

Tatra Mt. Math. Publ. **46** (2010), 47–54 DOI: 10.2478/v10127-010-0018-5

ON SMÍTAL PROPERTY

Agnieszka Niedziałkowska

ABSTRACT. In this paper, we define and study the property called Smítal property for the pair $(\mathcal{M}, \mathcal{I})$, where \mathcal{M} denotes a σ -algebra of subsets of real line and $\mathcal{I} \subset \mathcal{M}$ is a σ -ideal. It is a generalization of Smítal lemma. We give some examples of pairs $(\mathcal{M}, \mathcal{I})$ having Smítal property and pairs which do not have this property.

Throughout the paper, \mathbb{R} will denote the set of real numbers and \mathbb{Q} —the set of rational numbers. Lebesgue outer (resp. inner) measure on the real line will be denoted by λ^* (resp. λ_*), whereas λ will stand for the Lebesgue measure itself. Moreover, \mathcal{L} will denote the σ -algebra of λ -measurable subsets of \mathbb{R} and \mathcal{N} will denote the σ -ideal of Lebesgue null sets. We will consider a natural topology on \mathbb{R} . Notation \mathcal{B} will be adopted for the case of subsets of \mathbb{R} having the Baire property and \mathcal{K} will denote the σ -ideal of the sets of the first category. \mathcal{J}_p will denote the σ -ideal of at most countable sets. The sign "+" indicates the operation of finding an algebraic sum of two sets A and B contained in \mathbb{R} , so the algebraic sum of this sets will be denoted by $A + B = \{a + b : a \in A, b \in B\}$.

For mathematicians working with Lebesgue measure on the real line, the following lemma become a part of the folklore.

LEMMA 1 (Smítal's lemma for measure). If a set $B \subset \mathbb{R}$ has positive Lebesgue measure and D is a dense set in \mathbb{R} with natural topology, then the set B + D has a full measure.

The proof based on the Lebesgue Density Theorem can be found in [1] (for outer measure) or in [8]. For the convenience, we repeat a sketch of the proof. If we denote by D_0 a countable and dense subset of D, then the set $A = B + D_0 = \bigcup_{d \in D_0} (B+d)$ is measurable. Fix a number $x \in \mathbb{R}$. We will show that x is a density point of A, i.e.,

$$\lim_{h \to 0^+} \frac{\lambda \left(A \cap [x - h, x + h] \right)}{2h} = 1.$$

²⁰¹⁰ Mathematics Subject Classification: 28A12, 28A05, 54H05.

Keywords: Smítal lemma, Smítal property, Borel measure, Lebesgue-Stieltjes measure.

AGNIESZKA NIEDZIAŁKOWSKA

Since $\lambda(B) > 0$, from Lebesgue Density Theorem, it follows that there exists a density point x_0 of the set B. Because D_0 is a dense set, there exists an increasing sequence $(d_n)_{n \in \mathbb{N}} \in D_0$ tending to $x - x_0$. Then $(x_0 + d_n)_{n \in \mathbb{N}} \nearrow x$, and for h > 0 there is $n_0 \in \mathbb{N}$ such that $x - h < x_0 + d_n$ for all $n \ge n_0$. Hence, for any $n \ge n_0$,

$$\begin{split} \lambda \big(A \cap [x - h, x + h] \big) &\geq \lambda \big((B + d_n) \cap [x - h, x + h] \big) \\ &\geq \lambda \big((B + d_n) \cap [x - h, x_0 + d_n + h] \big) \\ &\geq \lambda \big((B + d_n) \cap [x_0 + d_n - h, x_0 + d_n + h] \big) \\ &- \lambda \big([x_0 + d_n - h, x - h] \big) \\ &= \lambda \big(B \cap [x_0 - h, x_0 + h] \big) - \big(x - (x_0 + d_n) \big) \end{split}$$

Therefore,

$$\lambda(A \cap [x - h, x + h]) \ge \lambda(B \cap [x_0 - h, x_0 + h])$$

and, since x_0 is a density point of B, x is a density point of A. Applying Lebesgue Density Theorem again, we obtain that $\lambda(\mathbb{R} \setminus A) = 0$.

Even easier, one can prove (compare [1, Th. 2, p. 66]):

LEMMA 2 (Smital's lemma for category). Let $B \subset \mathbb{R}$ be a second category set having the Baire property and D is dense in \mathbb{R} . Then the set A = (B + D) is a residual set.

Indeed, the second category set having the Baire property can be presented as a symmetric difference $U \triangle P$ of a nonempty open set U and the first category set P. Let D_0 be a countable dense subset of D. It is easy to check that $U + D_0 = \mathbb{R}$. The set $B + D_0$ differs from $U + D_0$ on a first category set and $(B + D) \supset (B + D_0)$.

Let \mathcal{M} be a σ -algebra consisted of subsets of \mathbb{R} and $\mathcal{I} \subset \mathcal{M}$ be a σ -ideal. We will say that the pair $(\mathcal{M}, \mathcal{I})$ has *Smítal property* if for any set $B \in \mathcal{M} \setminus \mathcal{I}$ and for any dense set D, the set $\mathbb{R} \setminus (B + D)$ belongs to \mathcal{I} .

As we have seen, pairs $(\mathcal{L}, \mathbb{N})$ and $(\mathcal{B}, \mathcal{K})$ have Smítal property. In the following theorem, we will examine Smítal property for a σ -algebra $\mathcal{S}_{\mu} \subset 2^{\mathbb{R}}$ consisted of sets measurable with respect to a Borel measure μ and a σ -ideal \mathcal{I}_{μ} of null sets with respect to μ . Recall that μ is a Borel measure if \mathcal{S}_{μ} contains all Borel subsets of \mathbb{R} .

A measure μ_a is absolutely continuous with respect to λ if $\lambda(A) = 0$ implies $\mu_a(A) = 0$ for any $A \subset \mathbb{R}$. We say that μ_s is singular with respect to λ , if there exists a set $A \subset R$, such that $\mu_s(A) = 0$ and $\lambda(\mathbb{R} \setminus A) = 0$.

A measure μ_d defined on the σ -algebra $2^{\mathbb{R}}$ is called a purely discontinuous measure if there exists a countable set $X = \{x_k : k \in \mathbb{N}\} \subset \mathbb{R}$ and a function $\varphi : X \to (0, \infty)$ satisfying the condition $\sum_{\{\varphi(x_k) : |x_k| \leq n\} < \infty} \varphi(x_k)$ for any $n \in \mathbb{N}$,

ON SMÍTAL PROPERTY

such that for any $A \subset \mathbb{R}$, we have $\mu_d(A) = \sum_{k=1}^{\infty} \varphi(x_k) \cdot \chi_A(x_k)$, where χ_A denotes the characteristic function of A.

Finally, recall that for any Borel measure μ on \mathbb{R} there exist three measures: μ_a -absolutely continuous with respect to λ , μ_d -purely discontinuous, and μ_s --nonatomic and singular with respect to λ such that

$$\mu(A) = \mu_a(A) + \mu_s(A) + \mu_d(A)$$

for any Borel set $A \subset \mathbb{R}$ (compare [2, p. 337]).

THEOREM 1.

- a) For any Borel measure μ_a absolutely continuous with respect to λ, the pair (S_{μ_a}, J_{μ_a}) has Smítal property.
- b) For any Borel measure μ_d purely discontinuous, the pair (S_{μ_d}, J_{μ_d}) does not have Smítal property.
- c) There exists a nonatomic Borel measure μ_s singular with respect to λ, such that the pair (S_{μ_s}, J_{μ_s}) does not have Smítal property.

Proof.

- a) Let $B \in S_{\mu_a} \setminus \mathcal{I}_{\mu_a}$ and D be a dense set on the real line. Since μ_a is absolutely continuous with respect to λ , so $\lambda(B) > 0$. From Lemma 1 we have that $\lambda(\mathbb{R} \setminus (B+D)) = 0$. Using the definition of absolutely continuous measure again, we obtain that $\mu_a(\mathbb{R} \setminus (B+D)) = 0$.
- b) Assume that the measure μ_d is concentrated on the set $\{x_1, x_2, \ldots, x_n, \ldots\}$ for $n \in \mathbb{N}$. Then, $\mu_d(\{x_n\}) > 0$ for $n \in \mathbb{N}$ and

$$\mu_d(\mathbb{R}\setminus\{x_1,x_2,\ldots,x_n,\ldots\})=0.$$

Put $B = \{x_1\}$ and $D = \mathbb{R} \setminus \{0\}$. We have $\mathbb{R} \setminus (B + D) = \{x_1\}$, so $\mu_d(\mathbb{R} \setminus (B + D)) \ge \mu_d(\{x_1\}) > 0$. That means that $\mathbb{R} \setminus (B + D) \in \mathcal{S}_{\mu_d} \setminus \mathcal{I}_{\mu_d}$.

c) Let C denotes the ternary Cantor set and $g_0: [0,1] \to [0,1]$ the Cantor function. Define a function

$$g(x) = \begin{cases} 0 & \text{for } x < 0, \\ g_0(x) & \text{for } x \in [0, 1], \\ 1 & \text{for } x > 1 \end{cases}$$

and λ_g the Lebesgue-Stieltjes measure generated by g. The algebra S_g of measurable sets with respect to λ_g contains Borel sets.

Since g is continuous, the measure λ_g vanishes on one-point sets. Moreover, if a set A is disjoint from C, then $\mu_g(A) = 0$. Therefore, λ_g is singular with respect to λ .

We will construct a dense set D such that for any $x \in D$, $\operatorname{card}(C \cap (C+D)) \leq \aleph_0$. Observe first that, for any natural number n and integer k,

AGNIESZKA NIEDZIAŁKOWSKA

if the set $C \cap \left(\frac{k}{3^n}, \frac{k+1}{3^n}\right)$ is nonempty, then $C \cap \left(\frac{k+1}{3^n}, \frac{k+2}{3^n}\right) = \emptyset$. It follows that, for any k, the set $C \cap \left(C + \frac{k}{3^n}\right)$ is finite, containing only endpoints of finite many intervals of the form $\left[\frac{k}{3^n}, \frac{k+1}{3^n}\right]$, $k = 1, 2, \ldots, \frac{3^n+1}{2}$. Moreover, for any $x \in (-\infty, -1) \cup (1, \infty), C \cap (C + x) = \emptyset$.

Clearly, the set

$$D = (-\infty, -1) \cup (1, \infty) \cup \bigcup_{n=1}^{\infty} \left\{ \left\{ z_k = \frac{2k-1}{3^n}, k = 1, 2, \dots, \frac{3^n+1}{2} \right\} \\ \cup \left\{ z_k = -\frac{2k-1}{3^n}, k = 1, 2, \dots, \frac{3^n+1}{2} \right\} \right\}$$

is dense and $\operatorname{card}(C \cap (C + D)) \leq \aleph_0$. Therefore, $\lambda_g(C + D) = 0$ and a measure $\mu_s = \lambda_g$ fulfils c).

EXAMPLE 1. The pair (β, \mathcal{I}_p) , composed of a σ -algebra of Borel sets and a σ -ideal of at most countable sets does not have Smítal property.

Indeed, it is sufficient to take a Cantor set C which belongs to $\beta \setminus \mathcal{I}_p$ and $D = \mathbb{Q}$.

EXAMPLE 2. The pair $(\mathcal{L} \cap \mathcal{B}, \mathcal{N} \cap \mathcal{K})$ containing the σ -algebra of measurable sets having Baire property and σ -ideal of Lebesgue measure zero sets of the first category, does not have Smítal property.

There exists a residual set B of Lebesgue measure zero (compare [5, p. 15, Th. 1.6]). If we put $D = \mathbb{Q}$, the set $B + \mathbb{Q}$ has measure zero and $\mathbb{R} \setminus (B + \mathbb{Q})$ does not belong to $\mathcal{N} \cap \mathcal{K}$.

EXAMPLE 3. We say that a set M has the (s)-Marczewski property if every nonempty perfect set has a nonempty perfect subset, which is a subset of M or does not intersect the set M. A set M has the (s_0) -Marczewski property if every nonempty perfect set has a nonempty perfect subset which does not intersect the set M. The family of sets having the (s)-Marczewski property is a σ -algebra and we will denote it by S. The family of sets having the (s_0) -Marczewski property is a σ -ideal and we will denote it by S_0 (compare [7]).

The pair (S, S_0) does not have Smítal property. It is easy to observe that any nonempty perfect set belongs to σ -algebra S and does not belong to σ -ideal S_0 , whereas any at most countable set belongs to σ -ideal S_0 . Moreover, any uncountable Borel set contains the perfect set and belongs to S. Let B be a Cantor set. B is a perfect set, so it belongs to $S \setminus S_0$. Put $D = \mathbb{Q}$. The set B + D is the null F_{σ} set. The set $\mathbb{R} \setminus (B + D)$ is G_{δ} set of full measure, so it is a Borel set and it is uncountable. Then $\mathbb{R} \setminus (B + D) \in S \setminus S_0$.

ON SMÍTAL PROPERTY

If we consider, instead of the pair $(\mathcal{M}, \mathcal{I})$, a pair which consists of the same σ -algebra and smaller σ -ideal, then the new pair does not have Smítal property.

LEMMA 3. Let \mathfrak{I}_1 , \mathfrak{I}_2 be σ -ideals such that \mathfrak{I}_2 is invariant under translation, $\mathfrak{I}_1 \neq \mathfrak{I}_2$ and $\mathfrak{I}_1 \subset \mathfrak{I}_2 \neq 2^{\mathbb{R}}$. Then for any σ -algebra \mathfrak{M} such that $\mathfrak{I}_2 \subset \mathfrak{M}$, the pair $(\mathfrak{M}, \mathfrak{I}_1)$ does not have Smítal property.

Proof. In fact, if $\mathcal{J}_1 \neq \mathcal{J}_2$ and $\mathcal{J}_1 \subset \mathcal{J}_2$ then there exists a set $B \in \mathcal{J}_2 \setminus \mathcal{J}_1$. Let D be a dense and countable set. Then, $(B + D) \in \mathcal{J}_2$ and $\mathbb{R} \setminus (B + D) \notin \mathcal{J}_2$. \Box

COROLLARY 1.

- a) The pairs $(\mathcal{L}, \mathcal{N} \cap \mathcal{K})$ and $(\mathcal{B}, \mathcal{N} \cap \mathcal{K})$ do not have Smital property.
- b) The pairs $(\mathcal{L}, \mathcal{I}_p)$, $(\mathcal{B}, \mathcal{I}_p)$ do not have Smital property.
- c) Put $J = \{\emptyset\}$. The pairs (\mathcal{L}, J) , (\mathcal{B}, J) , $(\mathcal{L} \cap \mathcal{B}, J)$ and (β, J) do not have Smital property.

From the above consideration, it follows that decreasing a σ -ideal, we always lose Smítal property. On the other hand, increasing a σ -ideal (when the σ -algebra is established), we can (but we do not need to) obtain Smítal property. Indeed, the pair $(\mathcal{L}, \mathcal{J}_p)$ does not have Smítal property and the σ -ideal $\mathcal{N} \cap \mathcal{K}$ is bigger than \mathcal{J}_p , but the pair $(\mathcal{L}, \mathcal{N} \cap \mathcal{K})$ does not have Smítal property, too. However, the pair $(\mathcal{L}, \mathcal{N})$ has this property.

Directly from definition of Smítal's property, we have

LEMMA 4. If the pair $(\mathcal{M}, \mathcal{J})$ does not have Smital property and \mathcal{M}_1 is a σ -algebra including \mathcal{M} , then the pair $(\mathcal{M}_1, \mathcal{J})$ does not have Smital property.

Proof. Indeed, if the pair $(\mathcal{M}, \mathcal{I})$ does not have Smítal property then there exists a set $B \in \mathcal{M} \setminus \mathcal{I}$ and a dense set D such that the set $\mathbb{R} \setminus (B + D)$ does not belong to \mathcal{I} . Obviously, $B \in \mathcal{M}_1 \setminus \mathcal{I}$.

COROLLARY 2. The pairs $(2^{\mathbb{R}}, \mathbb{N} \cap \mathcal{K})$, $(\mathcal{L}, \mathcal{I}_p)$, $(\mathcal{B}, \mathcal{I}_p)$, $(2^{\mathbb{R}}, \mathcal{I}_p)$ and $(2^{\mathbb{R}}, \mathcal{S}_0)$ do not have Smital property.

EXAMPLE 4. The pair $(2^{\mathbb{R}}, \mathcal{N})$ does not have Smital property.

Denote by Z(L) a linear space over the field \mathbb{Q} generated by the set L, i.e.,

$$Z(L) = \{x : x = \kappa_1 \cdot l_1 + \dots + \kappa_n \cdot l_n; n \in \mathbb{N}; i = 1, \dots, n; l_i \in L; \kappa_i \in \mathbb{Q}\}.$$

Let H be a Hamel basis and h_0 be a fixed point of H. Observe that the set $Z(H \setminus \{h_0\})$ is nonmeasurable ([1, Th. 2, p. 255]) and $Z(H \setminus \{h_0\}) + \mathbb{Q} \cdot h_0 = \mathbb{R}$. Moreover, the sets $Z(H \setminus \{h_0\})$ and $Z(H \setminus \{h_0\}) + \kappa \cdot h_0$ are disjoint for any $\kappa \in \mathbb{Q} \setminus \{0\}$. Putting $B = Z(H \setminus \{h_0\})$ and $D = \bigcup_{\kappa \in \mathbb{Q} \setminus \{0\}} (\kappa \cdot h_0)$, we obtain that $\mathbb{R} \setminus (B + D) = B \notin \mathbb{N}$.

In the same way, we check that the pair $(2^{\mathbb{R}}, \mathcal{K})$ does not have Smítal property.

AGNIESZKA NIEDZIAŁKOWSKA

Suppose now that a σ -ideal $\mathfrak{I} \subset 2^{\mathbb{R}}$ is invariable with respect to translations, i.e., for any real number x, the fact that $A \in \mathfrak{I}$ implies that $(x + A) \in \mathfrak{I}$.

THEOREM 2. For any σ -ideal \mathfrak{I} , which is invariant with respect to translation, there exists a σ -algebra \mathfrak{M} such that the pair $(\mathfrak{M}, \mathfrak{I})$ has Smítal property.

Proof. If $\mathcal{I} = 2^{\mathbb{R}}$ then we can put $\mathcal{M} = \mathcal{I}$. Therefore, we can assume that $\mathcal{I} \neq 2^{\mathbb{R}}$. The family $\mathcal{M}_{\mathcal{I}} = \{A \subset \mathbb{R} : A \in \mathcal{I} \text{ or } \mathbb{R} \setminus A \in \mathcal{I}\}$ is the σ -algebra, which includes \mathcal{I} . It is easy to check that the pair $(\mathcal{M}_{I}, \mathcal{I})$ has Smital property. Indeed, if the set $B \in \mathcal{M}_{I} \setminus \mathcal{I}$, then $\mathbb{R} \setminus B \in \mathcal{I}$. For any number $d \in \mathbb{R}$, the set $\mathbb{R} \setminus (B+d) = ((\mathbb{R} \setminus B) + d) \in \mathcal{I}$. Therefore, $(B+d) \in \mathcal{M}_{I} \setminus \mathcal{I}$. Since $(B+D) \supset (B+d)$ for any dense set D and for any $d \in D$, so B + D belongs to $\mathcal{M}_{I} \setminus \mathcal{I}$. From there, $\mathbb{R} \setminus (B+D) \in \mathcal{I}$.

Note that the invariance of \mathcal{I} is essential. Indeed, if $\mathcal{I} = 2^{\mathbb{R} \setminus \{1\}}$ then the only σ -algebra including \mathcal{I} is the σ -algebra $2^{\mathbb{R}}$. Let $B = \{1\}$ and $D = \mathbb{Q} \setminus \{0\}$. Then $B + D = \mathbb{Q} \setminus \{1\}$ and $\mathbb{R} \setminus (B + D) \notin \mathcal{I}$.

The σ -algebra $\mathcal{M}_{\mathcal{J}}$ constructed in the last proof consists only of "small sets" belonging to \mathcal{I} and "big sets" which complements belong to \mathcal{I} . We will show that for any pair $(\mathcal{M}, \mathcal{I})$ having Smítal property, the family $\mathcal{M} \setminus \mathcal{I}$ consists of "big sets" in some sense.

PROPOSITION 1. If the pair $(\mathcal{M}, \mathcal{I})$ has Smítal property and $A \in \mathcal{M} \setminus \mathcal{I}$, then the smallest σ -ideal invariable with respect to translations containing σ -ideal \mathcal{I} and the set A is equal to $2^{\mathbb{R}}$.

Proof. Assume that $(\mathcal{M}, \mathcal{I})$ has Smítal property, fix a set $A \in \mathcal{M} \setminus \mathcal{I}$ and denote by $\mathcal{I}(A)$ the smallest σ -ideal containing $\mathcal{I} \cup \{A\}$, and invariable with respect to translations. Let $D = \mathbb{Q}$. The set $\mathbb{R} \setminus (A + D) \in \mathcal{I} \subset \mathcal{I}(A)$. Moreover, for any $d \in D$, the set $(A + d) \in \mathcal{I}(A)$, so $A + D = \bigcup_{d \in \mathbb{Q}} (A + d) \in \mathcal{I}(A)$. Therefore, the set $(A + D) \cup (\mathbb{R} \setminus (A + D)) = \mathbb{R}$ and every subset of set \mathbb{R} belongs to the σ -ideal $\mathcal{I}(A)$.

In [1], using a measurable hull, there is proved the "outer version" of Smítal's lemma for measure.

THEOREM 3 ([1, Th. 1, p. 65]). If a set $B \subset \mathbb{R}$ has a positive outer Lebesgue measure and D is a dense set, then the set $\mathbb{R} \setminus (B+D)$ has inner measure zero.

We will show that Theorem 3 is equivalent to Lemma 1. In fact, there is an other description of the same property.

We will say that the pair $(\mathcal{M}, \mathcal{I})$ has outer Smítal property if for any set $B \notin \mathcal{I}$ and a dense set D, the set $\mathbb{R} \setminus (B+D)$ does not include a set belonging to $\mathcal{M} \setminus \mathcal{I}$.

THEOREM 4. A pair $(\mathcal{M}, \mathcal{I})$ has Smital property if and only if it has outer Smital's property.

ON SMÍTAL PROPERTY

Proof. Assume that the pair $(\mathcal{M}, \mathcal{I})$ does not have outer Smítal's property. It means that there exists a set $B \notin \mathcal{I}$ and a dense set D, such that $\mathbb{R} \setminus (B + D)$ includes a set $A \in \mathcal{M} \setminus \mathcal{I}$. Consider the set (A + (-D)). It is easy to check that $(A + (-D)) \cap B = \emptyset$ and, consequently, $\mathbb{R} \setminus (A + (-D)) \supset B \notin \mathcal{I}$. Since $A \in \mathcal{M} \setminus \mathcal{I}$ and (-D) is a dense set, the pair $(\mathcal{M}, \mathcal{I})$ does not have Smítal property.

Now assume, that the pair $(\mathcal{M}, \mathcal{I})$ does not have Smítal property. Then there exists a set $B_0 \in \mathcal{M} \setminus \mathcal{I}$ and a dense set D_0 such that $\mathbb{R} \setminus (B_0 + D_0) \notin \mathcal{I}$.

Let $B_1 = \mathbb{R} \setminus (B_0 + D_0)$ and $D_1 = (-D_0)$. We show that $(B_1 + D_1) \cap B_0 = \emptyset$. For any $x \in B_1 + D_1$ there exist elements $b_1 \in B_1$ and $d \in D_0$ such that $x = b_1 - d$. Then $x + d \in B_1$, so $x + d \notin B_0 + D_0$. It means that $x \notin B_0$.

Therefore, the sets $(B_1 + D_1)$ and B_0 are disjoint and consequently, $\mathbb{R} \setminus (B_1 + D_1) \supset B_0 \in \mathcal{M} \setminus \mathcal{I}$.

In the definition of outer Smital's property, we consider the sets $B \notin \mathfrak{I}$. If we demand that the set $\mathbb{R} \setminus (B+D)$ belongs to a σ -ideal \mathfrak{I} , then we will get another, stronger condition, in which σ -algebra \mathfrak{M} does not occur. Thus, we will say, that σ -ideal \mathfrak{I} satisfies condition (\star) when, for any set $B \notin \mathfrak{I}$ and any dense set D, the set $\mathbb{R} \setminus (B+D)$ belongs to the σ -ideal \mathfrak{I} .

Immediately from condition (\star) , we have

PROPOSITION 2. A σ -ideal \Im satisfies condition (*) if and only if the pair $(2^{\mathbb{R}}, \Im)$ has Smítal property.

Corollary 2 yields the following fact.

PROPOSITION 3. The σ -ideals $\mathcal{N}, \mathcal{K}, \mathcal{I}_p$ do not satisfy condition (*).

THEOREM 5. The only σ -ideal, which satisfies condition (\star) , is $\mathfrak{I} = 2^{\mathbb{R}}$.

Proof. Assume that σ -ideal \mathfrak{I} satisfies condition (*). Let H be the Hamel basis and $h_0 \in H$. Consider the set $Z(H \setminus \{h_0\})$ described in Example 4.

Suppose that there exists a rational number $q_0 \in \mathbb{Q}$ such that

$$B = Z(H \setminus \{h_0\}) + q_0 \cdot h_0$$

does not belong to J. Let

$$D = \{qh_0 : q \in \mathbb{Q} \land q \neq 0\}$$

For any $q \neq 0$,

$$B + q \cdot h_0 = Z(H \setminus \{h_0\}) + q_0 \cdot h_0 + q \cdot h_0 = Z(H \setminus \{h_0\}) + (q_0 + q)h_0$$

and $B \cap (B + qh_0) = \emptyset$.

Therefore, we have

$$B + D = \bigcup_{q \in D} \left(Z \left(H \setminus \{h_0\} \right) + q_0 \cdot h_0 + q \cdot h_0 \right)$$
$$= \left(\bigcup_{q \in D \setminus \{0\}} \left(Z \left(H \setminus \{h_0\} \right) + (q_0 + q)h_0 \right) \right) + \left(Z \left(H \setminus \{h_0\} \right) + q_0 \cdot h_0 \right).$$

Hence, the set $\mathbb{R} \setminus (B + D) = Z(H \setminus \{h_0\}) + q_0 \cdot h_0$ does not belong to σ -ideal J. We get a contradiction. Therefore, for any rational number q the set $Z(H \setminus \{h_0\}) + q \cdot h_o$ belongs to σ -ideal J. Hence, $\mathbb{R} = \bigcup_{q \in \mathbb{Q}} (Z(H \setminus \{h_0\} + h_0 \cdot q))$ belongs to J, so $J = 2^{\mathbb{R}}$.

The notion of the pair $(\mathcal{M}, \mathcal{I})$ having Smítal property and having outer Smítal property can also be considered for σ -algebras and σ -ideals of sets of topological group. Most of the results obtained in this paper remain true for topological groups.

Acknowledgements. I wish to thank Professor Małgorzata Filipczak for her help concerning my work.

REFERENCES

- KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities. in: Prace Naukowe Uniwersytetu laskiego w Katowicach, Vol. 489, PWN, Uniwersytet Śląski, Warszawa, 1985.
- [2] HEWITT, E.—STROMBERG, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable (2nd ed.), Springer-Verlag, Berlin, 1969.
- [3] HALMOS, P.: Measure Theory. D. Van Nostrand Co., Inc., New York, 1950.
- [4] SIERPIŃSKI, W.: Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105–111.
- [5] OXTOBY, J.: Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. in: Grad. Texts in Math., Vol. 2, Springer-Verlag, Berlin, 1971.
- [6] NIEDZIAŁKOWSKA, A.: Some remarks on Smítal's lemma, Folia Math. 14 (2007), 25-31.
- SZPILRAJN, E.: Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.
- [8] WAGNER-BOJAKOWSKA, E.: Remarks on ψ-density topology, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), 79–87.

Received November 26, 2009

Center of Mathematics and Physics Lódź Technical University al. Politechniki 11 PL-90-924 Lódź POLAND E-mail: agnieszka.niedzialkowska@p.lodz.pl