
Tatra Mt. Math. Publ. 45 (2010), 107–136

DOI: 10.2478/v10127-010-0009-6

�

�
�����������	
��	�������

METHODS TO SOLVE ALGEBRAIC EQUATIONS

IN CRYPTANALYSIS

Igor Semaev — Michal Mikuš

ABSTRACT. The goal of the present paper is a survey of methods to solve equa-

tion systems common in cryptanalysis. The methods depend on the equation rep-
resentation and fall into three categories: Gröbner basis algorithms, SAT-solving
methods and Agreeing-Gluing algorithms.

1. Introduction

Let (q, l, n,m) be a quadruple of natural numbers, where q is a prime power.
Then Fq denotes a finite field with q elements and X = {x1, x2, . . . , xn} is a set
of variables from Fq. By Xi, 1 ≤ i ≤ m we denote subsets of X of size li ≤ l.
The system of equations

f1(X1) = 0, . . . , fm(Xm) = 0 (1)

is considered, where fi are polynomials over Fq and they only depend on variables
Xi. Such equations are called l-sparse. A solution to (1) over Fq is an assignment
in Fq to all n variables X that satisfies all equations (1). That is a vector of length
n over Fq provided the variablesX are somehow ordered. The main goal is to find
all solutions over Fq.

A way how the equations are written often determines the Solving algorithm.
Polynomial representation suggests using Gröbner basis family algorithms: they
are surveyed in Section 2. Sparsity of the equations is a quite restrictive factor.
Equation systems common in cryptanalysis which depend on large variable sets
should be somehow represented in computer memory. So anyway they should be
sparse in that or other sense. For instance, suitable sparsity is also low degree

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary: 68W30, 11T71, Secondary:
94A60, 13P15.
Keywords: equation systems, finite fields, Gröbner basis, k-SAT, agreeing, gluing, MRHS,
cryptanalysis.
This material is based upon work supported under the grant NIL-I-004 from Iceland, Liecht-
enstein and Norway through the EEA Financial Mechanism and the Norwegian Financial

Mechanism.

107

IGOR SEMAEV — MICHAL MIKUŠ

polynomials or polynomials that admit only bounded number of non-linear terms
in polynomial representation. In present survey we focus on l-sparse equations
over finite fields. This definition allows more freedom in operating equations
for low l and generally results in a more efficient solution than with Gröbner
basis algorithms. Besides polynomials there are two common ways to write (1):
by CNF formulas and by solution lists to particular equations fi(Xi) = 0. These
methods are complimentary as clauses which make part of the CNF are produced
from the solutions to fi(Xi) �= 0.

SAT-solving methods for operating CNF formulas are surveyed in Section 3.
Representing equations by lists of their local solutions is central for this paper;
see Section 4. We shall review specific to such representation solving techniques,
which may be viewed as extensions to SAT-solving methods. In applications,
at least in those of cryptanalysis, the problem is mostly to solve a set of random-
-looking polynomial equations, in fact they are very structured, rather than
to satisfy a set of randomly chosen clauses. A Boolean polynomial in l variables
has 2l−1 zeros (local solutions) on the average, while any clause with l literals
admits 2l− 1 satisfying assignments. So there should be specific methods taking
that distinction into account. For instance, Agreeing algorithm in Section 4.3
propagates xi1 , . . . , xis �= a1, . . . , as from one equation to another by reducing
the number of local solutions. Obviously, its performance is enhanced if the
number of local solutions is low. The same is true for another main technique
called Gluing in Section 4.5.

2. Gröbner bases

The notion of Gröbner bases was first introduced by B. B u c h b e r g e r in [4],
who also proposed the basic algorithm for computing Gröbner basis from an ar-
bitrary basis of an ideal. The Gröbner bases are general and quite powerful tool
for solving systems of equations such as (1). The uniqueness property of reduced
Gröbner basis of an ideal enables us to separate the computation of Gröbner
basis and its application to any system of equations.

In the first part we introduce the notion and provide background definitions.
We also shortly describe the Buchberger method of computing such Gröbner
basis and state the (most important) uniqueness property.

In the second part we provide survey of existing algorithms for comput-
ing Gröbner basis. These algorithms have exponential theoretical-complexity
bounds, but they achieve much better results in practical applications. The rea-
son behind this fact is that the theoretical bound is derived from an average
system of equations, but the system derived from concrete cryptosystem has

108

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

usually some structure, which can be exploited to reduce the complexity of the
algorithm.

There are many improvements of Buchberger’s algorithm, the most impor-
tant is the F4 algorithm [18], which is a modification of an algorithm due to
D. L a z a r d [27] and the F5 algorithm [19] by J. F a u g è r e .

2.1. Preliminaries

Here we provide the necessary notions admissible ordering, reduction and
Gröbner basis and explain the idea of the basic Buchberger’s algorithm for find-
ing the reduced Gröbner basis for an arbitrary basis of an ideal in Fq[X].

First, recall that a monomial in X = {x1, . . . , xn} is a term in X together
with its corresponding coefficient. We denote set of all terms in X by TX . The
TX can be ordered in several ways, we mention only the two that are used most
in the literature:

(1) total degree ordering (e.g., degree reverse-lexicographical ordering),

(2) lexicographical ordering.

For a polynomial f(X) over Fq we denote by LT (f) the leading term of f with
respect to the used ordering, LC(f) the leading coefficient and by LM (f) we
denote the leading monomial of f.

For any non-zero p, v ∈ Fq[X] and some admissible ordering, we say that
the polynomial p can be reduced mod v if there exists a monomial α · t in p
(α ∈ F \0, t ∈ TX) that is divisible by LT (v). Let u = t/LT (v) and p = α · t+ r,
for some r ∈ Fq[X], then:

p �→v p′, where p′= p− α · t
LM (v)

· v = p− α

LC(v)
· uv.

If p �→v p′ for some v ∈ V = {v1, . . . , vm}, then we say that p is reducible
mod V and write p �→V p′. In the opposite case we say that p is irreducible
mod V (or reduced mod V). By �→∗

V we denote the transitive closure of the
relation �→V .

The reduction introduces an analogy of the classical division of two univariate
polynomials with remainder. The most useful property of the reduction is that
for any set V and an admissible ordering <T , there does not exist an infinite
sequence of polynomials such that

p �→V p1 �→V . . .

In other words the reduction always terminates. Furthermore, it is clear that
if p �→V 0 then p ∈ 〈V 〉. The reversed implication is not true in general. There
exist V and p ∈ 〈V 〉 such that p �→V p′ �= 0. The output of the reduction process
depends on the sequence of chosen polynomials of V. It can be proved that the
property ∀ p ∈ Fq[X] : p ∈ 〈V 〉 ⇔ p �→∗

V 0 is an equivalent to the definition
of Gröbner basis.

109

IGOR SEMAEV — MICHAL MIKUŠ

In the following we describe the simple idea of the construction of a Gröbner
basis from an arbitrary basis V. The basic Buchberger method is based on ad-
dition of a finite number of S-polynomials to the basis V. By the addition of
a polynomial q that is already in 〈V 〉 we are able to reduce some polynomials
that were irreducible mod V while 〈V 〉 remains the same. The S-polynomial of
v1, v2 ∈ Fq[X] is of the form:

S(v1, v2) = lcm
(
LM (v1), LM (v2)

)(v1
LM (v1)

− v2
LM (v2)

)
.

The equivalence of following three facts was proved in [5]:

(i) G is a Gröbner basis,

(ii) ∀ v1, v2 ∈ G: S(v1, v2) �→G 0,

(iii) if p �→G p1 and p �→G p2 then p1 = p2.

The condition (ii) enables us to test the Gröbner property of a basis easily. It
implies that it is sufficient to test the reductions of m(m− 1)/2 S-polynomials.
If all the reductions are equal to 0 then G is a Gröbner basis. The third condi-
tion (iii) implies that the reduction via a Gröbner basis is a canonical function.
In other words, there is one and only one p′ ∈ Fq[X] such that p �→G p′. We will
denote such p′ as Red(p,G).

The Buchberger method for finding a Gröbner basis to an arbitrary basis
V = {v1, . . . , vm} is as follows:

(1) Select an S-polynomial S(vi, vj) and let r = Red(S(vi, vj), Q).

(2) If r = 0, then return to step 1.

(3) If r �= 0, then V = V ∪ {r}. Return to step 1.

This process is repeated until every S-polynomial has been checked. Note that
after adding r to basis V, new S-polynomials were added to the set that needs
to be checked. For the formal algorithm we refer the reader to [4].

The resulting Gröbner basis is not unique and depends on the sequence of
S-polynomials chosen as well as on the sequence of polynomials from V that
were used for the reduction. The following paragraph shows how Gröbner basis
can be simplified (reduced) to a unique set.

For any g1, g2 in a Gröbner basis, where

g1 �= g2 and LT (g2) | LT (g1),

we can leave out polynomial g1 because every reduction with g1 can be done
with g2 instead. With this method we get a minimal Gröbner basis G (for every
g1, g2 ∈ G: LT (g1) � |LT (g2) and LC(g) = 1). All minimal bases have the same
cardinality and their members have the same set of leading polynomials. It can

110

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

be proved that 〈G〉 remains unchanged after reduction of a selected gi by every
gj (with j �= i). On this simple observation is based the following procedure:

g1 �→∗
H1

h1, where H1 = {g2, . . . , gm},
g2 �→∗

H2
h2, where H2 = {h1, g3, . . . , gm},

g3 �→∗
H3

h3, where H3 = {h1, h2, g4, . . . , gm},
...

gm �→∗
Hm

hm, where Hm = {h1, . . . , hm−1}.

The basis G, where any gi ∈ G cannot be reduced by gj for any j �= i is called
reduced Gröbner basis and the uniqueness of the reduced basis was proved by
B u c h b e r g e r in [4].

2.2. Cryptanalysis with Gröbner bases

Finding solution of equation system (1) with the help of Gröbner bases is done
in two steps. First being the construction of the reduced Gröbner basis and the
second extracting the solution from the set of polynomials in the Gröbner basis.

2.2.1. Solving system of equations

Let V =
{
(z1, . . . , zn) ∈ Fq | fi(z1, . . . , zn) = 0, for i = 1, . . . ,m

}
denote the set

of all solutions of the system (1). It should be noted that in the cryptanalysis
of some cryptosystem, the system of equations has usually one solution. The
relationship between a Gröbner basis and the system of equations (1) with q = 2
(i.e., solutions over F2) is stated in the following theorem [20]:

������� 1� The reduced Gröbner basis of I= 〈f1, . . . , fm, x2
1−x1, . . . , x

2
n−xn〉,

I ⊂ F2[X] describes all solutions of V. Particular useful cases are:

(i) V = ∅ (no solution) if and only if G = [1].

(ii) V has exactly one solution (a1, . . . , an)
if and only if G = {x1 − a1, . . . , xn − an}, where ai ∈ F2.

2.3. Algorithms for computing the Gröbner basis

The basic algorithm leaves a lot of space to further improvements, e.g., the
selection of a particular S-polynomial or the selection of a sequence of reduc-
tors qi. The main “waste of time” during the algorithm is the reduction of
S-polynomials—most of them are reduced to zero and are not added to the re-
sulting basis. To avoid such reductions, the Buchberger criteria were introduced
in [7] and improved in [19]. The criteria allow the detection of some polynomials
that will be reduced to zero and therefore reduce the time-complexity [21].

111

IGOR SEMAEV — MICHAL MIKUŠ

The F4 algorithm
The F4 algorithm [18] keeps the selection step unchanged (e.g., with the Buch-
berger criteria) and improves the reduction phase with the help of sparse linear
algebra methods. The main idea is to represent a set of polynomials by a ma-
trix over Fq with columns representing terms and rows representing polynomials.
The mr,c entry in the matrix is thus the coefficient of cth term in rth polynomial.

The polynomials in the matrix are members of the basis and all S-polynomials
that are to be tested. The matrix is reduced to the row echelon form and resulting
non-zero polynomials (reductions of S-polynomials) are added to the basis. This
is repeated until no polynomials are added to the basis. The result is a Gröbner
basis of the input ideal.

Another improvement lies in computation of successive “truncated” Gröbner
bases, where the basis Gd+1 is computed from Gd. By [18], we define a truncated
Gröbner basis Gd to be the result of the Buchberger algorithm truncated to
degree d (i.e., we discard all critical pairs of total degree greater than d). There
exists a D0 such that for all d > D0, Gd = GD0

.

An estimate of D0 given by the Nullstellensatz can be used to analyze the
time-complexity of the F4 algorithm. However, the real performance is much
better in practice since D0 is often overestimated. When published, the F4 al-
gorithm was several times faster than any other previous implementation. The
worst-case complexity, however, remains the same as the one of the basic Buch-
berger method.

The F5 algorithm
For both the basic Buchberger and the F4 algorithms, 90% of computation time
is spent on reductions to zero. The F5 algorithm [19] focuses on optimizing the
Buchberger criteria, so that a significant part of these reductions is avoided.
Under the assumption that the input system of polynomials forms a regular
sequence (or semi-regular sequence [3]), there are no reductions to zero. Exper-
iments show that this is the case for most systems in practice.

However, this algorithm has a drawback in the performance of the reduction
step. Due to the signature compatibility conditions, many reductions are forbid-
den and even when the polynomials are top-reduced, their tails are left almost
unreduced, which prolongs the reduction [24]. The F5 algorithm was the most
efficient algorithm for computing Gröbner bases and has been successfully used
to break several cryptosystems.

Although the F5 is not generally faster than the F4 algorithm, it is expected
to excel for polynomial systems when the number of equations is less or equal
to the number of variables. This was the case in the HFE system cryptanalysis
or HFE (80 bits) Challenge [20].

Complexity of the F4, F5 algorithms
The running time of the Gröbner basis algorithm may be bounded by a value

112

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

proportional to
(
n+D
D

)ω
ground field operations, where ω is the exponent in ma-

trix multiplication complexity. The parameter D, called regularity degree, is
only computed for semi-regular equations as they are defined in [3]. Theoretical
complexity of the Gröbner basis algorithms as F4 or F5 on general polyno-
mial equation systems remains unknown. It is also unknown whether an average
equation system behaves semi-regularly, though this seems plausible [3].

The estimate simplifies to
(
n
D

)ω
for any Boolean equations [3]. In case of

sparse(l-sparse) Boolean equation systems each polynomial admits bounded
number of monomials. Then each row in Macaulay matrices has bounded number
of nonzero terms. Wiedemann algorithm [45] may likely be used to do the linear
algebra step. Then one can put ω = 2. The regularity degree for semi-regular
Boolean equations for m = n was estimated as D ≈ αdn, where αd depends on
the equations maximal algebraic degree d. So that α2 = 0.09, α3 = 0.15, α4 = 0.2
and so on; see [2]. By estimating the binomial coefficient, the complexity is then
22H(αd)n up to a polynomial factor, where H(α) is the binary entropy function.
One can see that only for quadratic semi-regular polynomials the running time
is lower than 2n, brute force complexity, and equal to 1.832n bit operations.
The best heuristic bound is then of order 1.724n [43], where the method was
combined with variable guessing.

A variant of the F4 algorithm
Recently, a variant of the F4 algorithm was proposed in [24]. The variant uses
a (slightly modified) run of the F4 algorithm on a system of equations to reduce
the complexity of the F4 algorithm on other similarly-looking systems. The first
run is a kind of precomputation, where a list of all relevant polynomial multiples
(coming from the critical pairs) is stored. This list is used for all other polynomial
systems to determine which critical pairs are to be selected for the reduction
phase.

However, the strategy proposed in this variant has a non-zero probability
that the result will not be a Gröbner basis. As analyzed in [24], the probability

of a correct result is greater than (q−1
q)

q−1
q n and results from practical exper-

iments were presented that indicate a “quite good” probability for even small
finite fields. This variant is better than the F5 algorithm only if the base field is
large enough and several Gröbner bases have to be computed. Specifically the
F5 remains the fastest for equation systems over F2.

2.3.1. Comparison of F4, F5 with XL

Another general method for solving system (1) is the linearization technique.
The terms of degree greater than one are substituted for new variables and the
resulting linear (sparse) system is then solved. The restriction of the linearization
technique is the condition that the number of linearly independent equations has

113

IGOR SEMAEV — MICHAL MIKUŠ

to be approximately the same as the number of different terms of the system.
The extended linearization (XL) algorithm [12] deals with this problem. The XL
algorithm generates new equations by multiplying the original equations by some
prescribed monomial xk. The resulting system is solved and terms containing
one variable are eliminated last. The success of this method is based on the
assumption that the elimination process yields at least one univariate equation.
The equation is then solved and the original system can be simplified. The
algorithm is repeated until the solutions for all variables are found.

Another aspect of the XL algorithm is studied in [1], where XL is compared
to the F4 and F5 algorithms. In comparison to the F4, the XL also produces
a Gröbner basis, but considers a greater number of polynomials than is the
number of critical pairs in the F4 algorithm.

The experimental comparison between XL and the F5 (on semi-regular se-
quences) shows that the size of the matrix in XL is much larger than the matrix
in the F5 for different settings (q = 2 and large q). That means that the F5
algorithm is faster and that the XL has a lower efficiency than was expected
in [12].

3. Algorithms for solving k-SAT problems

3.1. Definitions

Let X be a set of n Boolean variables. Conjunctive normal form(CNF) is
a Boolean algebra formula written as a conjunction of clauses:

F =
∧
j

(
x(dj1) ∨ y(dj2) ∨ . . . ∨ z(djkj

)
)
, (2)

where one clause is a disjunction of variables X or their negations. Here x(0) = x
and x(1) = x̄, they are called literals. Generally, the clause length may vary, but
we only consider clauses of length kj ≤ k. In that case F is called k-CNF.
Efficiently computing a 0, 1-assignment to variables X that makes (2) true is
k-SAT problem.

Let f(x1, . . . , xl) = 0 be any Boolean equation in k Boolean variables and
(a11, . . . , a1l), . . . , (as1, . . . , asl) be all binary vectors such that f(ai1, . . . , ail)=1.
The vector (b1, . . . , bl) is a solution to the equation f(x1, . . . , xl) = 0 if and only
if it is a satisfying assignment for the conjunctive normal form

Ff =
(
x
(a11)
1 ∨ . . . ∨ x

(a1l)
l

)
∧ . . . ∧

(
x
(as1)
1 ∨ . . . ∨ x

(asl)
l

)
.

Given the system of Boolean (q = 2) equations (1), one constructs a CNF F
which is a conjunction of Ffi . Then (b1, . . . , bn) is a solution to (1) if and only
if this vector is a satisfying assignment for F. In non Boolean case(q > 2), each

114

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

variable from Fq is written as �log2 q� Boolean variables. The number of Boolean
variables in each equation is at most k = �log2 q�l. Therefore any (1) may be
solved with a SAT-solver after writing that as a k-CNF.

3.2. Resolution

Introduced in [16]. If two formulas x ∨ P and x̄ ∨ Q are true, then P ∨ Q is
true. This observation is used to simplify (2) by eliminating variables. Also one so
proves that 2-SAT problem is polynomial time: if N is the number of satisfying
assignments for a 2-CNF F, then they are computed in N polynomial time
operations. Let x be any relevant variable, and

x ∨ P1, . . . , x ∨ Pr, x̄ ∨Q1, . . . , x̄ ∨Qs

are all clauses, where x appears, and R1, . . . , Rt are all other clauses in F. Let
s = 0 first. Then any satisfying assignment to R1 ∧ . . . ∧ Rt is extended to one
or two satisfying assignments to F. That depends on whether or not there is at
least one false clause Pi under that assignment. Then x should be assigned 1
otherwise both 0, 1 work. Similarly, for r = 0. In case r > 0, s > 0, one recursively
finds a satisfying assignment to R1 ∧ . . . ∧ Rt ∧ . . . ∧ (Pi ∨ Qj) ∧ . . . The latter
does not depend on x. If Pi are all true and at least one Qj is false under that
assignment, then x is assigned 0. If Qj are all true and at least one Pi is false,
then x is assigned 1. Otherwise, when Pi and Qj are all true, then x is assigned
both 0, 1. As the clause length is always at most 2, we get that N satisfying
assignments are constructed in N of polynomial operations.

3.3. DPLL algorithm

Introduced in [16], [17]. This is a guess-and-determine algorithm. One chooses
a non assigned variable x, make a decision on which value 0 or 1 it should be
assigned. That is expanded over clauses which contain x or x̄ by modifying them:
remove the clause or remove the literal x or x̄ from that clause depending whether
the literal is 1 or 0. Force values of variables in one-literal clauses (unit-clause
rule) and repeat the above step. If no values of new variables are found, then
assign a new variable. Assume a contradiction (the same variable was assigned
different values or, equivalently, all literals in a clause are assigned 0) is observed.
Then assign x another value or backtrack to previously assigned variable. All
solutions (assignments satisfying all clauses) are produced with that algorithm.

A probabilistic version of the DPLL algorithm, enhanced with bounded res-
olution, was evaluated in [30]. Let

μk =

∞∑
j=1

1

j(j + 1
k−1)

.

115

IGOR SEMAEV — MICHAL MIKUŠ

It is shown that in case of uniquely satisfiable k-CNF the algorithm running

time is bounded by 2(1−
µk
k−1)n+o(n) for each k ≥ 3 and the error probability o(1)

as n tends to ∞. The same was shown true for general k-CNF in case k ≥ 5.

3.4. Practical improvements

They are mostly in choosing properly variables to assign, accelerating ex-
pansion of assigned values with watched literals, and reducing the search space
by analyzing conflict clauses; see [28], [47]. The last direction is here presented
in some detail. In DPLL algorithm current partial assignment is written as a list
of expressions x = a(n), where x is a variable, a its value and n the tree level,
where the variable was assigned or forced by satisfying one-literal clauses. After
a conflict was observed, one constructs a conflict clause containing information
on the assignment which imply the conflict. Conflict clauses are combined with
resolution and used to reduce search space. Find below an example from [28]
after slightly changing the notation. Assume the clause database consists of

w1 = x̄1 ∨ x2, w2 = x̄1 ∨ x3 ∨ x9, w3 = x̄2 ∨ x̄3 ∨ x4,
w4 = x̄4 ∨ x5 ∨ x10, w5 = x̄4 ∨ x6 ∨ x11, w6 = x̄5 ∨ x̄6,
w7 = x1 ∨ x7 ∨ x12, w8 = x1 ∨ x8, w9 = x̄7 ∨ x̄8 ∨ x̄13,
. . .

Let the current partial assignment be

x9 = 0(1), x10 = 0(3), x11 = 0(3), x12 = 1(2), x13 = 1(2), . . .

One now assigns x1 = 1 at level 6. Then the algorithm follows the first impli-
cation graph in Figure 1, where the edges are labeled with indexes of clauses
which produce the implications. For instance, w1 implies x2 = 1(6) after the
assignment x1 = 1(6). After forcing x5 = 1, the clause w6 implies x6 = 0. That
is in conflict with forcing x6 = 1 from w5. One now finds which assignments
led to that conflict by walking over the implication graph backwards. That is
x1 = 1, x9 = 0, x10 = 0, x11 = 0. Therefore, conflict clause x̄1 ∨ x9 ∨ x10 ∨ x11

is added to the clause database. That is to be satisfied as any other database
clause. One now assigns x1 = 0 at level 6 and the algorithm follows the sec-
ond implication graph in Figure 1 and gets a conflict. That produces a new
conflict clause x1 ∨ x̄12 ∨ x̄13. New clauses provide with two advantages. First,
they increases the probability of producing one-literal clauses and therefore the
probability of forcing variable values. Secondly, clauses combined by resolution
may result in reducing the search space. For instance, the resolvent of the above
conflict clauses is

x9 ∨ x10 ∨ x11 ∨ x̄12 ∨ x̄13.

All these variables were assigned on the current branch, where the maximal
level of assignment was 3. Therefore, after the assignment x9 = 0(1), x10 =
0(3), x12 = 1(2), x13 = 1(2) the assignment x11 = 0(3) was wrong and one

116

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

Figure 1. Implication graphs.

takes the assignment x11 = 1(3) or gets a conflict if the assignment x11 = 0(3)
was forced. We conclude that after these two conflicts at level 6 one does not
backtrack to level 5(chronological backtracking), but directly to level 3(non-
chronological backtracking).

3.5. Local search

Introduced in [29], [37]. Given a CNF formula, guess an initial assignment
to all variables. Repeat 3n times: if the formula is satisfied, then terminate; let R
be some clause not being satisfied by the current assignment, then pick one of its
literals uniformly at random and flip its value in the current assignment. It is
shown in [37] that the probability of finding a satisfying assignment is at least
2
3

(
k

2(k−1)

)n
, where each clause has at most k literals. Therefore the expected

number of this procedure repetitions before the satisfying assignment is found
is proportional to

(
2 − 2

k

)n
. A deterministic version of local search is presented

in [15], its running time is bounded by
(
2− 2

k+1

)n
operations.

3.6. Worst case bounds for k-SAT

A survey of the current worst case bounds is found in [23]. Some of them are
shown in the first line in Table 1.

3.7. SAT-solvers competition

See the web-page http://www.satcompetition.org/ for the best current soft-
ware SAT-solvers.

3.8. Algebraic cryptanalysis of DES with SAT-solvers

Any equations with discrete variables may be written as k-CNF formulas
by introducing new variables. If, for instance, polynomials are sparse combi-
nations of low degree monomials, then the number of new variables should
be relatively low. In that case an efficient SAT-solver may be faster in solv-
ing equations then polynomial based Gröbner bases algorithms, implemented

117

IGOR SEMAEV — MICHAL MIKUŠ

in MAGMA; [13], [14]. However, in many cases when MAGMA did not crash
due to out of memory, it over-performs the method of [13]. The reason for that
is probably SAT-solvers are not efficient in solving linear algebra problems.

Typical equation in DES is S(X +K) = Y +Z, where S is a 6× 4 nonlinear
S-box, X is a 6-bit part of a 32-bit state, which is 32-bits right most part of the
DES 64-bit states, K is 6-bit part of the 48-bit round key, Y and Z are 4-bit
parts of the previous and subsequent 32-bit states.

To write a suitable CNF representing one uses the fact: Let S(x1, . . . , xn) =
(y1, . . . , ym), where n = 6,m = 4 for each DES S-box. For any subset T of mono-
mials in x1, . . . , xn, y1, . . . , ym there are at least |T | − 2n linearly independent
equations fi(x1, . . . , xn, y1, . . . , ym) = 0 involving only monomials in T ; [14].
With fi = 0 the equations are written in CNF for each S-box and therefore for
each equation S(X + K) = Y + Z. However the best result is produced with
using low-gate count representation of DES in [26]. Overall, the authors estimate
6-round DES may be broken in time equivalent to 248 DES encryptions, instead
of average 255 by brute force.

4. Agreeing-Gluing methods

Methods studied in this section are mostly guess-and-determine algorithms.
In sparse equations the number of guesses on a big enough variable set Y and the
time to produce them is much lower than q|Y | due to the Search algorithm which
may be treated as an extension to the DPLL algorithm. Let Y be an ordered
string of variables and a be an Fq-vector of the same length. We say that a is
a vector in variables Y, or Y -vector, if the entries of a may be assigned to the
variables Y, for instance, in case of fixation.

4.1. Search algorithm

Given Y ⊆ X, the Search algorithm finds all Y-vectors over Fq that do not
contradict equations (1), e.g., by running Agreeing algorithm in Section 4.3
or 4.4. In case Y = X they are all solutions to (1). The Search algorithm follows
a tree defined by any subset sequence Y1 ⊆ Y2 ⊆ . . . ⊆ Ys = Y. The root is labeled
by ∅, the vertices at level 1 ≤ k ≤ s are labeled by partial assignments W (k)
produced by the Agreeing algorithm after the variables Yk were assigned. The
Agreeing algorithm has two outcomes. First, an inconsistence is observed. Then
the algorithm backtracks to the previous assignment. Second, no inconsistence
is observed and the values of some variables beyond Yk might be learned. Then
new variables get assigned and so on.

Vertices a and b at subsequent levels are connected if a is a sub-vector of b.
A sequence of subsets that minimizes the running time may be taken. However,

118

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

in practice, it is not necessary to prescribe from the beginning which variables
to assign. Asymptotical estimates in [42] suggest Y = Zr, the set of variables
that appear in at least r of equations (1) for appropriate r. The subset sequence
is then Zr(r) ⊆ Zr(r + 1) ⊆ . . . ⊆ Zr(m) = Zr, where Zr(k) denote the set
of variables that appear in at least r of first k equations.

4.2. Equation representation

We look for the set of all solutions to (1) over Fq, so polynomials fi of de-
gree at most q− 1 in each variable are only considered. Obviously, the equation
fi(Xi) = 0 is determined by the pair (Xi, Vi), where Vi is the set of Xi-vectors,
where fi is zero. Such representation was first introduced in [46] and indepen-
dently in [31].

Example. Let 1+x1+x3+x1x3+x1x2x4+x1x3x4+x2x3x4 = 0. The solution
set is the columns of the right hand side matrix in⎛

⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

0 0 0 0 0 1 1 1
0 0 1 1 1 1 0 1
0 0 0 0 1 0 1 1
0 1 0 1 1 1 1 1

⎤
⎥⎥⎦ . (3)

In case the equation is the part of a system, then right hand side columns are

called local solutions.

4.3. Agreeing procedure and Agreeing1 algorithm

Agreeing procedure was called local reduction in [46] and a variation of that
was called graph algorithm in [31]. Two equations

Ei = (Xi, Vi) and Ej = (Xj , Vj)

are transformed to (Xi, V
′
i) and (Xj , V

′
j), where each V ′

i consists of those vectors

in Vi whose projection to Xi ∩Xj occur in the projections of Vj . If Xi ∩Xj = ∅,
then the procedure does not apply. It is shown in [41] that some pairs Ei, Ej can
be avoided too even if Xi ∩ Xj �= ∅. This reduces memory requirement of the
Agreeing algorithm. The equations E1, . . . , Em are vertices in an equation graph
G. Vertices Ei and Ej are connected by the edge (Ei, Ej) labeled with Xi,j =
Xi∩Xj �= ∅. The Agreeing procedure, being applied to Ei and Ej , implements a
kind of information exchange between them through the edge (Ei, Ej). That is
for Y ⊆ Xi,j the information Y �= a is transmitted from Ei to Ej or backwards.
Some edges are obsolete in this respect and may be removed, remaining edges are
called maximal. The subgraph with minimal number of maximal edges is called
minimal and denoted Gm. It is not uniquely defined. The following algorithm
constructs Gm.

119

IGOR SEMAEV — MICHAL MIKUŠ

Figure 2. Edges removing.

(1) For every label Y ⊆ X find all edges (Es, Er) in G such that Y ⊆ Xs,r.
Denote a subgraph of G with all such edges (Es, Er) and involved vertices
by GY. We remark that GY is a complete graph.

(2) Find the set VY of edges (Es, Er) in GY , where Xs,r = Y. Find a subset
WY ⊆ VY such that GY is still connected after removing the edges WY and
WY has the largest number of edges. We remark that WY is not uniquely
defined, and taking different WY produces different minimal subgraphs.

(3) Remove the edges WY from G for all Y and get Gm.

Example. Let X1 = {x1, x2, x4}, X2 = {x1, x2, x3}, X3 = {x2, x3, x5}, X4 =
{x3, x4, x5} and X5 = {x1, x4, x5}. The equation graph G has 5 vertices and
10 edges: (E1, E2) labeled with X1,2 = {x1, x2}, (E2, E3) labeled with X2,3 =
{x2, x3}, and so on. Five edges (E1, E3), (E1, E4), (E2, E4), (E2, E5), (E3, E5)
may be removed as they are obsolete for the Agreeing algorithm; see Figure 2.

In Agreeing1 method the procedure is pairwise applied to reduce the size of Vi

in the whole system. There is only a very small chance to get the size of each Vi

so low, e.g., 1, and to solve the equations.

4.4. Agreeing2 algorithm

This is an asymtotically faster variant of the Agreeing algorithm, see [33].

Precomputation. For each edge(maximal edge) (Ei, Ej), where Xi,j �= ∅, let
r = |Xi,j|. For each r-string address b an unordered tuple of lists{

Vi,j(b);Vj,i(b)
}

(4)

is precomputed. The lists Vi,j(b) and Vj,i(b) consist of vectors from Vi and re-
spectively Vj whose projection to variables Xi,j is b. The list of tuples is sorted

120

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

using some linear order. The algorithm marks vectors, which are wrong solu-
tions, in tuples (4). We say list Vi,j(b) is empty if it does not contain any entries
or all its entries get marked.

Agreeing. The algorithm starts with the first tuple
{
Vi,j(b);Vj,i(b)

}
, where

just one of two lists is empty. If no such tuples are found, then the equations are
pairwise agreed, then a guess is generally necessary to start marking.

(1) Let the current tuple be
{
Vi,j(b);Vj,i(b)

}
, where Vi,j(b) is empty, while

Vj,i(b) is not.

(2) For every unmarked a in Vj,i(b) do: mark a in Vj,i(b), for every edge (max-
imal edge or where Xj,k �= ∅) (Ej , Ek) do: compute the projection d of a
to variables Xj,k, mark a in Vj,k(d), the tuple

{
Vj,k(d);Vk,j(d)

}
is now

current.

(3) If just one of Vj,k(d) or Vk,j(d) is found empty, then apply step 1. If not,
then backtrack to the tuple

{
Vi,j(b);Vj,i(b)

}
. Take another edge (Ej , Ek)

or another unmarked a in Vj,i(b). If Vj,i(b) is already empty, then backtrack
to the tuple last to

{
Vi,j(b);Vj,i(b)

}
. If the former was the starting tuple,

then start a new walk with the next tuple, where just one of the lists is
empty or terminate walking.

(4) All vectors that have been earlier marked in the tuples are now deleted
from Vi.

We remark that each tuple {a1, . . . , ar; b1, . . . , bs} implements two implica-
tions. First, marking(with a bar) all {a1, . . . , ar} implies marking all {b1, . . . , bs},
which is denoted ā1, . . . , ār ⇒ b̄1, . . . , b̄s, and vice versa b̄1, . . . , b̄s ⇒ ā1, . . . , ār.
Agreeing2 algorithm simply expands marking through these implications. Equa-
tions (1) are pairwise agreed if and only if in all {Vi,j(b);Vj,i(b)} the lists both
are empty or both non-empty. If for at least one edge (Ei, Ej) the lists Vi,j(b)
are empty for all b, then the system is inconsistent.

Example. Let three Boolean equations E1, E2, E3 be given in algebraic normal
form:

1 + x3 + x1x2 + x1x3 + x1x2x3 = 0,

1 + x1 + x4 = 0,

1 + x3 + x2x4 + x3x4 + x2x3x4 = 0.

Represent them as lists of solutions:

a1 a2 a3
x1 0 0 1
x2 0 1 1
x3 1 1 0

,
b1 b2

x1 0 1
x4 1 0

,

c1 c2 c3
x2 0 1 1
x3 1 0 1
x4 0 1 0

. (5)

121

IGOR SEMAEV — MICHAL MIKUŠ

Figure 3. The marking expansion.

The list of tuples:

P = {a1, a2; b1}, Q = {a3; b2}, R = {b1; c2}, T = {b2; c1, c3},
U = {a1; c1}, V = {a2; c3}, W = {a3; c2}.

As there are no tuples with just one list empty, a guess is necessary to start
marking. Assume x4 = 0. So b1 should be marked. We now have two tuples,
where just one of the lists is empty: {b̄1; a1, a2} and {b̄1; c2}. According to the
algorithm, take the first of two. Then a1 get marked in {b̄1; a1, a2} and {a1; c1}.
Therefore, c1 get marked in {ā1; c1} and then in {c1, c3; b2}. Now backtrack
and mark a2 in {b̄1; ā1, a2} and {a2; c3}, and so on. The sequence of marking is
represented in Fig. 3. Instances in all tuples have been marked. The guess was
wrong. We alternatively could add a new tuple {b1; ∅} to the tuple list and start
marking. Similarly, all tuple lists become empty in case x4 = 1. The system has
no solution.

4.5. Gluing

In Gluing procedure the solutions of two equations (X1, V1) and (X2, V2)
are combined. That produces (X1 ∪X2, V), where V = V1 ◦ V2 are all common
solutions to the equations in common variablesX1∪X2. In Boolean case Gluing is
viewed an extension to resolution in Section 3.2. Let x∨P and x̄∨Q be formulas,
where P and Q do not depend on x. Let U1, U2 be satisfying assignments to x∨P
and x̄ ∨ Q in relevant variables. Then U = U1 ◦ U2 are all common satisfying
assignments to both the formulas. The projection of U to all variables besides x
are all satisfying assignments to P ∨Q.

Gluing procedure alone may be used to solve the system (1). Gluing1 method
[38] is based on computing solutions Uk to the equation subsystems:

f1(X1) = 0, . . . , fk(Xk) = 0 for k = 1, . . . ,m.

One extends instances Uk to instances Uk+1 = Uk ◦Vk+1 by walking throughout
a search tree. In the end, all system solutions are Um. The running time is
determined by the maximal of |Uk|, say |Uk0

|.
Gluing2 is a time-memory trade-off variation [38]. Let Uk,t denote the solu-

tions to t equations

122

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

fk+1(Xk+1) = 0, . . . , fk+t(Xk+t) = 0

in variables Xk+1 ∪ . . .∪Xk+t. One separately computes Uk, and Uk,t and then
Uk+t = Uk ◦Uk,t. At least one of Uk, Uk,t should be kept in memory to efficiently
compute Uk+t. Let k, t < k0 < k + t. Then, on the average, the algorithm
running time is determined by the maximal of |Uk|, |Uk,t| and |Uk+t|. One may
compute k1 such that |Uk1

|, |Uk1,k1
| and |U2k1

| are equal on the average; see
Section 5. The algorithm running time is then determined by |Uk1

|.

4.6. Improved Agreeing-Gluing algorithm

Let r ≥ 1 and Zr denote variables that occur in at least r equations. We
take the largest r, where Zr is not empty. Then Zr-vectors that do not contra-
dict to any of equations (1) are generated by the Search algorithm. We denote
them Wr. For each a ∈ Wr the variables Zr are substituted by the entries of a.
New l-sparse equations in a smaller variable set X \ Zr result. The above step
is recursively applied to compute Wr−1 and so on. It is enough to obtain W2.
The Agreeing-Gluing algorithm [40] is a particular case of the method for r = 1.

4.7. Agreeing-gluing versus SAT-solvers

A variant of the Search algorithm was described in [35]. It adapted watch-
ing and dynamic learning by conflict analysis, which are important features
of modern SAT-solvers; see Section 3.4. The experiments showed that for ran-
domly generated instances of n 5-sparse Boolean equations in n ≤ 170 variables,
the number of guesses while walking over a search tree is significantly lower than
with MiniSat.

4.8. Syllogism rule algorithm

Introduced in [46]. Assume a system of Boolean equations. Let x and y be
variables which appear in one particular equation fi(Xi) = 0. One may compute
all projections to x, y of its local solutions. If the projection set consists of 4
different 2-bit strings, then nothing to do. If there is one projection, then the
variables x, y are determined and other system equations, where x or y are rele-
vant, are modified accordingly. In case of two projections, one learns x = y(a) for
a constant a or one of the variables is determined. If there are three projections,
then the equation x(b) ∨ y(c) = 1 is deduced, where b, c is a missing projection.
A database of such implications is collected. They are combined by resolution,
as x(b) ∨ ū = 1 and z(d) ∨ u = 1 imply x(b) ∨ z(d) = 1; see Section 3.2, or by
substitution with x = y(a). New implications may reduce the number of local
solutions in other system equations. That in turn may generate new 2-variable
implications and so on. The method is combined with initial variable guessing
otherwise it is unlikely to have any such implication. Experiments in [46] demon-
strated that Syllogism rule algorithm may overcome a combination of guessing
with local reduction (called Agreeing1 algorithm here).

123

IGOR SEMAEV — MICHAL MIKUŠ

5. Average complexity bounds

5.1. Probabilistic model

For numbers q, n, m, and l1, . . . , lm ≤ l uniform distribution on instances (1)
is assumed. As any particular information on equations is beforehand assumed
unknown, this looks the most fair probabilistic model to compute expected com-
plexities. The uniformity means:

(1) the equations in (1) are independently generated. Each equation fi(Xi) = 0
is determined by

(2) the subset Xi of size li taken uniformly at random from the set of all

possible li-subsets of X, that is with the probability
(
n
li

)−1
,

(3) and the polynomial fi taken uniformly at random and independently of Xi

from the set of all polynomials of degree ≤ q − 1 in each of variables Xi.

In other words, with the equal probability q−qli.

Running time of any deterministic solving algorithm is a random variable under
this probabilistic model. We assume that m/n tends to d ≥ 1, while q and l are
fixed.

5.2. Gluing algorithms estimates

These are explicit estimates. For a positive real number α let

f(z) = ln(ez + q−1 − 1)− α ln(z).

By zα we denote the only positive root of the equation ∂f
∂z (z) = 0. Also let

g(α) = f(zα)− α+ α lnα− α ln q

l
.

It was proved in [38] that the expectation of |Uk|, the number of solutions to
the first k equations in (1), is bounded by (qeg(α) + ε)n, where α = kl/n and ε
is any positive real number as n tends to infinity. By computing the maximum
of g(α) one proves that the Gluing algorithm expected complexity is bounded
by (q1−γq,l + ε)n +m bit operations, where

γq,l =
1

l
+
(
q

1
l − 1

)
logq

(
1− q−1

1− q−
1
l

)
.

One may compute α1, a positive root to g(α) = g(2α) and put k1 = �α1n/l�.
The Gluing2 algorithm expected complexity is then at most (qeg(α1) + ε)n +m
for any positive real number ε as n tends to infinity. Table 1 data provides
comparison in running time of different algorithms in the Boolean case q = 2 for
m = n and a variety of l.

124

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

Table 1. Algorithms’ running time: q = 2 and m = n.

l 3 4 5 6

the worst case, [23] 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation, [38] 1.262n 1.355n 1.425n 1.479n

Gluing2, expectation, [38] 1.238n 1.326n 1.393n 1.446n

Agr.-Gluing, expectation, [40] 1.113n 1.205n 1.276n 1.334n

r 2 3 3 4

Weak IAG, expectation, [42] 1.029n 1.107n 1.182n 1.239n

5.3. Improved Agreeing-Gluing algorithm estimates

A weaker version of the Improved Agreeing-Gluing algorithm was estimated
in [42]: let r be a parameter. The vectors Wr are generated by the Search algo-
rithm. The variables Zr are substituted by the entries of a ∈ Wr. New equations,
in case r ≥ 3, are encoded by a CNF formula and Local search algorithm is
applied to find all solutions. In contrast to the Gluing algorithm bounds, the
complexity estimates are now not explicit. For any of q, l, d, r one finds the max-
imal value of a real valued function in at most three variables with MAPLE.
One then finds r, where it is minimal. The two last lines in Table 1 show the
optimal value of r and the expected complexity of the Weak IAG algorithm.

5.4. Average time complexity conjecture

The problem of solving (1) is NP-hard as it is polynomially equivalent to
k-SAT problem for k = �log2 q� l and �log2 q�n variables. A drastic improvement
over the last few years in average time complexity of solving (1) is observed;
see Table 1. That might indicate that There exists an algorithm whose average
time complexity on uniformly random instances (1) is sub-exponential in n as q
and l are fixed, m ≥ n while n tends to infinity, [42]. We call this statement
Average time complexity conjecture, if it is proved that it will have far-reaching
consequences in the field of cryptanalysis and in computing in general.

6. Linear algebra variation: Equations with multiple right
hand sides

6.1. Definitions

Linear equations with multiple right hand sides were introduced in [33].
Motivation comes from cipher equations. One non-linear equation in stream
cipher Trivium: xy = u + v + w + z, [8]. Each solution satisfies one of four
linear equations: the left hand side is the same, but the right hand side has four
variations.

125

IGOR SEMAEV — MICHAL MIKUŠ

⎛
⎝ x

y
u+ v + w + z

⎞
⎠ =

⎡
⎣ 0 0 1 1

0 1 0 1
0 0 0 1

⎤
⎦ .

Generally, let f(X) = 0 be any polynomial equation and

AX = a1, . . . , ar (6)

a set of linear equation systems. Then (6) is called a Multiple Right Hand
Side (MRHS) linear equation for f(X) = 0 if the set of solutions to f(X) = 0 is
the union of solutions to particular linear systems AX = ai.

6.2. Constructing MRHS

In practice, there is often no need to construct (6) for f as it is already
given in the definition of the problem or very easy to deduce. This is so for the
AES and many other modern ciphers; see [33], [34], [36]. Generally, the space
G(f) of Boolean n-vectors a satisfying f(X + a) = f(X) is computed. Non
Boolean case is treated in [36]. This computation takes at most 22n n-bit xor’s
in the worst case. The space G(f) is of rank m for some 0 ≤ m ≤ n. There
exist n-vectors b1, . . . , bm, a basis for G(f). Take any matrix A of size k × n
and of rank k = n −m such that Abi = 0 for all i = 1, . . .m. The matrix A is
computed by solving m homogenous independent linear equations in n variables.
Define now the Boolean function g in k variables by the rule g(b) = f(a) for any
Boolean k-vector b such that b = Aa. The function g is correctly defined as from
Aa = Aa′ it follows that f(a) = f(a′). Then f(X) = g(AX), where g(Y) is
a Boolean function in k ≤ n variables Y. We call the representation nontrivial if
k < n. Let now a1, a2, . . . , ar be all solutions to the equation g(Y) = 0. Then the
equation f(X) = 0 is described by the system of the MRHS linear equations (6).
For example,

x1x2+x1x4 + x2x4 + x2 + x3 + x4 = y1y2 + y1 + y2 + y3,

y1 = x1 + x2, y2 = x1 + x4, y3 = x1 + x3.

In matrix form

⎛
⎝ 1 1 0 0

1 0 0 1
1 0 1 0

⎞
⎠
⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎡
⎣ 0 0 1 1

0 1 0 1
0 1 1 1

⎤
⎦ . (7)

Hence f(X) can be written as g(AX), where g(Y) only takes three variables.

126

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

6.3. Gluing, agreeing and linear equation extracting

Assume two equations f1(X) = 0 and f2(X) = 0 in MRHS form

AX = a1, . . . , ar (8)
and

BX = b1, . . . , bs. (9)

With gluing one produces a MRHS for the system of two equations f1(X) = 0,
f2(X) = 0, that is for their common solutions. A common space generated by the
rows of the matrices A and B is computed. Two right hand sides ai and bj are
combined if they have the same projection to the common space. Equivalently,
the linear system (

A
B

)
X =

ai
bj

(10)

is consistent. The result of the Gluing is CX = c1, . . . , ct, where C =
(
A
B

)
and ci are right hand sides in (10) which are found consistent by triangulation.
Inconsistent equations (10) are discarded. In agreeing the equation ai is removed
from (8) if (10) is inconsistent for every j = 1, . . . , s. Equally, bj is removed from
(9) if (10) is inconsistent for every i = 1, . . . , r.

Also one may triangulate the right hand side columns in (6) and extracts linear
equations from constant rows. Linear equations are collected as one equation
with a single right hand side. They may be used to eliminate some variables.

6.4. Solving strategy

Agreeing, gluing and linear equation extracting are combined with variable
guessing to solve a system of MRHS linear equations:

A1X = [L1], . . . , AmX = [Lm]. (11)

In practice, there should be a threshold for the number of right hand sides
in equations produced with gluing. Extended Agreeing2 method in [33] may be
used to simplifying the equations (reducing the number of the right hand sides)
after a guess.

6.5. MRHS equations from AES

SR*(n, r, c) are scaled variants of the AES introduced in [10], where n is the
number of rounds and r× c the cipher state size. So that SR*(10, 8, 8) is the full
AES128. The equation variables are all bits from the user selected key K0, 8rc
variables, and all bits in the leftmost columns of the round keys Ki, i = 1, . . . , n,
that is 8nr variables, and all bits in the cipher block after application of the
S-boxes in each round, except for the last, 8(n−1)rc variables. For example, the
bytes that are variables of SR*(3,4,4) are shown, marked with ‘X’, in Figure 4.
Any bit in any of the round keys, and any bit at any stage of the encryption can

127

IGOR SEMAEV — MICHAL MIKUŠ

x
x
x
x

x x x
x x x
x x x
x x x

S SRS SR − MCS SR − MC

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x x x
x x x
x x x
x x x

x
x
x
x

x x x
x x x
x x x
x x x

X 1 X 2

K 1K 0 K 2 K 3

P C

Figure 4. SR*(3,4,4) equations variables.

be expressed as a linear combination of in total 8rn(c + 1) Boolean variables.

Let the eight linear combinations going into one S-box be denoted l0, . . . , l7
and the eight linear combinations going out of the same S-box be l8, . . . , l15.
There are 256 possible inputs to the S-box, each one producing a unique output.
Hence there are 256 possible values the 16 linear combinations l0, . . . , l15 can
have: ⎛

⎝ l0
. . .
l15

⎞
⎠ =

⎡
⎢⎢⎣

0 1 . . . F
0 0 . . . F
3 C . . . 6
6 7 . . . 1

⎤
⎥⎥⎦ . (12)

There are r S-boxes used when computing Ki+1 from Ki, and there are rc
S-boxes used in each round of SR*(n, r, c). Hence the total number of MRHS
linear equations making up the system is nr(c+1). That is 5760 Boolean variables
and 720 equations as (12) for the full AES.

6.6. Experiments with cipher equations

In [33] MRHS linear equations from the cipher SR*(n, r, c) for various choice
of r, c and n, including those from the full AES, were solved after a number
of guesses. When the key size k was above 16 bits, two equations could be glued
if the number of right hand sides in the glued equation was at most 216.

It was found that the number of key bits needed to guess when storing equa-
tions with up to 2l right hand sides is almost always k − l. This observation
remains true for MRHS linear equations from the DES [34], [36]. This number-
-of-guesses/memory tradeoff means it is (theoretically) possible to solve the full
AES system by guessing 64 key bits when allowing equations to have up to 264

right hand sides.

128

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

6.7. Experiments with random equations

Described in [33]. The A-matrices in random equations (11) are 16×n-matrix
with random linear independent rows, for various values of n. Each equation puts
an 8-bit constraint on the solution space, so for m = n/8 we would expect the
system to have about one solution. Then L1 = · · · = Lm are the right hand sides
of the AES equations (12).

MAGMA is a computer algebra program that has an efficient implementation
of the F4-algorithm [18] for computing Gröbner bases. This method is consid-
ered to be state-of-the-art when it comes to solving general non-linear equation
systems.

In the first series of the experiments a system ofm = 6 random equations with
n = 48 variables was constructed. Gluing (max 216 right hand sides), agreeing
and extracting linear equations solve the system in between one and two seconds.
The 24 linearly independent quadratic polynomials listed in [11] together with
16 extra quadratic polynomials from [9] was used to generate the multivariate
polynomials describing the same system. Together with the field polynomials
that makes 288 quadratic polynomials in 48 variables. MAGMA returned the
same solutions after more than twelve and half hours of computing on the same
machine with a 450 MHz UltraSparc II processor.

For a system of m = 7 random AES equations in n = 56 variables the value
of seven of the variables was necessary to guess before the system is solved
with gluing and agreeing. The total time used for this was five and half min-
utes. For the corresponding set of quadratic polynomials MAGMA consumed
all available memory, more than 3 GB, before it exited with an out-of-memory
message.

7. Linear algebra variation: equations with multiple sides

7.1. Definitions

Linear equations with multiple sides were introduced in [40]. This is a more
general type of equations than MRHS linear equations. Motivation again comes
from cipher equations. One equation in Trivium: xy = u + v + w + z. Each
solution satisfies one of two linear equations:

x = 0,
u+ v + w + z = 0,

x = 1,
y + u+ v + w + z = 0.

We come to the following definition. Let f(X) = 0 be any polynomial equation
and

A1X = a1, . . . , ArX = ar (13)

129

IGOR SEMAEV — MICHAL MIKUŠ

a set of linear equation systems. Then (13) is called a Multiple Side (MS) linear
equation for f(X) = 0 if the set of solutions to f(X) = 0 is the union of solutions
to particular linear systems AiX = ai. In case A1 = A2 = · · · = Ar that is
a system of MRHS linear equations.

7.2. Constructing MS linear equations

Assume one equation f(X) = 0. Let V be all solutions to f(X) = 0. One
represents V as a union of its sub-cosets:

V =

r⋃
j=1

(uj + Uj). (14)

Coset uj + Uj presents all solutions to a linear equation system AjX = aj . So
(13) follows. In order to get an efficient solution to a system of such equations,
the number of the linear equations in (13) may be taken as low as possible.

Example. For equation (3) the cosets are

0 0 0 0
0 0 1 1
0 0 0 0
0 1 0 1

,

0 1
1 0
1 1
1 1

,

1 1
1 1
0 1
1 1

.

So the MS linear representation is(
1 0 0 0
0 0 1 0

)
X =

0
0

,

⎛
⎝ 1 1 0 0

0 0 0 1
0 0 1 0

⎞
⎠X =

1
1
1
,

⎛
⎝ 1 0 0 0

0 1 0 0
0 0 0 1

⎞
⎠X =

1
1
1
,

where X is a column vector of variables x1, x2, x3, x4.

7.3. MS from MRHS

Assume one MRHS equation:

BX = b1, . . . , bs, (15)

where B is a matrix of size k×n, so that right hand sides vectors V = {b1, . . . , bs}
are of length k. One constructs a coset cover (14) for V and so a MS system
A1Y = a1, . . . , ArY = ar, where Y consists of k auxiliary variables. Therefore,
equation (15) is written as

(A1B)X = a1, . . . , (ArB)X = ar, (16)

where r, the number of sides, is generally lower than s.

130

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

7.4. AES equations in MS form

Typical MRHS AES equation (12) has 28 right hand sides. The set of the right
hand side vectors (a, S(a)) is representable as a union of 64 co-sets of size 4 each.
That implies (13) with r = 64.

7.5. Gluing and agreeing and linear equations extracting

Assume two equations f1(X) = 0 and f2(X) = 0 in MS form

A1X = a1, . . . , ArX = ar (17)
and

B1X = b1, . . . , BsX = bs. (18)

With gluing one produces a MS form for the system of two equations f1(X) = 0,
f2(X) = 0, that is for their common solutions. For each pair of indexes i, j the
linear system (

Ai

Bj

)
X =

ai
bj

(19)

is checked for consistency by triangulation of the left hand side matrix. The
common solutions are represented by all consistent (19). In agreeing the equa-
tion AiX = ai is removed from (17) if (19) is inconsistent for every j =
1, . . . , s. Equally, BjX = bj is removed from (18) if (19) is inconsistent for every
i = 1, . . . , r.

Also ordinary linear equations may be extracted from any MS equation,
e.g., (17). They compose a space of dimension n+1 vectors over Fq. That space
is an intersection of spaces generated by linear equations in AiX = ai and easy
to compute.

7.6. Solving an MS-system by gluing and agreeing

Any combination of variable guessing, gluing and agreeing, and ordinary linear
equations extracting is used to produce a MS representation for the solution set
of all equations. The solutions themselves are then deduced by solving particular
linear equations from that representation.

7.7. Experiments with MS representation

The efficiency of some of ageeing-gluing routines described in Section 4 in case
of l-sparse randomly generated Boolean equations was compared in [40], [44] with
their MS counterparts. For instance, let n = m = 75 and l = 4 with random
Boolean polynomials, where the number of local solutions is 8 for each of equa-
tions. The experiment is characterized by two vectors T and S of length n. For
pure gluing the instance ti of the vector T is the number of solutions to the first
i equations. The instance si of S is the number of linear systems in (13) repre-
senting the solutions to the first i equations. From one instance with MAPLE

131

IGOR SEMAEV — MICHAL MIKUŠ

linear algebra routines it was found that:

i 1 2 3 4 5 6 7 . .58 . .64 . . .

T 8 34 136 1088 2432 19456 38912 645404416 227123200 . . .

S 3 7 8 24 117 351 837 5494938 6733966 . . .

,

where the maximal entry is in bold, [40]. Blue T -curve and red S-curve are shown
in Figure 5 in logarithmic scale, where S-curve was generated approximately 4
times faster. That picture appears typical for many other experiments of that
sort in [44]. They show that MS solving strategy may be more efficient in sparse
Boolean equations.

Figure 5. Gluing vs MS Gluing.

8. Hardware architectures for Agreeing-Gluing algorithms

Two different hardware architectures were suggested in [40], [41] and in [22].
The first describes a possible hardware implementation of the Agreeing2 algo-
rithm in Section 4.4 as a lattice of switches and wires. As this is not a common
computer, the switches are not necessary to be synchronized. A system for the
DES may be implemented with 8.5 × 106 switches and 4 × 108 wires(2.7 × 107

and 1.1 × 109 for the TripleDES), where the number of switch turns for reject-
ing one DES key is 34(98 for the TripleDES) on the average. A transistor on
a semi-conductor crystal may work as a switch. One modern Intel chip provides
with more than 109 transistors. Transistor speed may achieve 1000 GHz. That

132

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

probably opens new perspectives in brute force cryptanalysis of modern ciphers.
At least, theoretically, this is faster than with COPACOBANA [25].

The second paper [22] describes architecture for hardware implementation
of main MRHS routines.

REFERENCES

[1] ARS, G.—FAUGÈRE, J. C.—IMAI, H.—KAWAZOE, M.—SUGITA, M.: Comparison

between XL and Gröbner basis algorithms, in: Advances in Cryptology—ASIACRYPT ’04

(P. J. Lee, ed.), Lecture Notes in Comput. Sci., Vol. 3329, Springer-Verlag, Berlin, 2004,

pp. 338–353.

[2] BARDET,M.—FAUGÉRE, J.-C.—SALVY, B.: Complexity of Gröbner basis computation

for semi-regular overdetermined sequences over F2 with solutions in F2, Research report

5049, INRIA, 2003.

[3] BARDET, M.—FAUGÈRE, J. C.—SALVY, B.—YANG, B. Y.: Asymptotic behaviour

of the degree of regularity of semiregular polynomial systems, in: Proc. of MEGA ’05,

8th International Symposium on Effective Methods in Algebraic Geometry Porto Conte,

Alghero, Sardinia, Italy, May 27–June 1, 2005.

[4] BUCHBERGER, B.: An Algorithm for Finding a Basis for the Residue Class Ring of

a Zero-Dimensional Polynomial Ideal. PhD. Thesis, Univ. of Innsbruck, Math. Inst., Inns-

bruck, 1965.

[5] BUCHBERGER, B.: A theoretical basis for the reduction of polynomials to canonical

forms, ACM SIGSAM Bull. 10 (1976), no. 3, 19–29.

[6] BUCHBERGER, B.: Some properties of Gröbner-bases for polynomial ideals, in: ACM

SIGSAM Bull. 10 (1976), no. 4, 19–24.

[7] BUCHBERGER, B.: A criterion for detecting unnecessary reductions in the construction

of Gröbner bases, in: Proc. of EUROSAM ’79, An International Symposiumon Symbolic

and Algebraic Computation (W. Ng. Edward, ed.), Lecture Notes in Comput. Sci., Vol. 72,

Springer-Verlag, Berlin, 1979, pp. 3–21.

[8] DE CANNIERE, C.—PRENEEL, B.: Trivium specifications,

http://www.ecrypt.eu.org/stream/.

[9] CHEON, J. H.—LEE, D. H.: Resistance of S-Boxes against Algebraic Attacks, in: Fast

Software Encryption—FSE ’04, 11th Internat. Workshop (B. Roy et al., eds.), Lecture

Notes in Comput. Sci., Vol. 3017, Springer-Verlag, Berlin, 2004, pp. 83–94.

[10] CID, C.—MURPHY, S.—ROBSHAW, M.: Small Scale variants of the AES, in: Fast

Software Encryption—FSE ’05, 12th Internat. Workshop (H. Glibert et al., eds.), Lecture

Notes in Comput. Sci., Vol. 3557, Springer-Verlag, Berlin, 2005, pp. 145–162.

[11] COURTOIS, N.—PIEPRZYK, J. : Cryptanalysis of block ciphers with overdefined sys-

tems of equations, in: Advances in Cryptology—ASIACRYPT ’02, 8th Internat. Confer-

ence on the Theory and Application of Cryptology and Information Security (Y. Zheng,

ed.), Lecture Notes in Comput. Sci., Vol. 2501, Springer-Verlag, Berlin, 2002, pp. 267–287.

133

IGOR SEMAEV — MICHAL MIKUŠ

[12] COURTOIS, N.—KLIMOV, A.—PATARIN, J.—SHAMIR, A.: Efficient algorithms for

solving overdefined systems of multivariate equations, in: Advances in Cryptology–

–EUROCRYPT ’00, Internat. Conference on the Theory and Application of Cryptographic

Techniques (B. Preneel, ed.), Lecture Notes in Comput. Sci., Vol. 1807, Springer-Verlag,

Berlin, 2000, pp. 392–407.

[13] BARD, G. V.—COURTOIS, N. T.—JEFFERSON, C.: Efficients methods for conversion

and solution of sparse systems of low-degree multivariate polynomials over GF (2) via

SAT-solvers, http://eprint.iacr.org/2007/024.

[14] BARD, G. V.—COURTOIS, N. T.: Algebraic cryptanalysis of the data encryption stan-

dard, in: Cryptography and Coding, 11th IMA Internat. Conference (S. Galbraith, (ed.),

Lecture Notes in Comput. Sci., Vol. 4887, Springer-Verlag, Berlin, 2007, pp. 152–169,

http://eprint.iacr.org/2006/402.

[15] DANTSIN, E.—GOERDT, A.—HIRSCH, E. A.—KANNAN, R.— KLEINBERG, J.–

–PAPADIMITRIOU, C. H.—RAGHAVAN, P.—SCHÖNING, U.: A deterministic

(2− 2
k+1

)n algorithm for k-SAT based on local search, Theoret. Comput. Sci. 289 (2002),

69–83.

[16] DAVIS, M.—PUTNAM, H.: A computing procedure for quantification theory, J. Assoc.

Comput. Mach. 7 (1960), 201–215.

[17] DAVIS, M.—LOGEMANN, G.—LOVELAND, D.: A machine program for theorem prov-

ing, Commun. ACM 5 (1962), 394–397.

[18] FAUGÈRE, J. C.: A new efficient algorithm for computing Gröbner bases(F4), J. Pure

Appl. Algebra 139 (1999), 61–88.

[19] FAUGÈRE, J. C.: A new efficient algorithm for computing Gröbner basis without re-

duction to zero (F5), in: Symbolic and Algebraic Computation—ISSAC ’02, Internat.

Symposium (T. Mora, ed.), ACM Press, New York, NY, 2002, pp. 75–83.

[20] FAUGÈRE, J. C.—JOUX, A.: Algebraic cryptanalysis of hidden field equation (HFE)

cryptosystems using Gröbner bases, in: Advances in Cryptology—CRYPTO ’03,

23rd Annual Internat. Cryptology Conference (D. Boneh, ed.), Lecture Notes in Com-

put. Sci., Vol. 2729, Springer-Verlag, Berlin, 2003, pp. 44–60.

[21] GEBAUER, R.—MÖLLER, H. M.: On an installation of Buchberger’s algorithm, J. Sym-

bolic Comput. 6 (1988), 275–286.

[22] GEISELMANN, W.—MATHEIS, K.—STEINWANDT, R.: PET SNAKE: A special pur-

pose architecture to implement an algebraic attack in hardware,

http://eprint.iacr.org/2009/222.

[23] IWAMA, K.: Worst-case upper bounds for kSAT, Bull. EATCS 82 (2004), 61–71.

[24] JOUX, A.—VITSE, V.: A variant of the F4 algorithm,

http://eprint.iacr.org/2010/158.

[25] KUMAR, S.—PAAR, C.—PELZL, J.—PFEIER, G.—SCHIMMLER, M.: Breaking ci-

phers with Copacobana-a cost-optimized parallel code breaker, Lecture Notes in Comput.

Sci., Vol. 4249, Springer-Verlag, Berlin, 2006, pp. 101–118.

[26] KWAN, M.: Reducing the gate count of bitslice DES, http://eprint.iacr.org/2000/051.

134

METHODS TO SOLVE ALGEBRAIC EQUATIONS IN CRYPTANALYSIS

[27] LAZARD, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic

equations, in: Computer Algebra—EUROCAL ’83, Proc. Conf., London 1983, Lect. Notes

Comput. Sci., Vol. 162, Springer-Verlag, Berlin, 1983, pp. 146–156.

[28] MARQUES-SILVA, J. P.—SAKALLAH, K. A.: GRASP: a search algorithm for proposi-

tional satisfiability, IEEE Trans. Comput. 48 (1999), 506–521.

[29] PAPADIMITRIOU, C. H.: On selecting a satisfying truth assignment, in: Proc. of

FOCS ’91, 32nd Annual Symposium of Foundations of Computer Science, IEEE Com-

put. Soc., Washington, DC, USA, 1991, pp. 163–169.

[30] PATURI, R.—PUDLÁK, P.—SAKS, M. E.—ZANE, F.: An improved exponential-time

algorithm for k-SAT, J. ACM 52 (2005), 337–364.

[31] RADDUM, H.: Solving non-linear sparse equation systems over GF (2) using graphs,

University of Bergen, 2004 (preprint).

[32] RADDUM, H.—SEMAEV, I.: New technique for solving sparse equation systems,

http://eprint.iacr.org/2006/475.

[33] RADDUM, H.—SEMAEV, I.: Solving multiple right hand sides linear equations, Des.

Codes Cryptogr. 49 (2008), 147–160, extended abstract in: Proc. of WCC ’07, Versailles,

France, INRIA, 2007.

[34] RADDUM, H.: MRHS equation systems, in: Selected Areas in Cryptography—SAC ’07,

14th Internat. Workshop (C. Adams et al., eds.), Lecture Notes in Comput. Sci., Vol.

4876, Springer-Verlag, Berlin, 2007, pp. 232–245.

[35] SCHILLING, T. E.—RADDUM, H.: Solving equation systems by agreeing and learning,

in: WAIFI ’10, 2010 (to appear).

[36] SCHOONEN, A. C. C.: Multiple Right-Hand Side Equations. A New Tool for Cryptanal-

ysis. Master’s Thesis, Eindhoven Univ. of Technology, Eindhoven, 2008.

[37] SCHÖNING, U.: A probabilistic algorithm for k-Sat based on limited local search and

restart, Algorithmica 32 (2002), 615–623.

[38] SEMAEV, I.: On solving sparse algebraic equations over finite fields, Des. Codes Cryp-

togr. 49 (2008), pp. 47–60.

[39] SEMAEV, I.: Sparse algebraic equations over finite fields, SIAM J. Comput. 39 (2009),

388–409.

[40] SEMAEV, I.: Multiple side linear equations and circuit lattices,

http://conf.fme.vutbr.cz/cecc09/lectures/semaev.pdf.

[41] SEMAEV, I.: Sparse Boolean equations and circuit lattices, Des. Codes Cryptogr., 2010

(to appear).

[42] SEMAEV, I.: Improved Agreeing-Gluing algorithm, http://eprint.iacr.org/2010/140.

[43] YANG, B.-Y.—CHEN, J-M.—COURTOIS, N.: On asymptotic security estimates in XL

and Gröbner bases-related algebraic cryptanalysis, in: Information and Communications

Security—ICICS ’04, 6th Internat. Conference (J. Lopez et al., eds.), Lecture Notes in

Comput. Sci., Vol. 3269, Springer-Verlag, Berlin, 2004, pp. 401–413.

[44] WANGDUE, R.:Multiple Side Linear Equations: A New Tool for Solving Sparse Algebraic

Equations in Finite Field, Master Thesis, University of Bergen, Bergen, 2010.

135

IGOR SEMAEV — MICHAL MIKUŠ

[45] WIEDEMANN, D. H.: Solving sparse linear equations over finite fields, IEEE Trans.

Inform. Theory 32 (1986), 54–62.

[46] ZAKREVSKIJ, A.—VASILKOVA, I.: Reducing large systems of Boolean equations,

in: 4th Internat. Workshop on Boolean Problems, Freiberg University of Mining and

Technology, Freiberg, 2000, pp. 21–28.

[47] ZHANG, L.—MALIK, S.: The quest for efficient Boolean satisfiability solvers, Lecture

Notes in Comput. Sci., Vol. 2404, Springer-Verlag, Berlin, 2002, pp. 17–36.

Received April 30, 2010 Igor Semaev
Department of Informatics
University of Bergen
N–5020 Bergen

NORWAY

E-mail : igor@ii.uib.no

Michal Mikuš
Department of Applied Informatics

and Computing Technologies
Faculty of Electrical Engineering
Slovak Technical University
Ilkovičova 3
SK–812-19 Bratislava
SLOVAKIA

E-mail : michal.mikus@stuba.sk

136

	1. Introduction
	2. Gröbner bases
	2.1. Preliminaries
	2.2. Cryptanalysis with Gröbner bases
	2.3. Algorithms for computing the Gröbner basis

	3. Algorithms for solving k-SAT problems
	3.1. Definitions
	3.2. Resolution
	3.3. DPLL algorithm
	3.4. Practical improvements
	3.5. Local search
	3.6. Worst case bounds for k-SAT
	3.7. SAT-solvers competition
	3.8. Algebraic cryptanalysis of DES with SAT-solvers

	4. Agreeing-Gluing methods
	4.1. Search algorithm
	4.2. Equation representation
	4.3. Agreeing procedure and Agreeing1 algorithm
	4.4. Agreeing2 algorithm
	4.5. Gluing
	4.6. Improved Agreeing-Gluing algorithm
	4.7. Agreeing-gluing versus SAT-solvers
	4.8. Syllogism rule algorithm

	5. Average complexity bounds
	5.1. Probabilistic model
	5.2. Gluing algorithms estimates
	5.3. Improved Agreeing-Gluing algorithm estimates
	5.4. Average time complexity conjecture

	6. Linear algebra variation: Equations with multiple right hand sides
	6.1. Definitions
	6.2. Constructing MRHS
	6.3. Gluing, agreeing and linear equation extracting
	6.4. Solving strategy
	6.5. MRHS equations from AES
	6.6. Experiments with cipher equations
	6.7. Experiments with random equations

	7. Linear algebra variation: equations with multiple sides
	7.1. Definitions
	7.2. Constructing MS linear equations
	7.3. MS from MRHS
	7.4. AES equations in MS form
	7.5. Gluing and agreeing and linear equations extracting
	7.6. Solving an MS-system by gluing and agreeing
	7.7. Experiments with MS representation

	8. Hardware architectures for Agreeing-Gluing algorithms
	REFERENCES

