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ON SMÍTAL PROPERTY

Agnieszka Niedzia�lkowska

ABSTRACT. In this paper, we define and study the property called Smı́tal

property for the pair (M, I), where M denotes a σ-algebra of subsets of real line
and I ⊂ M is a σ-ideal. It is a generalization of Smı́tal lemma. We give some
examples of pairs (M, I) having Smı́tal property and pairs which do not have this
property.

Throughout the paper, R will denote the set of real numbers and Q—the set
of rational numbers. Lebesgue outer (resp. inner) measure on the real line will be
denoted by λ∗ (resp. λ∗), whereas λ will stand for the Lebesgue measure itself.
Moreover, L will denote the σ-algebra of λ-measurable subsets of R and N will
denote the σ-ideal of Lebesgue null sets. We will consider a natural topology
on R. Notation B will be adopted for the case of subsets of R having the Baire
property and K will denote the σ-ideal of the sets of the first category. Ip will
denote the σ-ideal of at most countable sets. The sign “+” indicates the operation
of finding an algebraic sum of two sets A and B contained in R, so the algebraic
sum of this sets will be denoted by A + B = {a + b : a ∈ A, b ∈ B}.

For mathematicians working with Lebesgue measure on the real line, the
following lemma become a part of the folklore.

����� 1 (Smı́tal’s lemma for measure)� If a set B ⊂ R has positive Lebesgue
measure and D is a dense set in R with natural topology, then the set B+D has
a full measure.

The proof based on the Lebesgue Density Theorem can be found in [1] (for
outer measure) or in [8]. For the convenience, we repeat a sketch of the proof.
If we denote by D0 a countable and dense subset of D, then the set A = B+D0 =⋃

d∈D0
(B+d) is measurable. Fix a number x ∈ R. We will show that x is a density

point of A, i.e.,

lim
h→0+

λ (A ∩ [x− h, x + h])

2h
= 1.
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Since λ(B) > 0, from Lebesgue Density Theorem, it follows that there exists
a density point x0 of the set B. Because D0 is a dense set, there exists an in-
creasing sequence (dn)n∈N ∈ D0 tending to x−x0. Then (x0 + dn)n∈N ↗ x, and
for h > 0 there is n0 ∈ N such that x − h < x0 + dn for all n ≥ n0. Hence, for
any n ≥ n0,

λ
(
A ∩ [x− h, x + h]

) ≥ λ
(
(B + dn) ∩ [x− h, x + h]

)
≥ λ
(
(B + dn) ∩ [x− h, x0 + dn + h]

)
≥ λ
(
(B + dn) ∩ [x0 + dn − h, x0 + dn + h]

)
− λ

(
[x0 + dn − h, x− h]

)
= λ
(
B ∩ [x0 − h, x0 + h]

)− (x− (x0 + dn)
)

Therefore,

λ
(
A ∩ [x− h, x + h]

) ≥ λ
(
B ∩ [x0 − h, x0 + h]

)
and, since x0 is a density point of B, x is a density point of A. Applying Lebesgue
Density Theorem again, we obtain that λ(R \A) = 0.

Even easier, one can prove (compare [1, Th. 2, p. 66]):

����� 2 (Smı́tal’s lemma for category)� Let B ⊂ R be a second category set
having the Baire property and D is dense in R. Then the set A = (B + D) is
a residual set.

Indeed, the second category set having the Baire property can be presen-
ted as a symmetric difference U�P of a nonempty open set U and the first
category set P. Let D0 be a countable dense subset of D. It is easy to check that
U + D0 = R. The set B + D0 differs from U + D0 on a first category set and
(B + D) ⊃ (B + D0).

Let M be a σ-algebra consisted of subsets of R and I ⊂ M be a σ-ideal. We
will say that the pair (M, I) has Smı́tal property if for any set B ∈ M \ I and
for any dense set D, the set R \ (B + D) belongs to I.

As we have seen, pairs (L,N) and (B,K) have Smı́tal property. In the following
theorem, we will examine Smı́tal property for a σ-algebra Sμ ⊂ 2R consisted of
sets measurable with respect to a Borel measure μ and a σ-ideal Iμ of null sets
with respect to μ. Recall that μ is a Borel measure if Sμ contains all Borel subsets
of R.

A measure μa is absolutely continuous with respect to λ if λ(A) = 0 implies
μa(A) = 0 for any A ⊂ R. We say that μs is singular with respect to λ, if there
exists a set A ⊂ R, such that μs(A) = 0 and λ(R \A) = 0.

A measure μd defined on the σ-algebra 2R is called a purely discontinuous
measure if there exists a countable set X = {xk : k ∈ N} ⊂ R and a function
ϕ : X → (0,∞) satisfying the condition

∑
{ϕ(xk):|xk|≤n}<∞ ϕ(xk) for any n ∈ N,
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such that for any A ⊂ R, we have μd(A) = Σ∞
k=1ϕ(xk)·χA(xk), where χA denotes

the characteristic function of A.

Finally, recall that for any Borel measure μ on R there exist three measures:
μa-absolutely continuous with respect to λ, μd-purely discontinuous, and μs-
-nonatomic and singular with respect to λ such that

μ(A) = μa(A) + μs(A) + μd(A)

for any Borel set A ⊂ R (compare [2, p. 337]).

����	�� 1�

a) For any Borel measure μa absolutely continuous with respect to λ, the pair
(Sμa

, Iμa
) has Smı́tal property.

b) For any Borel measure μd purely discontinuous, the pair (Sμd
, Iμd

) does
not have Smı́tal property.

c) There exists a nonatomic Borel measure μs singular with respect to λ, such
that the pair (Sμs

, Iμs
) does not have Smı́tal property.

P r o o f.

a) Let B ∈ Sμa
\ Iμa

and D be a dense set on the real line. Since μa is abso-
lutely continuous with respect to λ, so λ(B) > 0. From Lemma 1 we have
that λ

(
R \ (B + D)

)
= 0. Using the definition of absolutely continuous

measure again, we obtain that μa

(
R \ (B + D)

)
= 0.

b) Assume that the measure μd is concentrated on the set {x1, x2, . . . , xn, . . .}
for n ∈ N. Then, μd

({xn}
)
> 0 for n ∈ N and

μd

(
R \ {x1, x2, . . . , xn, . . .}

)
= 0.

Put B = {x1} and D = R \ {0}. We have R \ (B + D) = {x1}, so μd

(
R \

(B + D)
) ≥ μd

({x1}
)
> 0. That means that R \ (B + D) ∈ Sμd

\ Iμd
.

c) Let C denotes the ternary Cantor set and g0 : [0, 1] → [0, 1] the Cantor
function. Define a function

g(x) =

⎧⎪⎨
⎪⎩

0 for x < 0,

g0(x) for x ∈ [0, 1] ,

1 for x > 1

and λg the Lebesgue-Stieltjes measure generated by g. The algebra Sg of
measurable sets with respect to λg contains Borel sets.

Since g is continuous, the measure λg vanishes on one-point sets. More-
over, if a set A is disjoint from C, then μg(A) = 0. Therefore, λg is singular
with respect to λ.

We will construct a dense set D such that for any x ∈ D, card
(
C∩

(C+D)
) ≤ ℵ0. Observe first that, for any natural number n and integer k,
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if the set C ∩ ( k
3n ,

k+1
3n

)
is nonempty, then C ∩ (k+1

3n , k+2
3n

)
= ∅. It follows

that, for any k, the set C ∩(C + k
3n

)
is finite, containing only endpoints of

finite many intervals of the form
[

k
3n ,

k+1
3n

]
, k = 1, 2, . . . , 3

n+1
2 . Moreover,

for any x ∈ (−∞,−1) ∪ (1,∞), C ∩ (C + x) = ∅.
Clearly, the set

D = (−∞,−1) ∪ (1,∞) ∪
∞⋃

n=1

({
zk =

2k − 1

3n
, k = 1, 2, . . . ,

3n + 1

2

}

∪
{
zk = −2k − 1

3n
, k = 1, 2, . . . ,

3n + 1

2

})

is dense and card
(
C ∩ (C + D)

) ≤ ℵ0. Therefore, λg(C + D) = 0 and
a measure μs = λg fulfils c).

�

Example 1. The pair (β, Ip), composed of a σ-algebra of Borel sets and a σ-ideal
of at most countable sets does not have Smı́tal property.

Indeed, it is sufficient to take a Cantor set C which belongs to β \ Ip and
D = Q.

Example 2. The pair (L ∩ B, N ∩ K) containing the σ-algebra of measurable
sets having Baire property and σ-ideal of Lebesgue measure zero sets of the first
category, does not have Smı́tal property.

There exists a residual set B of Lebesgue measure zero (compare [5, p. 15,
Th. 1.6]). If we put D = Q, the set B + Q has measure zero and R \ (B + Q)
does not belong to N ∩K.

Example 3. We say that a set M has the (s)-Marczewski property if every
nonempty perfect set has a nonempty perfect subset, which is a subset of M or
does not intersect the set M. A set M has the (s0)-Marczewski property if every
nonempty perfect set has a nonempty perfect subset which does not intersect the
set M. The family of sets having the (s)-Marczewski property is a σ-algebra and
we will denote it by S. The family of sets having the (s0)-Marczewski property
is a σ-ideal and we will denote it by S0 (compare [7]).

The pair (S, S0) does not have Smı́tal property. It is easy to observe that any
nonempty perfect set belongs to σ-algebra S and does not belong to σ-ideal S0,
whereas any at most countable set belongs to σ-ideal S0. Moreover, any uncount-
able Borel set contains the perfect set and belongs to S. Let B be a Cantor set.
B is a perfect set, so it belongs to S \ S0. Put D = Q. The set B + D is the null
Fσ set. The set R \ (B + D) is Gδ set of full measure, so it is a Borel set and it
is uncountable. Then R \ (B + D) ∈ S \ S0.
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If we consider, instead of the pair (M, I), a pair which consists of the same
σ-algebra and smaller σ-ideal, then the new pair does not have Smı́tal property.

����� 3� Let I1, I2 be σ-ideals such that I2 is invariant under translation,
I1 �= I2 and I1 ⊂ I2 �= 2R. Then for any σ-algebra M such that I2 ⊂ M, the pair
(M, I1) does not have Smı́tal property.

P r o o f. In fact, if I1 �= I2 and I1 ⊂ I2 then there exists a set B ∈ I2 \ I1. Let D
be a dense and countable set. Then, (B + D) ∈ I2 and R \ (B + D) /∈ I2. �


�	����	� 1�

a) The pairs (L,N ∩K) and (B,N ∩K) do not have Smı́tal property.

b) The pairs (L, Ip), (B, Ip) do not have Smı́tal property.

c) Put I = {∅}. The pairs (L, I), (B, I), (L ∩ B, I) and (β, I) do not have
Smı́tal property.

From the above consideration, it follows that decreasing a σ-ideal, we always
lose Smı́tal property. On the other hand, increasing a σ-ideal (when the σ-algebra
is established), we can (but we do not need to) obtain Smı́tal property. Indeed,
the pair (L, Ip) does not have Smı́tal property and the σ-ideal N ∩K is bigger
than Ip, but the pair (L,N ∩ K) does not have Smı́tal property, too. However,
the pair (L,N) has this property.

Directly from definition of Smı́tal’s property, we have

����� 4� If the pair (M, I) does not have Smı́tal property and M1 is a σ-algebra
including M, then the pair (M1, I) does not have Smı́tal property.

P r o o f. Indeed, if the pair (M, I) does not have Smı́tal property then there
exists a set B ∈ M \ I and a dense set D such that the set R \ (B +D) does not
belong to I. Obviously, B ∈ M1 \ I. �


�	����	� 2� The pairs (2R,N ∩ K), (L, Ip), (B, Ip), (2R, Ip) and (2R, S0) do
not have Smı́tal property.

Example 4. The pair (2R,N) does not have Smı́tal property.

Denote by Z(L) a linear space over the field Q generated by the set L, i.e.,

Z(L) = {x : x = κ1 · l1 + · · · + κn · ln; n ∈ N; i = 1, . . . , n; li ∈ L; κi ∈ Q} .
Let H be a Hamel basis and h0 be a fixed point of H. Observe that the set

Z
(
H \{h0}

)
is nonmeasurable ( [1, Th. 2, p. 255]) and Z

(
H \{h0}

)
+Q ·h0 = R.

Moreover, the sets Z
(
H \ {h0}

)
and Z

(
H \ {h0}

)
+ κ · h0 are disjoint for any

κ ∈ Q \ {0}. Putting B = Z
(
H \ {h0}

)
and D =

⋃
κ∈Q\{0}(κ · h0), we obtain

that R \ (B + D) = B /∈ N.

In the same way, we check that the pair (2R,K) does not have Smı́tal property.
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Suppose now that a σ-ideal I ⊂ 2R is invariable with respect to translations,
i.e., for any real number x, the fact that A ∈ I implies that (x + A) ∈ I.

����	�� 2� For any σ-ideal I, which is invariant with respect to translation,
there exists a σ-algebra M such that the pair (M, I) has Smı́tal property.

P r o o f. If I = 2R then we can put M = I. Therefore, we can assume that
I �= 2R. The family MI = {A ⊂ R : A ∈ I or R \A ∈ I} is the σ-algebra, which
includes I. It is easy to check that the pair (MI , I) has Smı́tal property. Indeed,
if the set B ∈ MI \I, then R\B ∈ I. For any number d ∈ R, the set R\(B+d) =(
(R \ B) + d

) ∈ I. Therefore, (B + d) ∈ MI \ I. Since (B + D) ⊃ (B + d) for
any dense set D and for any d ∈ D, so B + D belongs to MI \ I. From there,
R \ (B + D) ∈ I. �

Note that the invariance of I is essential. Indeed, if I = 2R\{1} then the only
σ-algebra including I is the σ-algebra 2R. Let B = {1} and D = Q \ {0}. Then
B + D = Q \ {1} and R \ (B + D) /∈ I.

The σ-algebra MI constructed in the last proof consists only of “small sets”
belonging to I and “big sets” which complements belong to I. We will show that
for any pair (M, I) having Smı́tal property, the family M\I consists of “big sets”
in some sense.

	��������� 1� If the pair (M, I) has Smı́tal property and A ∈ M \ I, then the
smallest σ-ideal invariable with respect to translations containing σ-ideal I and
the set A is equal to 2R.

P r o o f. Assume that (M, I) has Smı́tal property, fix a set A ∈ M\ I and denote
by I(A) the smallest σ-ideal containing I ∪ {A}, and invariable with respect to
translations. Let D = Q. The set R \ (A + D) ∈ I ⊂ I(A). Moreover, for any
d ∈ D, the set (A + d) ∈ I(A), so A + D =

⋃
d∈Q(A + d) ∈ I(A). Therefore, the

set (A+D)∪(R\ (A+D)
)

= R and every subset of set R belongs to the σ-ideal
I(A). �

In [1], using a measurable hull, there is proved the “outer version” of Smı́tal’s
lemma for measure.

����	�� 3 ([1, Th. 1, p. 65])� If a set B ⊂ R has a positive outer Lebesgue
measure and D is a dense set, then the set R \ (B +D) has inner measure zero.

We will show that Theorem 3 is equivalent to Lemma 1. In fact, there is
an other description of the same property.

We will say that the pair (M, I) has outer Smı́tal property if for any set B /∈ I

and a dense set D, the set R\ (B+D) does not include a set belonging to M \ I.
����	�� 4� A pair (M, I) has Smı́tal property if and only if it has outer Smı́-
tal’s property.
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P r o o f. Assume that the pair (M, I) does not have outer Smı́tal’s property. It
means that there exists a set B /∈ I and a dense set D, such that R \ (B + D)
includes a set A ∈ M \ I. Consider the set

(
A + (−D)

)
. It is easy to check that(

A+(−D)
)∩B = ∅ and, consequently, R\(A+(−D)

) ⊃ B /∈ I. Since A ∈ M\I
and (−D) is a dense set, the pair (M, I) does not have Smı́tal property.

Now assume, that the pair (M, I) does not have Smı́tal property. Then there
exists a set B0 ∈ M \ I and a dense set D0 such that R \ (B0 + D0) /∈ I.

Let B1 = R \ (B0 +D0) and D1 = (−D0). We show that (B1 +D1)∩B0 = ∅.
For any x ∈ B1 + D1 there exist elements b1 ∈ B1 and d ∈ D0 such that
x = b1 − d. Then x + d ∈ B1, so x + d /∈ B0 + D0. It means that x /∈ B0.

Therefore, the sets (B1 +D1) and B0 are disjoint and consequently, R\ (B1 +
D1) ⊃ B0 ∈ M \ I. �

In the definition of outer Smı́tal’s property, we consider the sets B /∈ I. If we
demand that the set R\ (B+D) belongs to a σ-ideal I, then we will get another,
stronger condition, in which σ-algebra M does not occur. Thus, we will say, that
σ-ideal I satisfies condition (�) when, for any set B /∈ I and any dense set D,
the set R \ (B + D) belongs to the σ-ideal I.

Immediately from condition (�), we have

	��������� 2� A σ-ideal I satisfies condition (�) if and only if the pair (2R, I)
has Smı́tal property.

Corollary 2 yields the following fact.

	��������� 3� The σ-ideals N,K, Ip do not satisfy condition (�).

����	�� 5� The only σ-ideal, which satisfies condition (�), is I = 2R.

P r o o f. Assume that σ-ideal I satisfies condition (�). Let H be the Hamel basis
and h0 ∈ H. Consider the set Z

(
H \ {h0}

)
described in Example 4.

Suppose that there exists a rational number q0 ∈ Q such that

B = Z
(
H \ {h0}

)
+ q0 · h0

does not belong to I. Let

D = {qh0 : q ∈ Q ∧ q �= 0} .
For any q �= 0,

B + q · h0 = Z
(
H \ {h0}

)
+ q0 · h0 + q · h0 = Z

(
H \ {h0}

)
+ (q0 + q)h0

and B ∩ (B + qh0) = ∅.
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Therefore, we have

B + D =
⋃
q∈D

(
Z
(
H \ {h0}

)
+ q0 · h0 + q · h0

)

=

⎛
⎝ ⋃

q∈D\{0}

(
Z
(
H \ {h0}

)
+ (q0 + q)h0

)⎞⎠+
(
Z
(
H \ {h0}

)
+ q0 · h0

)
.

Hence, the set R \ (B + D) = Z
(
H \ {h0}

)
+ q0 · h0 does not belong to

σ-ideal I. We get a contradiction. Therefore, for any rational number q the set
Z
(
H\{h0}

)
+q·ho belongs to σ-ideal I. Hence, R =

⋃
q∈Q

(
Z (H \ {h0} + h0 · q)

)
belongs to I, so I = 2R. �

The notion of the pair (M, I) having Smı́tal property and having outer Smı́tal
property can also be considered for σ-algebras and σ-ideals of sets of topological
group. Most of the results obtained in this paper remain true for topological
groups.
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d’ensembles, Fund. Math. 24 (1935), 17–34.
[8] WAGNER-BOJAKOWSKA, E.: Remarks on ψ-density topology, Atti Sem. Mat. Fis. Univ.

Modena 49 (2001), 79–87.

Received November 26, 2009 Center of Mathematics and Physics
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