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ON HOMEOMORPHISMS OF DENSITY TYPE
TOPOLOGIES GENERATED BY FUNCTIONS

MALGORZATA FILIPCZAK — TOMASZ FILIPCZAK

ABSTRACT. The paper is concerned with homeomorphisms on topological spa-
ces (R,'ﬁ), where 77 is a generalization of the density topology generated by
a function f. It is shown that the density topology is not homeomorphic with any
other topology 7y and that, under some assumptions, homeomorphic f-density
topologies have to be comparable.

We denote by R the set of real numbers, by N the set of positive integers,
by L the family of Lebesgue measurable subsets of R and by |E| the Lebesgue
measure of a measurable set E. The family of all functions f: (0;00) — (0;00)
such that

(A1) lim,_,o+ f(2z) =0,
(A2) liminf, o+ % < oo
(A3) f is nondecreasing

is denoted by A. Let f € A. We say that = is a right-hand f-density point of
a measurable set F if
(@2 +h)\ E|
lim —————— =
h—0t f(h)
By <I>f+ (E) we denote the set of all right-hand f-density points of E. In the same
way, one can define left-hand f-density points of E and the set @ (E). We say
that x is an f-density point of E if it is a right and a left-hand f-density point
of E. By ®;(F) we denote the set of all f-density points of E, i.e., ®¢(E) =
<I>]?L(E) N @, (E). For any f € A, the family

T ={E€L; EC &(E))

forms a topology stronger than the natural topology on the real line (see [, Th. 7]
and [3] Th. 1]). It is called the f-density topology. Properties of Lebesgue measure
imply that any f-density topology is invariant with respect to translations and
symmetries. In [2], it has been shown that properties of f-density operator ®;
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and f-density topology 7 depend on value of liminf, o+ @ The family of all

functions f € A with liminf,_ o+ @ > 0 is denoted by AL For any f from A%,
7; has properties similar to properties of the density topology. In particular, it
is completely regular but not normal. Topologies generated by functions from
A\ A! are even not regular (see [2, Th. 7 and Th. 9]).

The family of all increasing sequences tending to infinity is denoted by S. Let
(s) € S. We say that z is an (s)-density point of a measurable set F if
BN [r— e+ |
lim 5 -

n—00 =
Sn

The set of all (s)-density points of E is denoted by @, (E). In [6], it was proved
that @,y is a lower density operator and the family

725> = {E S ﬁ; E C (I><g> (E)}
is a topology containing the density topology 7g.
It is clear that Ty = T5y = Tq for f(v) = x and s, = n. Any (s)-density
topology is an f-density topology for some f € AL It is sufficient to set

fla) =~ for xe{i' ! )

)
Sn Sn Sn—1

=1.

However, there is a function in A' which generates the topology different from
each T4 (see [3, Th. 5 and Th. 6]).

PROPOSITION 1. For any function f € A, there is a sequence (s) € S such that
Tr € Tis)-

Proof. Since M = liminf, o4 %I) < 00, there is a decreasing sequence (ay,)
tending to 0 such that
[ (an)

—t < M+1.
G,

It is sufficient to show that condition 0 € <I>]?L (E) implies 0 € %, (E). Suppose
(@)
that

lim LGDNEL_
z—0+  f(x)
Then, we have
san) \ E jan) \ B
o< 00\ Bl 0\l
Qn f(an) n—eo
and consequently, 0 € &%, (E). O

(a)

THEOREM 1. The families of connected sets in the natural topology and any
f-density topology are equal.
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Proof. In [7, Th. 10], it was proved that the families of connected sets in the
natural topology 7o and any (s)-density topology are equal. Since To C Ty C T(s)
for some (s) € S, we conclude our claim. O

LEMMA 1. If T4 \ Ty, # 0 for some f1, fo from A, then there are a positive
number n and sequences (ay,), (by) satisfying 0 < b1 < an < by, limy, 00 by, =0
such that 0 is a right-hand fi-density point of the complement of the set

U lan;bal

bn_an

f2 (bn)

and

> (1)
for each n.

Proof. Let A be a set from Ty, \ Tf,. There exists an f;-density point z of A
which is not an fy-density point of A. Replacing A with A — x or with —A + =z,
we may assume that 0 € <I>]Zt (4) \<I>]ZZ (A). Thus, there are a positive number 7,
and a decreasing sequence (h,) tending to 0 such that

(05 ] \ A
— > 2n.
f2 (hn) !
We will define sequences (b,,) and (¢,,). Let b = hy and ¢; be a point from (0; b1)
such that llex:ba] \ 4] -
fa (b1) '

Suppose that we have defined by, ¢ with ¢ < by. Let nj be a number satisfying
b, < ck. We set b1 = hy,, and define ¢x41 as a point from (0;bg) such that

[er+1; brr1] \ A
2 (br1)
Thus, we have defined (b,,) and (c,). Let

Un = bn - chvbn] \A‘

B = G [an; bn] .
n=1

The inequality () is evident. To finish the proof, we have to show that 0 is
a right-hand f;-density point of R\ B. Since

[0;2]\ 4] _

> 1.

and

li .
m—l>r(§l+ fl (ZU) 0
it suffices to prove that for z € (0; 1]
|BN[0;2]] < [[0;2] \ Al (2)
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For every n, we have

IBO[0;b,)| = (b —ar) =D |lew; ba] \ Al < [[050,] \ 4]
k=n k=n

Consequently, for z € (by41; ay]
[BO[0; ]| = [B N [0;bpga]] < [[05bpga] \ Al < [[05 2]\ A,
and for x € (ay; by]
[BNO[0;z]] = [BN[0;bp]| = |B N [w;bn]| < [[05 6] \ Al = (b — x) < [[0;2] \ A
This gives ([)), and completes the proof. O

THEOREM 2. If f1, fo € Aandh: (R, T,) = (R, Ty,) is a homeomorphism, then

(1) h and h=' are continuous (in a usual sense), strictly monotonic and satisfy
Lusin’s condition (N),

(2) the sets
A = {x; there exists derivative h’ (:U)},

B = {x; there exists dem’vative(h_l)'(h(x))}

have full measure,
(3) if b (x) =1 for every x € AN B, then Ty, =Ty,

Proof. We will show that h is continuous, strictly monotonic and satisfies
condition (N) (the proof for h=! is similar). Theorem [ implies that, for any
open interval (a;b), the set J = h™! ((a; b)) is an interval, too. Obviously, interval
(a;b) is Tp,-open, hence J is Tr,-open, and consequently, J C ®¢ (J). Since no
end of an interval can be its f;-density point, the interval J has to be open.
Thus, h is continuous. Since h is also an injection, it is strictly monotonic. Let
P be a null set. Then P and all subsets of P are closed in T¢,. Consequently,
h (P) and all its subsets are closed in Tf,, and so they are measurable. Hence,
h (P) is of measure zero, which finishes the proof of ().

Any monotonic function is almost everywhere differentiable, and so, A has
full measure. In the same manner, we conclude that the set

C:= {y; there exists derivative (hfl)/ (y)}

has full measure. From (), it follows that B = h~! (C) is of full measure.
Suppose that ' (z) = 1 for € AN B. By (0] and Banach-Zarecki theorem

we deduce that h(z) and h(x) — z are absolutely continuous on any interval

[a; b] (see [8]). Consequently, h (z) = =, which gives Ty, = Ty,. O
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THEOREM 3. Let f1, fo be in AL If topological spaces (R, Tz,) and (R,Ty,) are

homeomorphic, then topologies Ty, and Ty, are comparable, i.e., Tr, C Ty, or

Tr, CTp,

Proof. Suppose, contrary to our claim, that 7;, and Ty, are not comparable.
Let h be a homeomorphism from (R, 7 ) onto (R, 7). By Theorem 2 h is
strictly monotonic and for some z, there exist derivatives h'(z¢), (h™')’ (h(z0))
with b’ (xg) = ¢ # 1. Since f-density topologies are invariant with respect to
translations and symmetries, we can assume that h is increasing and h (zg) =
ro = 0. Moreover, we can also assume that 0 < ¢ < 1 (we replace h with h~1,

if necessary).

Since lim inf,_,o4 =2 (x) > 0, there are positive numbers 3, § such that

X
fg—(x)<ﬂ for 166(0,6)

From Lemma[ll it follows that there is a positive number 7 and a set

B = [j [an;bn] C (0;9)
n=1

such that B’ € Ty, and

bn — an

f2 (bn)

> 1.

The proof will be completed by showing that 0 ¢ @y, (h(B’)). Let ¢ =

Since 0 < A/ (0) = ¢ < 1, we have

e

—C
Qan bn

<e and h(b,) <b,

for sufficiently large n. Hence,

(c—¢)ay, < h(ay) < (c+¢€)ap,

and

Thus,

cn

18"
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and consequently,

|[07bn \h(B/)‘ > h<bn)_h(an)

f2 (bn) N f2 (bn)
(bn - a'n) _ bn
0 R
> cn — 2ep
_ o
=35>0,
which gives 0 ¢ @y, (h(B')). O

There exist functions fi, fo € A! such that topological spaces (R, T7,) and
(R, Tz,) are homeomorphic and Ty, # T,. An easy example can be found between
topologies generated by sequences. Let a € (0;1), (s) = (n!), oy and (as) =
(an!), ey From [6, Th. 4] and [5, Remark 13], it follows that Ti5, & Tias) and
the function h (z) = ax is a homeomorphism from (]R7 7'5>) onto (]R7 72(”))

There are also homeomorphic topologies generated by functions from A' and
different from topologies generated by sequences. Let f, (x) = f (%) It is easy to
check that h (z) = o is a homeomorphism from (R, 7;) onto (R, 7y, ) for a # 0.
In [3, Th. 6], there is defined a function f* € A' such that Tr- & {T,); (s) € S}.
From [4], it follows that 75« & {Ts; (s) € S} and Tj» & Tp; for any o > 3> 1.

THEOREM 4. The density topology Tq is not homeomorphic with any other topol-
ogy Ts.

Proof. Suppose on the contrary that for some f € A, the topology T; is dif-
ferent but homeomorphic with 74. Since topologies generated by functions from
A\ Al are not regular, f € A, and consequently, T; 2 Ty (compare [3, Th. 3]).

Let h be a homeomorphism from (R, 7¢) onto (R, 74). Following the proof of
Theorem [3], we can assume that h (0) = 0, h and h~! are differentiable at 0 and
R’ (0) > 0. Since the density topology is invariant with respect to homothetic
transformations, the function h, () = ah (x) is a homeomorphism from (R, 75)
onto (R, 73) for each positive a. Replacing h with h,, if necessary, we can assume
that A’ (0) < 1. Thus, it is sufficient to repeat the proof of Theorem [ to get
a contradiction. O
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