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ON THE LUKASIEWICZ PROBABILITY THEORY
ON IF-SETS

BELOSLAV RIECAN — JOZEFINA PETROVICOVA

ABSTRACT. A review of main methods of the probability theory on IF-events
is presented in the case that the used connectives are Lukasiewicz

feg=(f+g 1,
fog=(f+g-1)Vo0,

(f, g are functions, f,g : Q@ — (0,1)). Representation theorem for probabilities
on IF-events is given. For sequences of independent observables the central limit
theorem is presented as well as basic results about conditional expectation. Fi-
nally the Lukasiewicz probability theory to the MV-algebra probability theory is
embedded.

1. Lukasiewicz probability

Similarly as in the Kolmogorov probability theory we start with a measurable
space (92,S), where 2 is a non-empty set and S is a o-algebra of subsets of
e, e SAeS=>0Q\AeSA, €Sh=12..)=>U_ A4, €38),
Atanassov theory [I] will be work with the following IF-events, i.e., each pairs

A= (MA; VA) ;
such that
pa,va:Q—(0,1), pat+va<l,
and pa, 4 are measurable, i.e.,
I C Ris an interval = p'(I) €S, v '(I) €S,

14 is called the membership function, v4 is non membership function it is in a
connective with the partial ordering.
We shall use the Lukasiewicz connectives:

if A= (pa,va), B= (up,vp), then
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A®B = ((pa+ps)Al, va+vg—1)V0),
AOB ((ta +pp —1) VO, (va+vg)AL),

a partial ordering in F is given by the
A< B & pa<pup, va>vp.
Evidently,

(0q,1q) is the least element of (F, <),
(1q,0q) is the greatest element of (F,<).

Denote by F the family of all IF-events. Probability is considered as a mapping

P F=J,
(where J = {(a,b); a,b € R, a < b}) satisfying the following conditions:

(i) ,P((leOQ)) = [17 1]7 P((097 19)) = [070}7
(i) A® B = (0a,1q) = P(A® B) = P(A) & P(B),
(if)) A, /A= P(A,) 7 P(A).

Of course, A,, /A means (with respect to the ordering) that
KA, /A, VA, (VA
On the other hand, (a,,b,) / (a,b) means that a,, /" a, b, /.
Of course P(A) is a compact interval on R, denote it by

P(A) = (P*(4),PH(4)) .

It is easy to see that the main results can be described by the mappings
A P°(A), A PHA). We use the terminology from the quantum theory [3].

DEFINITION 1.1. A mapping m : F — (0,1) is called a state if the following
properties are satisfied:

(i) m((1a,00)) =1, m((0g, 1a)) =0,
(i) A® B = (0g,1q) = m((A® B)) =m(A) +m(B),
(iii) A, A= m(A,) ~m(A).
It is easy to see that the following property holds.
PROPOSITION 1.1. Let P : F — J be defined by P(A) = (P’ (A), P*(A)). Then
P is a probability if and only if P°, Pt : F — (0,1) are states.
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Hence, in the paper we shall be interested in states. In Section 2 we present a
representation of states by integrals given by Kolmogorov probability measures
p:S — (0,1). Evidently it gives also a representation theorem for probabilities
on F. As an example of the theory we present in Section 3 the central limit
theorem. In Section 4 we present a way for to work with conditional property
notions. Finally in Section 5 we embed our theory to the MV-algebra probability
theory, hence we show that our theory is in the strong connectives with good
developped probability theory on MV-algebras.

2. Representation

THEOREM 2.1. For any state m : F — (0,1) there exist probability measures
P,Q:S — (0,1) and a € (0,1) such that

m((uA,uA))—/uAdP+a 1—/(,LLA+1/A)dQ

Q Q
Proof. The main instrument in our investigation is the following implication,
a corrolary of (ii):
LgeF, f+g9<1 = m(f,g)=m(f,1-f)+m(0, f+g). (1)
We shall define a mapping P : S — (0,1) by the formula P(A) = m(xa,1 —
xa) Let A, Be€ S, ANB = @. Then xa+xp < 1 hence (xa,1—x4)®(xB,1—
XB) = ((XA +x6—-1)VO0(1l—xa+1—x8)A 1) = (0,1). We obtain
P(4)+ P(B)
(xa,1—xa) +m(xs,1-xB)
((xa,1=xa)® (x5,1 - x5))
:m( XA+ xB)A1, (1—XA+1—XB—1)\/O)
(
(

3

\
S

=m(xa+xB,1—xa—XxB)
m

XauB, 1 —xauB) = P(AUB),
hence P is additive.
Let A, €S (n=1,2,...), A, /' A. Then
XA, /X4, 1 —xa, N 1—xa,
hence by (iii)
P(A,) =m(xa,,1—xa,) /m(xa,1—xa)=P(A4).
Evidently, P(Q2) = m(xq,1 — xo) = m((1,0)) = 1, hence P : S — (1,0)

is a probability measure.
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Now we prove two identities.
Ay, .. A €S, a;€(0,1) (i=1,2,...,n),
Ai N Aj =g (Z 7& .7) = m (Z?:l QiXA;s 1-— Z?:l aiXAi)

= Yimim(oixa,, 1 — aixa,) - (2)
The implication (2) can be proved by induction by the help of (ii).
m(aBxa,l —aBxa) = am(Bxa,1—Bxa). (3)

The identity (B]) will be proved first for n € N such that nx4 < 1 by induction.
If p,g € N, p<gq, then

m <q <15XA> , 1—q (15XA)) =qm (l[?XA, 1- lﬂ)m) ;
q q q q
m (l[?XA, 1- lﬂ)m) = lm(BXAa 1— Bxa),
q q q

m (BﬂXAa 1— BﬂXA) =L (Bxa, 1-8xa),
q q q

hence (3] holds for rational « € (0,1). Let @ € R, a € (0,1). Take «,, € Q such
that o,  a. Then

anXa, /axa, 1—apxa, \(1—axa.
Therefore,
m(aBxa,l —afxa) = nh};o(%ﬂxfx, 1—anfBxa)

= lm a,m(Bxa,1—Bxa) =am(Bxa,1—Bxa)
n—oo
hence, [@]) is proved, too. Particulary, if we give § = 1, then
m(axa, 1 —axa) =am(xa,1—xa).

Let f:Q — (0,1) be simple S measurable i.e.,

f:ZaiXAia A’LES (121727771)7 AZmAj:(Z) (17&])

i=1

Combining (2), (@), and the definition of P we obtain
m(f: 1- f) = Zm(aiXA“ 1- OéiXAi)
i=1
= Z aim(XAiv 1- XAZ)
i=1
i=1

Q
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hence,
mif1-) = [rap.
Q

for any f:Q — (0,1) simple.
If f:Q — (0,1) is an arbitrary S-measurable function, then there exists a

sequence (f,) of simple measurable functions such that f, ,* f. Evidently,
1 — fn, \y 1 — f. Therefore

m(f, 1= f) = lim m(fo, 1= fp) = lim [f,dP= [fdP,
: [

hence

m(f,l—f>—/fdp,

Q

for any measurable f : Q — (0, 1).

Now take our attention to the second term m(0, f 4+ g) in the right side of
equality mentioned in (). First define first M : Q@ — (0,1) by the formula

M(A)=m(0,1—x4).
As before, it is possible to prove that M is a measure. Of course,
M(Q) =m(0,0) =a € (0,1) .

Define Q : § — (0,1) by the formulas

QUA) = ZM(A) = —m(0,1-xa),
m(0,1—-x4) = aQ(A).

As before, it is possible to prove
m0.1-f) = o [fdQ.
Q
for any f: £ — (0,1) measurable, or

m(0,h) = o [(1—h)dQ, (4)
/
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h:Q—(0,1), S— measurable. Combining (1)), (2), and (@) we obtain
m(A) =m((pna,va))
=m((pa,1 = pa)) +m((0, pa + va))

= ,uAdP—i—oa/(l—,uA—uA)dQ
Q Q

= MAdP+Oé(1—/(MA+VA)dQ) .

Q Q

COROLLARY 2.1. ([12]). If
m(A) = f ( adP, uAdP>
[

forsome f:Q— Rand P:S — (0,1), then P = Q, hence there exists a € (0, 1)
such that

m(A) =m((na,va))

—/MAdP—f—oa—a/uAdP—a/yAdP

Q Q Q
= (1—a)/uAdP+a (1—/uAdP) )
Q Q
It was presented in [12].

PROPOSITION 2.1. Let P : F — J be a probability measure. Then there exist
the Kolmogorov probability measures P,Q, R,S : S — (0,1) and constants o, €
(0,1) such that

P({pa,va))
= </MAdP+Oé<1—/(,uA+I/A)dQ> ,
Q Q
/MAdR+B<1—/(uA+uA)dS>>-
Q Q
Proof. A consequence of Theorem 2,11 O
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ExXAMPLE 2.1. ([7]). Define P : F — J by the formula

P(A) = </uAd,P, 1—/uAdP> .

Q Q

Then the mapping is a probability measure according to Proposition 2.1t
it suffices to put @ = 0, § = 1. The example was given in [7].

ExaMPLE 2.2. ([6]). Put @ = 3 =3, P=Q = R =S in Proposition Il Then

P((na,va))
—<%/(MA+1—I/A)CZP, %/(MA+1—VA)dP>
Q Q
—{%/(MA+1—VA)dP}.
Q

The definition was published in [6].

3. Central limit theorem

If we consider a sequence of independent measurements &1, &9, &3, . . ., then for
sufficiently large n the arithmetic mean

1 n
5;@

has approximately normal distribution. We want to translate the assertion from
the classical Kolmogorovian case to the IF-events probability theory.

3.1. Observable

In the Kolmogorov case a probability space (2, S, P) is given. By a random
variable an S-measurable mapping is considered

E: Q= R,

i.e., I C Ris an interval = ¢~ 1(I) € S.
To any random variable its distribution function

F:R—(0,1)
is defined by the formula
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The most frequently types of distributions are discrete and continuous.
In the first case £ has values

a1, 2, Qsg, . ..
with probabilities
P1,P2,P3;, - - -

(i = PUwi€(w) = ai}) = P (€ (i) ,
F(u) = Z Di .

a;<u

hence

In the case the mean value E(§) can be expressed by the formula
E(§) = Z Qip; -

In the continuous case

and

Flu) = /u F(v) dv

B(©) = [af(a)da.

— o0

Sometimes it is convenient in both cases to use the notion (Stieltjes integral)

E(¢) = /:l;dF(:z;),
> xipi, in the discrete case,
B J zf(xz)dz, in the continuous case.

In our case, instead of random variables £ : @ — R, we consider mappings
x:0(J) — F we call it observables (the terminology in taken from the quantum
structures).

DEFINITION 3.1. An observable is a mapping
z:o0(J)—=F
satisfying the following conditions
(i) z(R) = (1,0), z(@) = (0,1),
(ii) ANB=0 = z(A)oz(B)=(0,1), z(AUB) =z(A) & z(B),
(i) 4, A = z(A,) N z(A).
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PRrOPOSITION 3.1. Ifz : 0(J) — F is an observable, and m : F — (0,1) is

a state, then
my=moux:o(J)—(0,1),

defined by me(A) = m(z(A))

s a probability measure.

Proof. First

mq(R) = m((z(R)) = m(1,0) =

((z(R
If ANB =@, then z(A) ® z(B) = (0,1), hence
my(AUB) =m(z(AUB))
(z(4) ® z(B))
(z(A)) +m(x(B))

X

|
3 3 3

2(A) +mg(B).
Finally, A,, ~ A implies x(A,) / x(A) hence
m(x

(An)) / m(x(A)) = m(A).

me(An) =
O

PROPOSITION 3.2. Letx : o(J) — F be an observable, m : F — (0, 1) be a state.
Define F : R — (0,1) by the formula

F(u) = m(z((—o0,u))).
Then F is non-decreasing, left continuous in any point u € R,

ulin;OF(u) =1, UBIPOOF(U) =0.

Proof. If u <w, then

hence
F(v) = m((=o0,u)) =2 m(z((—o0,u))) = F(u),
F is non decreasing. If u,, / u, then
z((—00,un)) / x((—00,u)),
hence
F(up) =m(z((—00,un))) / m(z((—o0,u))) = F(u),
F is left continuous in any u € R. Similarly, u,, /* oo implies

z((=00,un)) /* x((—00,00)) = (1,0).
Therefore,
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Flu,) = m(a((~o0,u,))) A m((1,0)) = 1

for every wu, /* 0o, hence lim, o F'(u) = 1. Similarly we obtain

Up \( —00 implies —u, 00,
hence
m(x((un, —uyn))) / m(x(R)) =1.
1= nh_}rrgo F(—uy)
= nhHH;O m(x((tn, —un))) + nhHH;O F(uy,)
=1+ HILH;OF(un) ;
hence lim,, o F'(u,) = 0 for any u, N\, —oo. O

Remark 3.1. It is very well known that to any distribution function F' : R —
(0,1) there exists exactly one probability measure Ag : o(J) — (0, 1) such that

Ar({a,b)) = F(b) — F(a) forany a,b€ R,a <b.
Of course, our probability measure m, from Proposition 3.1l has the property:
E(b) = m(z((—00,0))) = mq((—00, b))
= ma((—00,a)) +m.((a,b))
= F(a) +ma.((a,b)),
hence

mg({a,b)) = F(b) — F(a).

We have obtained two possibilities for the obtain the same notion. The way
by the help of distribution function is very useful from the point of view of
applications. Analogously with the classical case the notion of mean value can
be defined.

DEFINITION 3.2. An observable z : 0(J) — F is integrable if there exists

E(z) = 7u dF (u) = /Ooid dm, ,

it is square integrable, if there exists

[oe]

/u2 dF (u) .

— o0
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In the case we define dispersion D(x) = o?(z) by the formula

D(z) = /u2 dF(u) — E(x)2
Of course, for the formulation of central limit theorem, we need also the notion
of sum of observables
Ty 42,
It will be realized in the next section.
3.2. Joint observable

If we want to define the sum £ + n of two observables, one of possibilities is
the following formulation. Put

T=(n): Q=R ¢g:R?, gluv)=utv, E+n=goT: Q—>Q.
Namely, it is convenient for the constructing of preimages
E+m~HA) =T""(97'(4)).
In our IF-case, we have two observables
z,y:0(J)— F
hence x + y could be defined as a morphism
(z +y)(A) =h(g7(4)),

where h : 0(J2) — F is a morphism connecting with z,y. In the classical case
it was realized by the formula

TYCx D) =¢(C)ny (D).
In our IF-case, instead of intersection, we shall use the product of IF-sets.
A-B=(pa,va) - (uB,vB)
= (na-pp, 1= (1= va)(1l-vp))
= (pa-pp, va+vp —va-vB).
DEerFINITION 3.3. Let x1,...,2, : 0(J) — F be observables. By the joint ob-

servable of x1,...,x, we consider a mapping h : U(J”) — F (J" being the set
all intervals of R™) satisfying the following conditions:

(i) h(R") = (1,0),
(i) ANB =2 = h(AUB) = h(A) @ h(B), and h(A) ® h(B) = (0,1),
(i) An A= h(An) 7 h(A),
(IV) h(Cl X C2 X o X Cn) = $1(C1) . ZCQ(CQ) el xn(Cn), for any C1,CQ,. ..
.., C,eJ.
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THEOREM 3.1. For any observables x1,...,x, : 0(J) — F there exists their
joint observable h : U(j") —- F.

Proof. We shall prove it for n = 2. Consider two observables =,y : 0(J) — F.
Since x(A) € F, we shall write

z(A) = (xb(A), 1—a2%(4))
and similarly,
y(B) = (y’(B), 1 —¢*(B)).
By the definition of product z(C) - y(D), we have
z(C) -y(D)
= (2"(C), 1-2%0)) - (y’(D), 1= 4*(D))
= (2"(C)-y(D), 1 - (1— (1-2%0)) - (1 - (1 -4*(D))))
= (2"(C) -y’ (D), 1-2%C) - y*(D)).
Therefore, we shall construct similarly

(W (), 1~ BE(K)).

Fix w € Q and put

p(A) = 2*(A)(w),
v(B) =y’ (B)(w),
B (K) (@) = o x v(K)
i X v is the product of probability measures pu, v.
Then
R((C % D)(w) = 1 x v(C x D) = u(C) - (D)
=2"(C) -y’ (D) (w),
hence
R’(C x D) = 2"(C) -y’ (D).
Analogously,
R*(C x D) = 2*(C) - y*(D) .
If we define
hA) = (K (A), 1-h*A), Aca(T?),
then

h(C x D) = (2°(C) -’ (D),1 - 2*(C) - y*(D)) = x(C) - y(D).
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The previous theorem can be applied for obtaining sum
T4+ x, =hog ™t with g(up,...,un) =up + - +up,
or for the arithmetic means

1 . 1
E(xl+"'+xn):hog_l with g(ulvaun)zﬁ<u1++un)

3.3. Central limit theorem

Consider again a probability measure space (£2,S, P) and a sequence (&),
of square integrable, equally distributed variables with E(&,) = a, D(&,) =
02 (n=1,2,...). Then

15 e —
lim P<w e 2 2iz1 Ez(w) iy t) = d(t)
n—0o0 —
/r
for any ¢t € R. (Here D(t) = \/% ffooe_% du.)

We shall translate the theorem in our IF-case.

DEFINITION 3.4. Let m : F — (0,1) be a state, (z,,)22,; be a sequence of
observables, h,, : U(jn) — F be the joint observable of z1,...,z, (n =1,2,...).
Then (x,)y is called independent, if

m(hn(Cy x Cy X -+ x Cn)) =m(z1(C1)) - m(z2(Ca)) - - -m(x,(Ch))
for any n € N and any C4,...,C, € o(J).

THEOREM 3.2. Let (x,)02, be a sequence of square integrable, equally dis-
tributed, independent observables, with

E(z,) =a, D(z,)=0> (n=1,2,...).

Then
nh_}rr()l()m( ( sz - ) ) (1)

for any t € R.
( i=1

(1<
v (E zzzlxz — a) (—00,t) = hy 0, (=00, t).
Now consider a sequence (m o hy,), of probability measures
mohy, :o(J") = (0,1).
By the definition of h,, we have
m o hyi1(A X R) =moh,(A), Aca(T").

Proof Putg,:R" — R
gn(U1, ... up

Q\%
S|
M=
§

v

and
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Therefore (m o hy,), forms a consisting system of probability measures
moh, : J(j") — (0,1).
Consider the space RY, the projections II,, : RN — R"
II,, ((u,)zl) = (Ugy.--yUp)
and the family of all cylinders in RV, i. e., sets of the form
&= {m; (4 neN, Aca(g)}.
By the Kolmogorov consistency theorem there exists a probability measure
P:o(£) —(0,1) suchthat Poll;' =moh, forany ne€ N.

Now return to our sequence (z,,)2% ; of observables. Define on RY the sequence

(&n)pe by the formula
& (()2,) = un

Then
m(z,(C)) =m(hn(Rx -+ x RxC X Rx - xR))
=P(I,'"(Rx - xRxCxRx-xR))
= P(&1(0)).
Therefore, - ~
E(&) = / tdme, (t) = / tdmg, (t)
= E(z,)

and similarly,

Moreover,

P(&71(C) NN &1 (C)) = (TN (Cr x . x )
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hence &1, &9, ... are independent. Put g, : R — R by the formula

gn(t1,...,tn) :g (1 Zti—a> s

i=1

gn(&1,-- - én —7<%Z )—gnoﬂn.

3|

Then
lim P( ((—oo,t))) =®(t) forany t€ R
n—oo
But i n
1
— | = =h .
2 (13omma) =y
Therefore,

i (8 (130 ) (oot = )
= lim P(Hzl(g#«—oo,t))))

n—oo

— lim p( ((—oo,t))) — 3(1).

n—o00

4. Conditional probability

Conditional probability (of A with respect to B) is the real number P(A|B)
such that

P(ANB) = P(B) P(A|B).

When A, B are independent then P(A|B) = P(A), the event A does not depend
on the occuring of event B. Another point of view:

P(ANB) = /P(AB) apP
B
The number P(A|B) can be regarded as a constant function. Constant functions
are measurable with respect to the o-algebra Sy = {@, 1},

%)

{we flwel) = {

Q
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Generally P(A|Sp) can be defined for any o-algebra Sy C S, as an Sy mea-
surable function such that

P(ANC) = /P(A|So)dP, cesy.
C
If Sy = S, then we can put P(A|Sy) = x4, since x4 is Sp-measurable, and

/VXA dP = /XCXA dpP
) )

_/VXAmch_P(AmC).
Q

An important example of Sy is the family of all pre-images of a random
variable £ : Q@ — R

So={¢1B); Beal)}.
In this case we shall write P(A|Sy) = P(A|£), hence
/(P(A|§) P = P(ANC),
c
C=¢YB), Beoa(J).

By the transformation formula

PANE ) = [ meap
§~1(B)
- /gdpg, BeolT).
B
And exactly this formulation will be used in our IF-case

m(A-z(B)) = /p(Ax) dmy = /p(A|:z;) dF.
B B

Of course, we must first prove the existence of such a mapping p(Ajz): R — R.
Recall that the product of IF-events is defined by the formula

K‘L:(/.LK‘/.LL, I/K—f—I/L—I/K‘I/L).
ProrosITION 4.1. If LO M = (0,1), then

K- (LeM)=(K-L)®(K-M)
and
(K-L)® (K -M)=(0,1).
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Proof.
0,1)=LoM = ((pr+pm —1) VO, (v +rvar) A1)

means that
pr+pp <1, vptvy >1.

Therefore,
Le M= (ML+MM A, (VL+VM—1)VO)
= (pr +pm, ve +vm —1).
K-(LeM)=(uk-(pr+pm), vk +vr+vm —1—vk(vp + v — 1))
= (

UKIL + KM, VK + VL —VkVL + VK + Uy — Vg — 1) .
On the other hand,

K- L= (uxpr, vk +vL —VKVL)
K- -M= (,UKMM; VK +Upn — I/KI/M)
K-LOK-M= ((pxpr + prpnr) A,

(I/K + vy — VgV + Vg +VUp UKV — VKVUM — 1) \/O)

Of course,
(nrpr + prpar) = (pr(pr + par))
< (ux-1)<1,
(rcpr + prcpam) N = prpr + prcpnr -
Similarly,
Vi +vL —VkVL + VK + vy — vy — 1
=wk+vm—1)+wrx+ 1 —vm)+vr(l—va) >0.
Therefore,

K- LeK M= (uxpr + prpnm, Vi + Vi, —VkVL + Vi + Uy — VgVp — 1)
=K-(LeM).
Moreover,
K-LOK-M=(uxprL, vi +vr —vkvr) © (uxpar, Vi + Vi — VkVar)
= ((urpL + prpsr —1) VO,
(vik + v —vkvr + v +vp — VgV A 1)
= ((uxc(pr + par) = 1) V0,
((ve +vm) +ve(l—vp) + vk (1 —vp)) A1)
=(0,1).
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ProrosiTION 4.2. IfC,, /" C, then A-C,, St A-C.

Proof. We have uc, 7 po, ve, \( vo. Therefore,

A-Cn = (papc,, 1—(1—va)1—ve,)) 7 (papc,1— (1 —va)(1 —ve))

=A-C.
U

THEOREM 4.1. Let x : 0(J) — F be an observable m : F — (0,1) be a state
and let A € F. Definev :o(J) — (0,1) by the equality

v(B) =m(A-z(B)).

Then v is a measure.

Proof. Let BNC =@, B,C € 0(J). Then
z(B)®z(C) = (0,1),
hence by Proposition 4.1
A-(z(B)®x(C)) = (A-z(B)) ® (A-z(C)),
and therefore,
v(BUC) =m(A-z(BUC))

(A~ (z(B) @ 2(C)))
(4-(B ) (4-2(0)))
(A-2(B)) +m(A-z(0))
(B) +v(C).

Let B, / B. Then z(B,) / x(B), and by Proposition 4.2 A - z(B,)
A - z(B). Therefore,

v(Bn) =m(A-z(By)) /m(A-z(B)) =v(B).

ol
3 8 3

I
N

O

THEOREM 4.2. Let z : o(J) — F be an observable, m : F — (0,1) be a
state, and let A € F. Then there exists a Borel measurable function f: R — R
(i.e., Be€ J = f~1(B) € 0(J)) such that
= /f dmg (5)
B

for any B € o(J). If g is another function satisfying ([B)), then
my ({u ER; f(x)# 9(@}) =0.
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Proof. Define p,v: 0(J) — (0,1) by the formulas
u(B) = ma(B) = m(x(B)), w(B)=m(A-a(B)).
Then p,v:o(J) — (0,1) are measures and v < .

By the Radon-Nikodym theorem there exists exactly one function f : R — R
(with respect to the equality u-almost everywhere) such that

m(4-o(B) = v(B) = [ du

B O

DEFINITION 4.1. Let = : 0(J) — F be an observable A € F. Then the con-
ditional probability p(Ajz) = f is a Borel measurable function (i.e., B € J =
f~1(B) € J) such that

p(Alz) dm, = m(A-z(B))
B
for any B € o(J).

5. Embedding

The aim of the chapter is to show that in our IF-probability theory it can
be used very well developed MV-algebra probability theory. We shall show that
any IF-events space F can be embedded to a convenient MV-algebra.

By the Mundici theorem any MV-algebra can be defined by the help of an
[-group.

DEFINITION 5.1. By an [-group we consider a triple (G, +, <), where
(i) (G,+) is an Abelian group;
(ii) (G, <) is a partially ordered set being a lattice;
(i) a<b=a+c<b+ec
DEFINITION 5.2. An MV-algebra is an algebraic system (M, @, ®, 0, u) satisfy-
ing the following conditions
(i) there exists an l-group (G, +, <) such that
M:{UEG, Ogvgu},
where 0 is the neutral element of (G, +) and u is a strong unit
(i.e., to any a € G there exists n € N such that n < nu);
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(ii) @, ® are binary operations of M satisfying the following identities:

a®b=(a+b)Au,
a®b=(a+b—-u)V0.

THEOREM 5.1. On the space (R%) define a binary operation & by the help of
the equality

and a relation < by
(fi9) < (k)& f<k g>I.

Then ((Rz)ﬂ, +,< ) is an l-group.

Proof. It is easy to see that ((RQ)Q, &J) is commutative and associative. More-
over (0g, 1g) is the neutral element

(fag)w(oﬂvlﬂ): (f+097 g+1Q_1Q) = (fvg)a
and (—f,2 — g) is the inverse element to (f,g),

If
(f,9) < (k,1),
then
f+p<k+p, g+&=1+E,
hence

(f,9) ¥ (&) < (k1) W (p,§).

Return now to the family F of all IF-events on the measurable space (€2, S):

F = {A = (pa,va); pa,va: Q—(0,1),

pa,va are S measurable, pa +va < 1}.
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THEOREM 5.2. Put
M= {A = (a,va); pa,va: Q2 —1(0,1),8 measumble},
A® B =(AWB)A(1,0)
(ha+ps,va+ve —1)A(1,0)
pa+pp) A1, (va+vp—1)V0),

A®B=(AwB—(1,0)) Vv (0,1)

((
(
((ha+pp, va+vp —1)¥(-1,2)) Vv (0,1)
(e
((

A+ug—1, va+vg—1+2-1)Vv(0,1)
pa+ps—1)V0, (va+ve)Al).

Then (M, @, ®, (0,1), (1,0)) is an MV-algebra, F C M and to any state
m:F — ( , 1) there exists a state m : M — (0, 1) such that m|F = m.

Proof. Let A= (ua,va) € M. Then (1u4,0) € F, (0,1 —v4) € F. Define
m(pa,va) =m((pa,0)) —m((0,1—wva)).

Then T satisfies conditions state above. O
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