}_2$ ,
- 2) for each  $A, B \in \mathcal{B}_2$ , if  $A \triangle B \in \mathcal{I}_2$ , then  $\Phi_{\mathcal{I}_{st}}(A) = \Phi_{\mathcal{I}_{st}}(B)$ ,
- 3)  $\Phi_{\mathcal{I}_{st}}(\emptyset) = \emptyset$ ,  $\Phi_{\mathcal{I}_{st}}(\mathbb{R}^2) = \mathbb{R}^2$ ,
- 4) for each  $A, B \in \mathcal{B}_2$ ,  $\Phi_{\mathcal{I}_{st}}(A \cap B) = \Phi_{\mathcal{I}_{st}}(A) \cap \Phi_{\mathcal{I}_{st}}(B)$ .

Proof. The proofs of 2), 3) and 4) are straightforward.

1) Let  $A = (G \setminus P_1) \cup P_2$ , where G is open in the natural topology of  $\mathbb{R}^2$ ,  $P_1$  and  $P_2$  are of first category. Then, it is easy to see that  $G \subset \Phi_{\mathcal{I}_{st}}(A) \subset \overline{G}$ , so  $G \triangle \Phi_{\mathcal{I}_{st}}(A) \subset \overline{G} \setminus G \in \mathcal{I}_2$ , and finally,  $A \triangle \Phi_{\mathcal{I}_{st}}(A) \in \mathcal{I}_2$  since  $A \triangle G \in \mathcal{I}_2$ .  $\square$ 

COROLLARY. If  $A \in \mathcal{B}_2$ , then  $\Phi_{\mathcal{I}_{st}}(A) \in \mathcal{B}_2$ .

$$P r o o f.$$
 It follows from 1).

**THEOREM 6.** The family  $\mathcal{T}_{\mathcal{I}_{st}} = \{A \in \mathcal{B}_2 : A \subset \Phi_{\mathcal{I}_{st}}(A)\}$  is a topology stronger than the natural topology  $\mathcal{T}$  in  $\mathbb{R}^2$  and weaker than the strong  $\mathcal{I}_2$ -density topology  $\mathcal{T}_{\mathcal{I}_s}$ .

#### STRICT DENSITY TOPOLOGY OF THE PLANE. CATEGORY CASE

Proof.  $\emptyset$  and  $\mathbb{R}^2$  belong to  $\mathcal{T}_{\mathcal{I}_{st}}$  by virtue of 3). The family  $\mathcal{T}_{\mathcal{I}_{st}}$  is closed with respect to finite intersections by virtue of 4). If  $\mathcal{A} \subset \mathcal{T}_{\mathcal{I}_{st}}$ , then  $\mathcal{A} \subset \mathcal{T}_{\mathcal{I}_{s}}$  and so  $\cup \mathcal{A} \in \mathcal{B}_2$ . From 4) it also follows that if  $A \subset B$ , then  $\Phi_{\mathcal{I}_{st}}(A) \subset \Phi_{\mathcal{I}_{st}}(B)$ , so  $\Phi_{\mathcal{I}_{st}}(A) \subset \Phi_{\mathcal{I}_{st}}(\cup \mathcal{A})$  for each  $A \in \mathcal{A}$ . Since also  $A \subset \Phi_{\mathcal{I}_{st}}(A)$  from the definition of  $\mathcal{T}_{\mathcal{I}_{st}}$ , we immediately have  $\cup \mathcal{A} \subset \Phi_{\mathcal{I}_{st}}(\cup \mathcal{A})$  and  $\cup \mathcal{A} \in \mathcal{T}_{\mathcal{I}_{st}}$ , which means that  $\mathcal{T}_{\mathcal{I}_{st}}$  is closed under arbitrary unions.

The set  $(\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q})$ , where  $\mathbb{Q}$  stands for the set of all rational numbers, belongs to  $\mathcal{T}_{\mathcal{I}_{st}}$  but not to the natural topology in  $\mathbb{R}^2$ .

Let  $E = \bigcup_{k=1}^{\infty} (a_k, b_k)$ , where  $b_{k+1} < a_k < b_k$  for  $k \in \mathbb{N}$ , be a set for which 0 is the right-hand  $\mathcal{I}$ -density point,  $F = E \cup (-E)$  and  $H = (F \times F) \cup \{(0,0)\}$ . Then, (0,0) is a strong  $\mathcal{I}_2$ -density point of H and, since  $H \setminus \{(0,0)\}$  is open in the natural topology on the plane,  $H \in \mathcal{T}_{\mathcal{I}_{st}}$ .

On the other hand, for any fixed  $m_0 \in \mathbb{N}$ , the second category set

$$[-1,1] \times \left( m_0 \cdot \left( \bigcup_{k=1}^{\infty} (b_{k+1}, a_k) \right) \right)$$

is disjoint from the set

$$(n, m_0) \cdot H \cap ([-1, 1] \times [-1, 1])$$

for all  $n \in \mathbb{N}$ . Therefore, condition  $1^o$  from Definition 2 is not fulfilled and, consequently, H does not belong to  $\mathcal{T}_{\mathcal{I}_{st}}$ .

**Theorem 7.**  $(\mathbb{R}^2, \mathcal{T}_{\mathcal{I}_{st}})$  is a Hausdorff but not regular space.

Proof. Since  $\mathcal{T}_{\mathcal{I}_{st}}$  is stronger than the natural topology in  $\mathbb{R}^2$ , it is obviously Hausdorff.

The set  $A = (\mathbb{Q} \times \mathbb{Q}) \setminus \{(0,0)\}$  is  $\mathcal{T}_{\mathcal{I}_{st}}$ -closed and cannot be separated from (0,0). Indeed, if  $U \in \mathcal{T}_{\mathcal{I}_{st}}$ ,  $U \supset A$  and  $U = (G_1 \setminus P_1) \cup P_2$ , where  $G_1$  is open in the natural topology in  $\mathbb{R}^2$ ,  $P_1, P_2 \in \mathcal{I}_2$ , then  $G_1$  is dense in  $\mathbb{R}^2$ . Also, if  $V \in \mathcal{T}_{\mathcal{I}_{st}}$ ,  $(0,0) \in V$ , and  $V = (G_2 \setminus P_3) \cup P_4$ , where  $G_2$  is open,  $P_3, P_4 \in \mathcal{I}_2$ , then  $G_2 \neq \emptyset$ . Hence,  $G_1 \cap G_2 \neq \emptyset$ , and finally  $U \cap V \neq \emptyset$ .

## REFERENCES

- [CW] CARRESE, R.—WILCZYŃSKI, W.: I-density points of plane sets, Ricerche Mat. 34 (1985), 147–157.
- [GNN] GOFFMAN, C.—NEUGEBAUER, C. J.—NISHIURA, T.: Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–505.
- [FW] FILIPCZAK, M.—WILCZYŃSKI, W.: Strict density topology on the plane. Measure case (in preparation).
- [O] OXTOBY, J. C.: Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces, in: Grad. Texts in Math., Vol. 2, Springer-Verlag, Berlin, 1971.

- [PWW] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- [S] SAKS, S.: Theory of the Integral (2nd ed.), in: Monografie Matematyczne, Vol. VII, Warszawa, 1937.
- [Ch] CHELIDZE, V. G.: Some Methods of Summation of Double series and Double Integrals. Izdat. Tbilis. Univ., Tbilisi, 1977. (In Russian)
- [W] WAGNER, E.: Sequences of measurable functions, Fund. Math. 112 (1981) 89–102.

Received November 28, 2009

Faculty of Mathematics and Computer Science University of Łódź Banacha 22 PL-90-238 Łódź POLAND

 $\begin{array}{c} \textit{E-mail} \colon \mathbf{malfil@math.uni.lodz.pl} \\ \mathbf{wwil@uni.lodz.pl} \end{array}$