
Tatra Mt. Math. Publ. 45 (2010), 161–172

tmMathematial Publiations
ON THE USE OF THE LATTICE SIEVE

IN THE 3D NFS

Pavol Zajac

ABSTRACT. An adaptation of the Number Field Sieve (NFS) algorithm to solve

a discrete logarithm problem in degree 6 finite fields (DLP6) requires a modified
sieving procedure to find smooth elements of the three dimensional sieve space.
In our successful solution [P. Zajac: Discrete Logarithms and Degree Six Num-

bere Field Sieve: A practical Approach. VDM Verlag Dr. Müller, Saarbrücken,
2009] we have used a modified line sieving to process a box-shaped region using
a large factor base. In this contribution, we compare the results with an alterna-

tive approach based on the lattice sieving, which was used in most of the classical
factorization and DLP record solutions. Results indicate that this approach does
not scale to the 3D-case, making DLP6 more difficult in practice than comparable
classical DLP cases.

1. Introduction

The Number Field Sieve (NFS) can be used to solve the integer factorization
problem [6] and the discrete logarithm problems in finite fields [4] in a subex-
ponential time. In 2008 we were able to solve a specific instance of the discrete
logarithm problem in degree six finite field with approximately 2240 elements [12].
Our own custom implementation of the (NFS) method was used, because a spe-
cial 3D sieving algorithm is required to apply the NFS to the degree six finite
fields (within the range of parameters of computationally feasible instances).
We are not aware of any (publicly available) solvers of this type, although the
idea behind multidimensional sieving was already formulated by J o u x et al.
in 2006 [4].

In our “record solution” we have solved DLP in the degree 6 field with char-
acteristic p = 1081034284409, which is a 40-bit prime number (the field size is

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60.
Keywords: algebraic numbers, number field sieve, lattice sieve.
This material is based upon work supported under the grant NIL-I-004 from Iceland, Liecht-
enstein and Norway through the EEA Financial Mechanism and the Norwegian Financial

Mechanism.

161

PAVOL ZAJAC

a 240-bit number). The smoothness bound was set to B = Lp6

(

1/3; (8/9)1/3
)

≈

6532326, leading to a sieve with a factor base consisting of 893707 elements
(degree 1 ideals with norm above 128). We have sieved the region with approxi-
mately 240 points in 3 days on 8 computers in parallel. After the post-processing
we have obtained a system of 1077984 linear equations in 854821 unknowns
(modulo an 80-bit prime). The system was reduced to a denser and smaller one
(226059 equations in 223474 unknowns) using a structured Gaussian elimina-
tion, which was solved by the Lanczos algorithm in nearly 13 days on a single
computer.

To extend our computations to a larger field, we need to increase the size
of smoothness bound B along with the sizes of the factor base and the siev-
ing region. The computational time used by the “record solution” is not very
large, thus we have some freedom in the time complexity area. Moreover, the
computation can be easily distributed among independent computational nodes.
However, the sieve requires a lot of memory on a single node to store the whole
factor base and necessary data structures. It is also difficult to process and com-
pute the solution of such a large system of linear equations.

It can be noted that parameters of our solution are comparable to experiments
in a much larger finite field of degree one [3], and similar holds for factorization
results [1]. The main difference is the use of higher degree sieve polynomials,
and the application of the 3D sieve. Furthermore, in our experiments we only
used a 3D sieve based on the line sieve algorithm without the use of large primes
or lattice sieving (as is usual in the classical NFS). To extend our results we
wanted to investigate further these techniques, and their possible application
in our siever. As we show later, the use of these techniques is limited, and
their possible application would require a completely different approach from
the existing solutions.

2. Preliminaries

The basic Discrete Logarithm Problem (DLP) can be defined in a number
theoretic sense as follows: Given a prime p, and two numbers a, b such that
a ≡ bx (mod p), where x is an integer, find x. There exist fast algorithms to
compute modular exponentiation. Thus, if we are able to find difficult instances
of the DLP, we get a one-way function which can be (and is) used to build
asymmetric cryptosystems. The definition of the DLP can be extended to any
cyclic group, as follows:Definition 1. Let (G, ·) be an arbitrary finite cyclic group of order n. Let α be
the generator of G. The generalized discrete logarithm problem is the following:
Given an element β ∈ G, find the unique integer x, 0 ≤ x < n, such that αx = β.

162

ON THE USE OF THE LATTICE SIEVE IN THE 3D NFS

The integer x is called the discrete logarithm of β to the base α, denoted by
x = logα β.

Let p be a (medium sized) prime, and let Fp6 denote a finite field of degree
six with p6 elements. Let G be a subgroup of the multiplicative group of Fp6

with large prime order q. According to the present state of the art we can
solve the DLP in G (denoted by DLP6) either with generic algorithms with
the exponential complexity O

(

q1/2
)

, or with the modified version of the NFS

algorithm with the subexponential complexity O
(

Lp6(1/3, c)
)

[4], where

Lq(α; c) = exp
(

c(log q)α(log log q)1−α
)

.

We use a very specific case of degree six fields because of two main reasons.
Our primary motivation was the solution of the so called XTR-discrete logarithm
problem, which is the basis of the security of the XTR based cryptosystems [7].
The solution of this problem can be found, if we are able to find the solution of the
DLP6. Other motivation is the specific parameter setting and implementation
challenges to solve the DLP6 with NFS. In the asymptotic complexity estimates
of the NFS [2], [4] the fixed degree of the finite field does not make a difference
as the problem size grows to infinity. However, the instances of DLP6 that can
be solved in the present require a different handling of the polynomial selection,
and specific sieving algorithms, which seem more difficult in practice than the
classical NFS [12].

The general NFS algorithm to solve DLP (in the field Fpd of low degree d) is as
follows: Let α, β ∈ C be the roots of two distinct monic polynomials f, g ∈ Z[x]
irreducible over Z. Then K1 = Q(α),K2 = Q(β) are two algebraic number fields.
Let OK denote a ring of integers of the field K. Let t be a common root of f, g
in Fpd . Then there exist two homomorphisms φ : OK2

→ Fpd , and ψ : OK2
→ Fpd ,

defined by sending α, resp. β, to t.

Let g be a generator of G = F∗

pd and let q be a (large) prime dividing order

ofG. Let algebraic number ξ ∈ K1 be B-smooth, i.e., the corresponding principal
ideal can be factored to ideals with norm below B. Furthermore, let the prime
ideal decomposition of this principal ideal be:

(ξ) =
∏

pj
vj .

Let πj ∈ pj, and let h be a class number of K. Using Schirokauer’s logarithmic
maps λ [9], we can transform this equation to

logg(φ(ξ)) ≡

r
∑

j=0

λj(ξ)Λj +
∑

j

vjxj (mod q), (1)

where Λj = logg φ(ωj) is an unknown “virtual logarithm” of the unit ωj , and

xj = h−1 logg φ(πj) is an unknown “virtual logarithm” of prime ideal pj.

163

PAVOL ZAJAC

Let ξ1 ∈ ZK1
and ξ2 ∈ ZK2

be two B-smooth algebraic numbers, and let
φ(ξ1) = φ(ξ2). We call (ξ1, ξ2) a smooth pair. Using homomorphisms φ, ψ and
equations (1), we can write

r1
∑

j=0

λ
(1)
j (ξ1)Λ

(1)
j +

∑

j

v
(1)
j x

(1)
j ≡

r2
∑

j=0

λ
(2)
j (ξ2)Λ

(2)
j +

∑

j

v
(2)
j x

(2)
j (mod q), (2)

with unknown “virtual logarithms” Λ
(1)
j ,Λ

(2)
j , x

(1)
j , and x

(2)
j . We call any equation

in the form (2) a smooth equation. In an efficient NFS implementation smooth
equations are found by the application of the sieving algorithm (see Section 3).

A set of all prime ideals in ZK1
, and ZK2

respectively, lying over primes
pj < B, is called an (algebraic) factor base. If the cardinality of the factor base
is c1+c2, we can have at most C = c1+c2+r1+r2 unknown “virtual logarithms”
in any smooth equation. If we are able to find R > C linearly independent smooth
equations (in the so called sieving phase), we can try to find a non-trivial solution
of the corresponding linear system (the linear algebra phase). By substituting
to equations (1) we can compute logarithms of the corresponding elements of
F∗

pd . Using the descent method [2], [4],then we can compute logarithms of other

elements of F∗

pd (with complexity lower than that of sieving and linear algebra

steps).

The most important parameter of the algorithm is the size of the smooth-
ness bound B. For the asymptotically optimal performance of DLP6 solver,
B should be chosen near Lp6

(

1/3, (8/9)1/3
)

. The complexity of the algorithm is

then proportional to B2. Moreover, if the bound B is chosen incorrectly (both
too small and too large), we cannot find enough linear equations, and the al-
gorithm terminates without success. It should be noted, that in the reported
NFS computations [1] the actual bound used is much smaller than the one given
by the asymptotic estimate, but the experiments use semismooth numbers with
a higher bound for a single large factor. However, in our experiments we were
only able to complete the linear system with B as high as prescribed by the
asymptotic estimate.

To provide more background on the sieve algorithm, we need to provide some
basic facts from the algebraic number theory. Let f(x) be a monic irreducible
polynomial over Z with (a complex) root α. Then Z[α] is a Z-module (lattice)
with dimension deg f . Every element of Z[α] is an algebraic integer in the field
K = Q(α). Let pi be a prime number and let f(x) =

∏

j fi,j(x) (mod pi).
1 Then

pi,j = piZ[α] + fi,j(α)Z[α] are prime ideals (of Z[α]) of degree deg fi,j. We say
that pi,j lies over pi. Prime ideal pi,j ⊂ Z[α] is also a Z-module whose basis are

1In practice, situation is similar if f(x) has a multiple root modulo pi. But this case is more

complicated from the theoretical point of view, so we do not go into the details.

164

ON THE USE OF THE LATTICE SIEVE IN THE 3D NFS

the entries of

pi 0 0 . . . 0 . . .
0 pi 0 . . . 0 . . .
...

...
.

... . . .
a0 a1 . . . ae 0 . . .
0 a0 a1 . . . ae . . .
...

. . .
. . .

. . .
. . .

. . .

·

1
α
...
αe

αe+1

...

,

where e = deg fi,j, and fi,j(x) =
∑

akx
k. The norm of pi,j = pe divides the

norm of any algebraic integer ξ ∈ pi,j. Let q denote the largest prime factor of
the norm N(ξ). Algebraic integer ξ is B-smooth, if q < B. This also means,
that ξ belongs to ideals which lie over primes pi < B that divide N(ξ) (and the
principal ideal generated by ξ is in the intersection of these prime ideals).

Let B be a set of all ideals lying over primes pi < B. Let S ⊂ Z[α] be
a chosen set of points. We call S a sieving region. In our case it is a bounded
three-dimensional sublattice of Z[α]. For each pi ∈ B let us define a function

vi : S → R, vi(ξ) =

{

log pi if ξ ∈ pi,

0, otherwise.

Furthermore, let

v : S → R, v(ξ) =

∑

vi(ξ)

logN(ξ)
.

For each ξ we have v(ξ) ≤ 1. The equality holds for B-smooth algebraic integers
ξ with squarefree norms, thus v can be used to detect all such integers from S

(if we can evaluate the map efficiently). We can also use v in the cases when
we want to consider smooth algebraic integers with square factors, or when
we exclude some of the prime ideals from B. In these cases, smooth algebraic
integers tend to have higher values of v(ξ) than non-smooth ones (although it is
not exactly 1).

To compute v, we use an incremental algorithm. We start with assigning
v(ξ) = 0 for each ξ. Then for each p ∈ B we increment value of v for each
ξ ∈ p∩S . In the next section we describe the sieving in a more algorithmic way.

3. Description of sieving algorithms

3.1. 3D line sieving

In our original experiments we have used a 3D variant of the line sieving
algorithm. It is derived from the original generalization of the line sieving as

165

PAVOL ZAJAC

presented in [10]. The original idea was to recursively contract the dimension
of the sieve space along with selection of the factor base ideal with points
in the contracted space. In a fixed 3D variant, a more efficient version was
presented in [11], and in more details in [12]. We use the box shaped sieving
region [xmin, xmax]×[ymin, ymax]×[zmin, zmax], with xmin=−xmax, ymin=−ymax,
zmin = 1.

The algorithm works as follows:

(1) Store every degree 1 ideal with norm Bmin < pi < B in a factor base.
We do not sieve with ideals with norms below Bmin for efficiency reasons
(they contain too many points, and contribute only with a small fraction
of the total norm). Instead a small constant contribution is expected in
every sieve point (denoted as a sieve tolerance).

We do not use degree 2 ideals as they occur too infrequently in smooth
equations. This allows for a more effective line update mechanism.

(2) Compute the modified HNF representation of every ideal (pi, ri+α) in the
factor base, i.e., get the ideal base in the form (vectors in rows):

pi 0 0
r1 1 0
r2 ymin − ymax 1

 . (3)

Values ymin, and ymax are bounds of the sieve region in the second dimen-
sion. Compute r2 as r2 = (ymin − ymax − r1)r1 mod pi. The first base
vector denotes the update on a single sieve line (the first dimension). The
second one represents an update to the next line in the fixed plane. The
third one is used to move to the next sieve plane with a simultaneous reset
of the sieve line to the beginning of the plane.

(3) Perform the inner sieving algorithm:
(a) For every ideal pi compute the starting point xmin + si on line with

y = ymin, z = zmin.
(b) Sieve the line with fixed y, z by marking xmin + si + kpi within the

sieve region.
(c) If y < ymax update si = (si + r1) mod p1.
(d) If y = ymax, increment z, update si = (si + r2) mod p2, and reset

y = ymin.
(e) Stop the sieve, if z = zmax, or when enough equations is collected,

otherwise goto step 3b.

Step 3b is the sieve core. We need an array of the same size as the length of
the sieve line (xmax − xmin). By marking the point we mean, that we add log pi
(or its approximation) to a counter in the corresponding memory cell (this is
the incremental update of v from section 2). After we process every ideal in the
factor base, we examine the stored counter values. If we accumulated the value

166

ON THE USE OF THE LATTICE SIEVE IN THE 3D NFS

near logN, where N is the estimated norm of the point examined, then the point
is most likely smooth and we report it for further postprocessing.

It is possible to optimize the algorithm by removing inner loops, and by par-
titioning sieve lines to smaller blocks. The exact algorithm (we call it block
sieving) is formally presented as Algorithm 3 in [12]. Both the line sieving algo-
rithm, and its block variant need to place marks on every point in every ideal,
and furthermore, examine every point in the sieve region. The difference is only
in a constant factor. However, most of the points are not useful, e.g., in our
experiments we have examined nearly 240 points to identify approximately 220

points corresponding to smooth equations.

3.2. 3D lattice sieving

The main idea behind the lattice sieve was already formulated by P o l -
l a r d [8]. Instead of sieving the whole region in Z[α], we select as a sieve region
a sublattice of the original region defined by a chosen “special” prime ideal q.
Norm of every point in q has a guaranteed factor q = N(q), which is useful
in some applications, especially in the descent method.

Let B denote the factor base, and let pi,j ∈ B. To sieve the lattice q by pi,j we
need to efficiently enumerate the points in L = pi,j ∩ q. L is again a sublattice
of q. The base of L within q can be effectively computed. Let Q be a matrix
representing the base of the ideal q, and P be a matrix representing the base of
the ideal pi,j. We compute2 the new base by taking the first 3 rows and columns
of the image of the matrix

(

Q
P

)

.

We will call the set of all new bases of ideals relative to q a (q-)transformed
factor base, denoted by Bq.

Instead of sieving all points in the (large) region at once, we sieve higher
number of smaller sublattices defined by different q’s. If the special-q has a large
norm, the sieve region contains a relatively small number of points. If the whole
number points isM, then the transformed region has approximatelyM/q points.
We should note, that it is not necessary for the transformed sieve region to be
just the subset of the original sieve region. However, from the statistical point of
view, the norms (respectively the average expected norm) of algebraic integers
grow as we move further from the origin, and it is less probable to find a smooth
algebraic integer.

If the number of points is too small, we can mark them in the sieving algorithm
directly by enumerating points using the bases from Bq. In this case, it is useful
if transformed bases are stored in the LLL-reduced form, instead of Hermite-like
form. If we have enough points in the transformed region, we can again apply

2Using the NTL library, http://www.shoup.net/ntl/.

167

http://www.shoup.net/ntl/

PAVOL ZAJAC

the line sieving algorithm, but using the bases in Bq. Then these bases should
be used in the form (3) (with appropriate new ymin, ymax).

To consider the efficiency of the sieve, let us choose primes B/2 < q < B as
special primes for the sieve. We expect approximately B/(2 lnB) such primes.
For each special prime we sieve at most 2M/B points. In total we sieve ap-
proximately only M/ lnB points. However, we can only detect those smooth
equations, that have at least one factor higher than B/2. Moreover, we need to
compute the transformed base for each special prime, which imposes too large
penalty, as shown further in the experimental results section.

4. Experimental results

In the current version of the implementation it is difficult to extend much fur-
ther our DLP6 computations beyond the already done case of 240-bit equivalent
finite field. In our largest experiment we have used a factor base with 893707
ideals (only degree 1, 128 < p < 6500000). The whole factor base is stored in
the memory, and is used in the block sieving algorithm. However, most of the
ideals from the factor base are used only in a very small number of equations
(as the probability of prime p being a factor of a random integer of is ∼ 1/p).
The goal of our experiments was to find a way to efficiently reduce the size of
the used factor base during the sieve.

4.1. Using large primes

The first possible solution is to use only a part of a factor base for sieving.
Instead of reporting only points corresponding to smooth numbers, we can also
find points with a single large prime factor (or more of them). When post-
processing the results from the sieve, we have sorted the factor base by the
number of occurrences of a given prime ideal from the most frequent to unused
ones. If we split the factor base after the 400000th ideal (arbitrarily chosen) in
this ordering (into B1,B2), we get the following distribution of the equations:

• 328621 equations have factors only from B1;

• 424553 equations have only a single “large” factor from B2;

• 234823 equations have two “large” factors from B2;

• only 89987 equations have more than two “large” factors from B2 (6 equa-
tions have the maximum of 7 large factors).

It is not possible to solve the linear system using only the 400000most frequent
ideals (unknowns), but it is possible to solve it using only the equations with at
most 2 least frequent ideals.

168

ON THE USE OF THE LATTICE SIEVE IN THE 3D NFS

It is possible to sieve only with a part of the factor base, and to identify the
remaining single large factor by the difference between the sieve counter and the
estimated norm. We have conducted the sieving experiment by sieving the same
region with the factor base consisting of the first 400000 ideals ordered by the
ideal norm (corresponding to the smoothness bound B′= 2757229). Prior to the
sieving, we do not know the exact order according to frequency. However, we can
base the ordering on the expected probability of occurrence, which decreases as
the norm of the ideal grows.

We have obtained the following results:

• 119053 B′-smooth equations were detected (36.2 % of the expected num-
ber);

• 306198 equations with a single large factor B′< p < B were detected;

• we have been able to find at most 18 % percent of the equation with
a single large factor by increasing the sieve tolerance (but at the 75 %
time impact), which still yields only 85 % of the expected number of such
equations.

The difference between the results of the experiments is caused by the different
selection of the ideals for the reduced factor base. More frequently occurring
ideals, which were missing in the second experiment, were not marked in the
sieve. Thus some smooth equations were missed. We do not know a priori which
ideals will occur more frequently, so it is not possible to simply reduce the factor
base and to use just the line sieve with a single large prime limit.

4.2. Special-q sieve

The complementary experiment (to detecting large primes as a remainder of
the sieving) is to use the large primes as a special-q in a lattice sieve. We have
used the same bound B′ as in the previous experiment (so the factor base has
exactly 400000 elements).

We have conducted the experiment in batches of 10000 special-q’s from dif-
ferent starting positions in the factor base. The initialization time to transform
the bases took approximately 9 % of the total sieve time, but we have used
much larger sieve region than necessary. Due to the time complexity we have
only sieved with 180000 large primes. Even then just the time needed for base
transformation was 2.4-time longer than the whole sieving time in the original
solution of the DLP6. This is certainly too large a penalty, and we need a more
efficient base transformation routine.

In the experiments we were interested in the number of equations obtained
from the special-q sieve. As we can see in Table 1, we were unable to find a single
equation for a lot of special-q’s (from 45 % to 57 % of special-q’s). Unfortunately,
this is not necessarily caused by the lack of existing equations, but also by the

169

PAVOL ZAJAC

Table 1. The results of special-q sieve.

Starting No eqs. Good q’s Eqs. per Yield per Yield per

Index found special-q special-q good prime

400000 45.12 % 22.75 % 0.897 0.334 1.532

500000 48.82 % 19.47 % 0.795 0.283 1.452

600000 52.69 % 17.09 % 0.717 0.244 1.429

700000 55.28 % 14.88 % 0.655 0.207 1.394

800000 56.50 % 14.00 % 0.628 0.193 1.377

stochastic detection of the smooth numbers in our implementation, which is
optimized for the line sieve. A more precise detection leads to even slower speed
of the lattice sieve, which is undesirable.

The average number of equations per each special-q used decreases from 0.897
to 0.628. Each new special-q leads to a new unknown in the linear system. Thus,
if we find only a single equation for a given special-q, we can discard it, as it only
increases the system size without adding to the final solution. Only those large
primes, for which we are able to find and least 2 smooth equations are interesting.
We called them “good primes”. The fraction of good primes decreases from 23 %
to 14 %.

The yield from the special-q sieve is the number of new equations minus the
number of new unknowns. The average yield per each sieved special-q in our
implementation and parametric setting is decreasing from 0.334 to 0.193, i.e.,
we need to run 3–5 special-q sieves to obtain a single additional good equation.
Which means that if we want to obtain all missing B′-smooth equations (see the
previous experiment), we should run at least around 1.5 million special-q sieves.
On the other hand, we can consider only the yield from good primes. It drops
from 1.532 new equations to 1.377 per each good special-q prime. This means
we only need around 200000 good special-q sieves to complete the system. Un-
fortunately, we again do not know, how to distinguish such good primes a priori
(without the sieving).

4.3. Lattice sieve with small primes

The last experiment we have conducted was to use the lattice sieve with small
special-q’s. This experiment was based on the observation that just 200 small
primes (0.02 % of the factor base) used in the line sieve (128 < q < 760) are
unknowns in 80 % of the found equations. If we sieve only the points from the
sieve region on these special-q’s, then the total number of points is slightly lower
than in the full sieve. However, if we use small primes, we have a higher chance
of sieving through the same points more than once.

170

ON THE USE OF THE LATTICE SIEVE IN THE 3D NFS

The preliminary sieving with the reduced region was only able to produce
3.6 % of expected equations (39383) in 5.6 % expected sieve time. Thus a full
experiment was aborted, as it would yield only 64 % of equations (if we are
optimistic) in the allotted sieve time, instead of the expected 80 %. This is again
caused by the performance loses due to base transformations. Moreover, about
1 % of the equations were reported duplicately (although their detection and
removal is very fast).

5. Conclusions

The integer factorization and DLP record solutions do not have similar prob-
lems as described in the article. One important difference between these solu-
tions is a much higher probability of a random equation in the sieve region to be
smooth. These differences do not play any role in the asymptotic estimates, but
do seem to be critical in the actual implementation, and in the effect of some
heuristic optimizations of the core NFS. Thus the solution of DLP6 in practice
is more costly then the equivalent DLP/IF problems.

A direct application of the 3D lattice sieve seems too slow to provide some
performance gain. This is mostly caused by the slow factor base transformation,
and less efficient estimation of the norm in the 3D lattice sieve. The use of
large primes and special-q sieve still have a potential be used as a trade-off in
requirements for the storage of factor base and the sieve time, if it is possible
identify good special-q’s a priori the application of the lattice sieve. We are not
aware of some specific properties of such primes, and it is an interesting open
question whether there can be a fast algorithm to identify them a priori to the
sieving.

REFERENCES

[1] AOKI, K.—KIDA, Y.—SHIMOYAMA, T.—UEDA, H.: GNFS factoring statistics

of RSA-100, 110, . . . , 150, April 16, 2004, http://eprint.iacr.org/2004/095.pdf.
[2] COMMEINE, A.—SEMAEV, I.: An algorithm to solve the discrete logarithm problem

with the number field sieve, in: Public Key Cryptography—PKC ’06 (M. Yung et al.,
eds.), 9th International Conference on Theory and Practice of Public-Key Cryptography,
New York, NY, USA, 2006, Lecture Notes in Comput. Sci., Vol. 3958, Springer-Verlag,
Berlin, 2006, pp. 174–190.

[3] JOUX, A.—LERCIER, R.: Improvements to the general number field sieve for dis-

crete logarithms in prime fields: a comparison with the Gaussian integer method,

Math. Comp. 72 (2003), 953–967.

171

PAVOL ZAJAC

[4] JOUX, A.—LERCIER, R.—SMART, N.—VERCAUTEREN, F.: The number field sieve

in the medium prime case, in: Advances in Cryptology—CRYPTO ’06 (C. Dwork, ed.),
26th Annual International Cryptology Conference, Santa Barbara, California, USA, 2006,
Lecture Notes in Comput. Sci., Vol. 4117, Springer-Verlag, Berlin, 2006, pp. 326–344.

[5] The Development of the Number Field Sieve (A. K. Lenstra, H. W. Lenstra, Jr., eds.),
Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin, 1993.

[6] LENSTRA, A. K.—LENSTRA, H. W., JR.—MANASSE, M. S.—POLLARD, J. M.: The

number field sieve, in: The Development of the Number Field Sieve (A. K. Lenstra,
H. W. Lenstra, Jr., eds.), Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin,
1993, pp. 11–42.

[7] LENSTRA, A. K.—VERHEUL, E. R.: An overview of the XTR public key system, in:
Public-Key Cryptography and Computational Number Theory (K. Alster et al., eds.)
Proc. of the Internat. Conference Organized by the Stefan Banach Internat. Math. Center,

Warsaw, Poland, 2000, de Gruyter, Berlin, 2001, pp. 151–180.
[8] POLLARD, J.: The lattice sieve, in: The Development of the Number Field Sieve

(A. K. Lenstra et al., eds.), Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin,
1993, pp. 43–49.

[9] SCHIROKAUER, O.: Virtual logarithms, J. Algorithms 57 (2005), 140–147.

[10] ZAJAC, P.: Generalized line sieve algorithm, in: Proc. of ELITECH ’07, STU Bratislava,
2007.

[11] ZAJAC, P.: Remarks on the NFS complexity, Tatra Mt. Math. Publ. 41 (2008), 79–91.
[12] ZAJAC, P.: Discrete Logarithms and Degree Six Numbere Field Sieve: A practical Ap-

proach. VDM Verlag Dr. Müller, Saarbrücken, 2009.

Received April 30, 2010 Department of Applied Information and

Information Technology

Slovak University of Technology

Ilkovičova 3

SK–812-19 Bratislava

SLOVAKIA

E-mail : pavol.zajac@stuba.sk

172

	1. Introduction
	2. Preliminaries
	3. Description of sieving algorithms
	3.1. 3D line sieving
	3.2. 3D lattice sieving

	4. Experimental results
	4.1. Using large primes
	4.2. Special-q sieve
	4.3. Lattice sieve with small primes

	5. Conclusions
	REFERENCES

