TATRA
MOuNTaiNS
Mathematical Publications

ON SMÍTAL PROPERTY

Agnieszka NiedziaŁkowska

Abstract

In this paper, we define and study the property called Smítal property for the pair $(\mathcal{M}, \mathcal{J})$, where \mathcal{M} denotes a σ-algebra of subsets of real line and $\mathcal{J} \subset \mathcal{M}$ is a σ-ideal. It is a generalization of Smítal lemma. We give some examples of pairs $(\mathcal{M}, \mathcal{J})$ having Smítal property and pairs which do not have this property.

Throughout the paper, \mathbb{R} will denote the set of real numbers and \mathbb{Q} - the set of rational numbers. Lebesgue outer (resp. inner) measure on the real line will be denoted by λ^{*} (resp. λ_{*}), whereas λ will stand for the Lebesgue measure itself. Moreover, \mathcal{L} will denote the σ-algebra of λ-measurable subsets of \mathbb{R} and \mathcal{N} will denote the σ-ideal of Lebesgue null sets. We will consider a natural topology on \mathbb{R}. Notation \mathcal{B} will be adopted for the case of subsets of \mathbb{R} having the Baire property and \mathcal{K} will denote the σ-ideal of the sets of the first category. \mathcal{J}_{p} will denote the σ-ideal of at most countable sets. The sign " + " indicates the operation of finding an algebraic sum of two sets A and B contained in \mathbb{R}, so the algebraic sum of this sets will be denoted by $A+B=\{a+b: a \in A, b \in B\}$.

For mathematicians working with Lebesgue measure on the real line, the following lemma become a part of the folklore.

Lemma 1 (Smítal's lemma for measure). If a set $B \subset \mathbb{R}$ has positive Lebesgue measure and D is a dense set in \mathbb{R} with natural topology, then the set $B+D$ has a full measure.

The proof based on the Lebesgue Density Theorem can be found in [1] (for outer measure) or in [8]. For the convenience, we repeat a sketch of the proof. If we denote by D_{0} a countable and dense subset of D, then the set $A=B+D_{0}=$ $\bigcup_{d \in D_{0}}(B+d)$ is measurable. Fix a number $x \in \mathbb{R}$. We will show that x is a density point of A, i.e.,

$$
\lim _{h \rightarrow 0^{+}} \frac{\lambda(A \cap[x-h, x+h])}{2 h}=1 .
$$

[^0]
AGNIESZKA NIEDZIAtKOWSKA

Since $\lambda(B)>0$, from Lebesgue Density Theorem, it follows that there exists a density point x_{0} of the set B. Because D_{0} is a dense set, there exists an increasing sequence $\left(d_{n}\right)_{n \in \mathbb{N}} \in D_{0}$ tending to $x-x_{0}$. Then $\left(x_{0}+d_{n}\right)_{n \in \mathbb{N}} \nearrow x$, and for $h>0$ there is $n_{0} \in \mathbb{N}$ such that $x-h<x_{0}+d_{n}$ for all $n \geq n_{0}$. Hence, for any $n \geq n_{0}$,

$$
\begin{aligned}
\lambda(A \cap[x-h, x+h]) \geq & \lambda\left(\left(B+d_{n}\right) \cap[x-h, x+h]\right) \\
\geq & \lambda\left(\left(B+d_{n}\right) \cap\left[x-h, x_{0}+d_{n}+h\right]\right) \\
\geq & \lambda\left(\left(B+d_{n}\right) \cap\left[x_{0}+d_{n}-h, x_{0}+d_{n}+h\right]\right) \\
& -\lambda\left(\left[x_{0}+d_{n}-h, x-h\right]\right) \\
= & \lambda\left(B \cap\left[x_{0}-h, x_{0}+h\right]\right)-\left(x-\left(x_{0}+d_{n}\right)\right)
\end{aligned}
$$

Therefore,

$$
\lambda(A \cap[x-h, x+h]) \geq \lambda\left(B \cap\left[x_{0}-h, x_{0}+h\right]\right)
$$

and, since x_{0} is a density point of B, x is a density point of A. Applying Lebesgue Density Theorem again, we obtain that $\lambda(\mathbb{R} \backslash A)=0$.

Even easier, one can prove (compare [1, Th. 2, p. 66]):
Lemma 2 (Smítal's lemma for category). Let $B \subset \mathbb{R}$ be a second category set having the Baire property and D is dense in \mathbb{R}. Then the set $A=(B+D)$ is a residual set.

Indeed, the second category set having the Baire property can be presented as a symmetric difference $U \triangle P$ of a nonempty open set U and the first category set P. Let D_{0} be a countable dense subset of D. It is easy to check that $U+D_{0}=\mathbb{R}$. The set $B+D_{0}$ differs from $U+D_{0}$ on a first category set and $(B+D) \supset\left(B+D_{0}\right)$.

Let \mathcal{M} be a σ-algebra consisted of subsets of \mathbb{R} and $\mathcal{J} \subset \mathcal{M}$ be a σ-ideal. We will say that the pair $(\mathcal{M}, \mathcal{J})$ has Smítal property if for any set $B \in \mathcal{M} \backslash \mathcal{J}$ and for any dense set D, the set $\mathbb{R} \backslash(B+D)$ belongs to \mathcal{J}.

As we have seen, pairs $(\mathcal{L}, \mathcal{N})$ and $(\mathcal{B}, \mathcal{K})$ have Smítal property. In the following theorem, we will examine Smítal property for a σ-algebra $\mathcal{S}_{\mu} \subset 2^{\mathbb{R}}$ consisted of sets measurable with respect to a Borel measure μ and a σ-ideal \mathcal{J}_{μ} of null sets with respect to μ. Recall that μ is a Borel measure if \mathcal{S}_{μ} contains all Borel subsets of \mathbb{R}.

A measure μ_{a} is absolutely continuous with respect to λ if $\lambda(A)=0$ implies $\mu_{a}(A)=0$ for any $A \subset \mathbb{R}$. We say that μ_{s} is singular with respect to λ, if there exists a set $A \subset R$, such that $\mu_{s}(A)=0$ and $\lambda(\mathbb{R} \backslash A)=0$.

A measure μ_{d} defined on the σ-algebra $2^{\mathbb{R}}$ is called a purely discontinuous measure if there exists a countable set $X=\left\{x_{k}: k \in \mathbb{N}\right\} \subset \mathbb{R}$ and a function $\varphi: X \rightarrow(0, \infty)$ satisfying the condition $\sum_{\left\{\varphi\left(x_{k}\right):\left|x_{k}\right| \leq n\right\}<\infty} \varphi\left(x_{k}\right)$ for any $n \in \mathbb{N}$,
such that for any $A \subset \mathbb{R}$, we have $\mu_{d}(A)=\sum_{k=1}^{\infty} \varphi\left(x_{k}\right) \cdot \chi_{A}\left(x_{k}\right)$, where χ_{A} denotes the characteristic function of A.

Finally, recall that for any Borel measure μ on \mathbb{R} there exist three measures: μ_{a}-absolutely continuous with respect to λ, μ_{d}-purely discontinuous, and $\mu_{s^{-}}$ -nonatomic and singular with respect to λ such that

$$
\mu(A)=\mu_{a}(A)+\mu_{s}(A)+\mu_{d}(A)
$$

for any Borel set $A \subset \mathbb{R}$ (compare [2, p. 337]).

Theorem 1.

a) For any Borel measure μ_{a} absolutely continuous with respect to λ, the pair $\left(\mathcal{S}_{\mu_{a}}, \mathcal{J}_{\mu_{a}}\right)$ has Smítal property.
b) For any Borel measure μ_{d} purely discontinuous, the pair $\left(\mathcal{S}_{\mu_{d}}, \mathcal{J}_{\mu_{d}}\right)$ does not have Smítal property.
c) There exists a nonatomic Borel measure μ_{s} singular with respect to λ, such that the pair $\left(\mathcal{S}_{\mu_{s}}, \mathcal{J}_{\mu_{s}}\right)$ does not have Smital property.
Proof.
a) Let $B \in \mathcal{S}_{\mu_{a}} \backslash \mathcal{J}_{\mu_{a}}$ and D be a dense set on the real line. Since μ_{a} is absolutely continuous with respect to λ, so $\lambda(B)>0$. From Lemma 1 we have that $\lambda(\mathbb{R} \backslash(B+D))=0$. Using the definition of absolutely continuous measure again, we obtain that $\mu_{a}(\mathbb{R} \backslash(B+D))=0$.
b) Assume that the measure μ_{d} is concentrated on the set $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ for $n \in N$. Then, $\mu_{d}\left(\left\{x_{n}\right\}\right)>0$ for $n \in \mathbb{N}$ and

$$
\mu_{d}\left(\mathbb{R} \backslash\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}\right)=0
$$

Put $B=\left\{x_{1}\right\}$ and $D=\mathbb{R} \backslash\{0\}$. We have $\mathbb{R} \backslash(B+D)=\left\{x_{1}\right\}$, so $\mu_{d}(\mathbb{R} \backslash$ $(B+D)) \geq \mu_{d}\left(\left\{x_{1}\right\}\right)>0$. That means that $\mathbb{R} \backslash(B+D) \in \mathcal{S}_{\mu_{d}} \backslash \mathcal{J}_{\mu_{d}}$.
c) Let C denotes the ternary Cantor set and $g_{0}:[0,1] \rightarrow[0,1]$ the Cantor function. Define a function

$$
g(x)= \begin{cases}0 & \text { for } x<0 \\ g_{0}(x) & \text { for } x \in[0,1] \\ 1 & \text { for } x>1\end{cases}
$$

and λ_{g} the Lebesgue-Stieltjes measure generated by g. The algebra \mathcal{S}_{g} of measurable sets with respect to λ_{g} contains Borel sets.

Since g is continuous, the measure λ_{g} vanishes on one-point sets. Moreover, if a set A is disjoint from C, then $\mu_{g}(A)=0$. Therefore, λ_{g} is singular with respect to λ.

We will construct a dense set D such that for any $x \in D, \operatorname{card}(C \cap$ $(C+D)) \leq \aleph_{0}$. Observe first that, for any natural number n and integer k,

AGNIESZKA NIEDZIAŁKOWSKA

if the set $C \cap\left(\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right)$ is nonempty, then $C \cap\left(\frac{k+1}{3^{n}}, \frac{k+2}{3^{n}}\right)=\emptyset$. It follows that, for any k, the set $C \cap\left(C+\frac{k}{3^{n}}\right)$ is finite, containing only endpoints of finite many intervals of the form $\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right], k=1,2, \ldots, \frac{3^{n}+1}{2}$. Moreover, for any $x \in(-\infty,-1) \cup(1, \infty), C \cap(C+x)=\emptyset$.

Clearly, the set

$$
\begin{aligned}
D=(-\infty,-1) \cup(1, \infty) & \cup \bigcup_{n=1}^{\infty}\left(\left\{z_{k}=\frac{2 k-1}{3^{n}}, k=1,2, \ldots, \frac{3^{n}+1}{2}\right\}\right. \\
& \left.\cup\left\{z_{k}=-\frac{2 k-1}{3^{n}}, k=1,2, \ldots, \frac{3^{n}+1}{2}\right\}\right)
\end{aligned}
$$

is dense and $\operatorname{card}(C \cap(C+D)) \leq \aleph_{0}$. Therefore, $\lambda_{g}(C+D)=0$ and a measure $\mu_{s}=\lambda_{g}$ fulfils c).

ExAmple 1. The pair $\left(\beta, \mathcal{J}_{p}\right)$, composed of a σ-algebra of Borel sets and a σ-ideal of at most countable sets does not have Smítal property.

Indeed, it is sufficient to take a Cantor set C which belongs to $\beta \backslash \mathcal{J}_{p}$ and $D=\mathbb{Q}$.

ExAmple 2. The pair $(\mathcal{L} \cap \mathcal{B}, \mathcal{N} \cap \mathcal{K})$ containing the σ-algebra of measurable sets having Baire property and σ-ideal of Lebesgue measure zero sets of the first category, does not have Smítal property.

There exists a residual set B of Lebesgue measure zero (compare [5, p. 15, Th. 1.6]). If we put $D=\mathbb{Q}$, the set $B+\mathbb{Q}$ has measure zero and $\mathbb{R} \backslash(B+\mathbb{Q})$ does not belong to $\mathcal{N} \cap \mathcal{K}$.

Example 3. We say that a set M has the (s)-Marczewski property if every nonempty perfect set has a nonempty perfect subset, which is a subset of M or does not intersect the set M. A set M has the $\left(s_{0}\right)$-Marczewski property if every nonempty perfect set has a nonempty perfect subset which does not intersect the set M. The family of sets having the (s)-Marczewski property is a σ-algebra and we will denote it by \mathcal{S}. The family of sets having the $\left(s_{0}\right)$-Marczewski property is a σ-ideal and we will denote it by \mathcal{S}_{0} (compare [7]).

The pair $\left(\mathcal{S}, \mathcal{S}_{0}\right)$ does not have $S m i ́ t a l$ property. It is easy to observe that any nonempty perfect set belongs to σ-algebra \mathcal{S} and does not belong to σ-ideal \mathcal{S}_{0}, whereas any at most countable set belongs to σ-ideal \mathcal{S}_{0}. Moreover, any uncountable Borel set contains the perfect set and belongs to \mathcal{S}. Let B be a Cantor set. B is a perfect set, so it belongs to $\mathcal{S} \backslash \mathcal{S}_{0}$. Put $D=\mathbb{Q}$. The set $B+D$ is the null F_{σ} set. The set $\mathbb{R} \backslash(B+D)$ is G_{δ} set of full measure, so it is a Borel set and it is uncountable. Then $\mathbb{R} \backslash(B+D) \in \mathcal{S} \backslash \mathcal{S}_{0}$.

ON SMÍTAL PROPERTY

If we consider, instead of the pair $(\mathcal{M}, \mathcal{J})$, a pair which consists of the same σ-algebra and smaller σ-ideal, then the new pair does not have Smítal property.

Lemma 3. Let $\mathcal{J}_{1}, \mathfrak{J}_{2}$ be σ-ideals such that \mathcal{J}_{2} is invariant under translation, $\mathcal{J}_{1} \neq \mathcal{J}_{2}$ and $\mathcal{J}_{1} \subset \mathcal{J}_{2} \neq 2^{\mathbb{R}}$. Then for any σ-algebra \mathcal{M} such that $\mathcal{J}_{2} \subset \mathcal{M}$, the pair $\left(\mathcal{M}, \mathcal{J}_{1}\right)$ does not have Smítal property.

Proof. In fact, if $\mathcal{J}_{1} \neq \mathcal{J}_{2}$ and $\mathcal{J}_{1} \subset \mathcal{J}_{2}$ then there exists a set $B \in \mathcal{J}_{2} \backslash \mathcal{J}_{1}$. Let D be a dense and countable set. Then, $(B+D) \in \mathcal{J}_{2}$ and $\mathbb{R} \backslash(B+D) \notin \mathcal{J}_{2}$.

Corollary 1.
a) The pairs $(\mathcal{L}, \mathcal{N} \cap \mathcal{K})$ and $(\mathcal{B}, \mathcal{N} \cap \mathcal{K})$ do not have Smítal property.
b) The pairs $\left(\mathcal{L}, \mathcal{J}_{p}\right),\left(\mathcal{B}, \mathcal{J}_{p}\right)$ do not have Smital property.
c) Put $\mathcal{J}=\{\emptyset\}$. The pairs $(\mathcal{L}, \mathcal{J}),(\mathcal{B}, \mathcal{J}),(\mathcal{L} \cap \mathcal{B}, \mathcal{J})$ and (β, \mathcal{J}) do not have Smítal property.

From the above consideration, it follows that decreasing a σ-ideal, we always lose Smítal property. On the other hand, increasing a σ-ideal (when the σ-algebra is established), we can (but we do not need to) obtain Smítal property. Indeed, the pair $\left(\mathcal{L}, \mathcal{J}_{p}\right)$ does not have Smítal property and the σ-ideal $\mathcal{N} \cap \mathcal{K}$ is bigger than \mathcal{J}_{p}, but the pair $(\mathcal{L}, \mathcal{N} \cap \mathcal{K})$ does not have Smítal property, too. However, the pair $(\mathcal{L}, \mathcal{N})$ has this property.

Directly from definition of Smítal's property, we have
Lemma 4. If the pair ($\mathcal{M}, \mathcal{J})$ does not have Smital property and \mathcal{M}_{1} is a σ-algebra including \mathcal{M}, then the pair $\left(\mathcal{M}_{1}, \mathcal{J}\right)$ does not have Smital property.

Proof. Indeed, if the pair $(\mathcal{M}, \mathcal{J})$ does not have Smítal property then there exists a set $B \in \mathcal{M} \backslash \mathcal{J}$ and a dense set D such that the set $\mathbb{R} \backslash(B+D)$ does not belong to \mathcal{J}. Obviously, $B \in \mathcal{M}_{1} \backslash \mathcal{J}$.
Corollary 2. The pairs $\left(2^{\mathbb{R}}, \mathcal{N} \cap \mathcal{K}\right)$, $\left(\mathcal{L}, \mathcal{J}_{p}\right)$, $\left(\mathcal{B}, \mathcal{J}_{p}\right)$, $\left(2^{\mathbb{R}}, \mathcal{J}_{p}\right)$ and $\left(2^{\mathbb{R}}, \mathcal{S}_{0}\right)$ do not have Smítal property.

Example 4. The pair $\left(2^{\mathbb{R}}, \mathcal{N}\right)$ does not have Smítal property.
Denote by $Z(L)$ a linear space over the field \mathbb{Q} generated by the set L, i.e.,
$Z(L)=\left\{x: x=\kappa_{1} \cdot l_{1}+\cdots+\kappa_{n} \cdot l_{n} ; n \in \mathbb{N} ; i=1, \ldots, n ; l_{i} \in L ; \kappa_{i} \in \mathbb{Q}\right\}$.
Let H be a Hamel basis and h_{0} be a fixed point of H. Observe that the set $Z\left(H \backslash\left\{h_{0}\right\}\right)$ is nonmeasurable ([1, Th. 2, p. 255]) and $Z\left(H \backslash\left\{h_{0}\right\}\right)+\mathbb{Q} \cdot h_{0}=\mathbb{R}$. Moreover, the sets $Z\left(H \backslash\left\{h_{0}\right\}\right)$ and $Z\left(H \backslash\left\{h_{0}\right\}\right)+\kappa \cdot h_{0}$ are disjoint for any $\kappa \in \mathbb{Q} \backslash\{0\}$. Putting $B=Z\left(H \backslash\left\{h_{0}\right\}\right)$ and $D=\bigcup_{\kappa \in \mathbb{Q} \backslash\{0\}}\left(\kappa \cdot h_{0}\right)$, we obtain that $\mathbb{R} \backslash(B+D)=B \notin \mathcal{N}$.

In the same way, we check that the pair $\left(2^{\mathbb{R}}, \mathcal{K}\right)$ does not have Smítal property.

AGNIESZKA NIEDZIAŁKOWSKA

Suppose now that a σ-ideal $\mathcal{J} \subset 2^{\mathbb{R}}$ is invariable with respect to translations, i.e., for any real number x, the fact that $A \in \mathcal{J}$ implies that $(x+A) \in \mathcal{J}$.

Theorem 2. For any σ-ideal J, which is invariant with respect to translation, there exists a σ-algebra \mathcal{M} such that the pair $(\mathcal{M}, \mathcal{J})$ has Smital property.
Proof. If $\mathcal{J}=2^{\mathbb{R}}$ then we can put $\mathcal{M}=\mathcal{J}$. Therefore, we can assume that $\mathcal{J} \neq 2^{\mathbb{R}}$. The family $\mathcal{M}_{\mathcal{J}}=\{A \subset \mathbb{R}: A \in \mathcal{J}$ or $\mathbb{R} \backslash A \in \mathcal{J}\}$ is the σ-algebra, which includes \mathcal{J}. It is easy to check that the pair $\left(\mathcal{M}_{I}, \mathcal{J}\right)$ has $S m i ́ t a l$ property. Indeed, if the set $B \in \mathcal{M}_{I} \backslash \mathcal{J}$, then $\mathbb{R} \backslash B \in \mathcal{J}$. For any number $d \in \mathbb{R}$, the set $\mathbb{R} \backslash(B+d)=$ $((\mathbb{R} \backslash B)+d) \in \mathcal{J}$. Therefore, $(B+d) \in \mathcal{M}_{I} \backslash \mathcal{J}$. Since $(B+D) \supset(B+d)$ for any dense set D and for any $d \in D$, so $B+D$ belongs to $\mathcal{M}_{I} \backslash \mathcal{J}$. From there, $\mathbb{R} \backslash(B+D) \in \mathcal{J}$.

Note that the invariance of \mathcal{J} is essential. Indeed, if $\mathcal{J}=2^{\mathbb{R} \backslash\{1\}}$ then the only σ-algebra including \mathcal{J} is the σ-algebra $2^{\mathbb{R}}$. Let $B=\{1\}$ and $D=\mathbb{Q} \backslash\{0\}$. Then $B+D=\mathbb{Q} \backslash\{1\}$ and $\mathbb{R} \backslash(B+D) \notin \mathcal{J}$.

The σ-algebra $\mathcal{M}_{\mathcal{J}}$ constructed in the last proof consists only of "small sets" belonging to \mathcal{J} and "big sets" which complements belong to J. We will show that for any pair ($\mathcal{M}, \mathcal{J})$ having Smítal property, the family $\mathcal{M} \backslash \mathcal{J}$ consists of "big sets" in some sense.

Proposition 1. If the pair $(\mathcal{M}, \mathcal{J})$ has Smital property and $A \in \mathcal{M} \backslash \mathcal{J}$, then the smallest σ-ideal invariable with respect to translations containing σ-ideal \mathcal{J} and the set A is equal to $2^{\mathbb{R}}$.
Proof. Assume that $(\mathcal{M}, \mathcal{J})$ has Smítal property, fix a set $A \in \mathcal{M} \backslash \mathcal{J}$ and denote by $\mathcal{J}(A)$ the smallest σ-ideal containing $\mathcal{J} \cup\{A\}$, and invariable with respect to translations. Let $D=\mathbb{Q}$. The set $\mathbb{R} \backslash(A+D) \in \mathcal{J} \subset \mathcal{J}(A)$. Moreover, for any $d \in D$, the set $(A+d) \in \mathcal{J}(A)$, so $A+D=\bigcup_{d \in \mathbb{Q}}(A+d) \in \mathcal{J}(A)$. Therefore, the set $(A+D) \cup(\mathbb{R} \backslash(A+D))=\mathbb{R}$ and every subset of set \mathbb{R} belongs to the σ-ideal $\mathcal{J}(A)$.

In [1, using a measurable hull, there is proved the "outer version" of Smítal's lemma for measure.

Theorem 3 ([1, Th. 1, p. 65]). If a set $B \subset \mathbb{R}$ has a positive outer Lebesgue measure and D is a dense set, then the set $\mathbb{R} \backslash(B+D)$ has inner measure zero.

We will show that Theorem 3 is equivalent to Lemma 1 In fact, there is an other description of the same property.

We will say that the pair $(\mathcal{M}, \mathcal{J})$ has outer Smítal property if for any set $B \notin \mathcal{J}$ and a dense set D, the set $\mathbb{R} \backslash(B+D)$ does not include a set belonging to $\mathcal{M} \backslash \mathcal{J}$.
Theorem 4. A pair $(\mathcal{M}, \mathcal{J})$ has Smítal property if and only if it has outer Smítal's property.

ON SMÍTAL PROPERTY

Proof. Assume that the pair ($\mathcal{M}, \mathcal{J})$ does not have outer Smítal's property. It means that there exists a set $B \notin \mathcal{J}$ and a dense set D, such that $\mathbb{R} \backslash(B+D)$ includes a set $A \in \mathcal{M} \backslash \mathcal{J}$. Consider the set $(A+(-D))$. It is easy to check that $(A+(-D)) \cap B=\emptyset$ and, consequently, $\mathbb{R} \backslash(A+(-D)) \supset B \notin \mathcal{J}$. Since $A \in \mathcal{M} \backslash \mathcal{J}$ and $(-D)$ is a dense set, the pair $(\mathcal{M}, \mathcal{J})$ does not have Smítal property.

Now assume, that the pair $(\mathcal{M}, \mathcal{J})$ does not have Smítal property. Then there exists a set $B_{0} \in \mathcal{M} \backslash \mathcal{J}$ and a dense set D_{0} such that $\mathbb{R} \backslash\left(B_{0}+D_{0}\right) \notin \mathcal{J}$.

Let $B_{1}=\mathbb{R} \backslash\left(B_{0}+D_{0}\right)$ and $D_{1}=\left(-D_{0}\right)$. We show that $\left(B_{1}+D_{1}\right) \cap B_{0}=\emptyset$. For any $x \in B_{1}+D_{1}$ there exist elements $b_{1} \in B_{1}$ and $d \in D_{0}$ such that $x=b_{1}-d$. Then $x+d \in B_{1}$, so $x+d \notin B_{0}+D_{0}$. It means that $x \notin B_{0}$.

Therefore, the sets $\left(B_{1}+D_{1}\right)$ and B_{0} are disjoint and consequently, $\mathbb{R} \backslash\left(B_{1}+\right.$ $\left.D_{1}\right) \supset B_{0} \in \mathcal{M} \backslash \mathcal{J}$.

In the definition of outer Smítal's property, we consider the sets $B \notin \mathcal{J}$. If we demand that the set $\mathbb{R} \backslash(B+D)$ belongs to a σ-ideal \mathcal{J}, then we will get another, stronger condition, in which σ-algebra \mathcal{M} does not occur. Thus, we will say, that σ-ideal \mathcal{J} satisfies condition (\star) when, for any set $B \notin \mathcal{J}$ and any dense set D, the set $\mathbb{R} \backslash(B+D)$ belongs to the σ-ideal J.

Immediately from condition (\star), we have
Proposition 2. A σ-ideal J satisfies condition (\star) if and only if the pair $\left(2^{\mathbb{R}}, \mathcal{J}\right)$ has Smítal property.

Corollary 2 yields the following fact.
Proposition 3. The σ-ideals $\mathcal{N}, \mathcal{K}, \mathcal{J}_{p}$ do not satisfy condition (\star).
Theorem 5. The only σ-ideal, which satisfies condition (\star), is $\mathcal{J}=2^{\mathbb{R}}$.

Proof. Assume that σ-ideal \mathcal{J} satisfies condition (\star). Let H be the Hamel basis and $h_{0} \in H$. Consider the set $Z\left(H \backslash\left\{h_{0}\right\}\right)$ described in Example 4 .

Suppose that there exists a rational number $q_{0} \in \mathbb{Q}$ such that

$$
B=Z\left(H \backslash\left\{h_{0}\right\}\right)+q_{0} \cdot h_{0}
$$

does not belong to J. Let

$$
D=\left\{q h_{0}: q \in \mathbb{Q} \wedge q \neq 0\right\} .
$$

For any $q \neq 0$,

$$
B+q \cdot h_{0}=Z\left(H \backslash\left\{h_{0}\right\}\right)+q_{0} \cdot h_{0}+q \cdot h_{0}=Z\left(H \backslash\left\{h_{0}\right\}\right)+\left(q_{0}+q\right) h_{0}
$$

and $B \cap\left(B+q h_{0}\right)=\emptyset$.

AGNIESZKA NIEDZIAtKOWSKA

Therefore, we have

$$
\begin{aligned}
B+D & =\bigcup_{q \in D}\left(Z\left(H \backslash\left\{h_{0}\right\}\right)+q_{0} \cdot h_{0}+q \cdot h_{0}\right) \\
& =\left(\bigcup_{q \in D \backslash\{0\}}\left(Z\left(H \backslash\left\{h_{0}\right\}\right)+\left(q_{0}+q\right) h_{0}\right)\right)+\left(Z\left(H \backslash\left\{h_{0}\right\}\right)+q_{0} \cdot h_{0}\right)
\end{aligned}
$$

Hence, the set $\mathbb{R} \backslash(B+D)=Z\left(H \backslash\left\{h_{0}\right\}\right)+q_{0} \cdot h_{0}$ does not belong to σ-ideal J. We get a contradiction. Therefore, for any rational number q the set $Z\left(H \backslash\left\{h_{0}\right\}\right)+q \cdot h_{o}$ belongs to σ-ideal J. Hence, $\mathbb{R}=\bigcup_{q \in \mathbb{Q}}\left(Z\left(H \backslash\left\{h_{0}\right\}+h_{0} \cdot q\right)\right)$ belongs to \mathcal{J}, so $\mathcal{J}=2^{\mathbb{R}}$.

The notion of the pair (\mathcal{M}, \mathcal{J}) having Smítal property and having outer Smítal property can also be considered for σ-algebras and σ-ideals of sets of topological group. Most of the results obtained in this paper remain true for topological groups.

Acknowledgements. I wish to thank Professor Małgorzata Filipczak for her help concerning my work.

REFERENCES

[1] KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities. in: Prace Naukowe Uniwersytetu laskiego w Katowicach, Vol. 489, PWN, Uniwersytet Śląski, Warszawa, 1985.
[2] HEWITT, E.-STROMBERG, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable (2nd ed.), Springer-Verlag, Berlin, 1969.
[3] HALMOS, P.: Measure Theory. D. Van Nostrand Co., Inc., New York, 1950.
[4] SIERPIŃSKI, W.: Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105-111.
[5] OXTOBY, J.: Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. in: Grad. Texts in Math., Vol. 2, Springer-Verlag, Berlin, 1971.
[6] NIEDZIAŁKOWSKA, A.: Some remarks on Smítal's lemma, Folia Math. 14 (2007), 25-31.
[7] SZPILRAJN, E.: Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
[8] WAGNER-BOJAKOWSKA, E.: Remarks on ψ-density topology, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), 79-87.

Received November 26, 2009

Center of Mathematics and Physics Łódź Technical University al. Politechniki 11
PL-90-924 Łódź
POLAND
E-mail: agnieszka.niedzialkowska@p.lodz.pl

[^0]: 2010 Mathematics Subject Classification: 28A12, 28A05, 54H05. Keywords: Smítal lemma, Smítal property, Borel measure, Lebesgue-Stieltjes measure.

