

Tatra Mt. Math. Publ. **46** (2010), 7–13 DOI: 10.2478/v10127-010-0014-9

ON HOMEOMORPHISMS OF DENSITY TYPE TOPOLOGIES GENERATED BY FUNCTIONS

Małgorzata Filipczak — Tomasz Filipczak

ABSTRACT. The paper is concerned with homeomorphisms on topological spaces $(\mathbb{R}, \mathcal{T}_f)$, where \mathcal{T}_f is a generalization of the density topology generated by a function f. It is shown that the density topology is not homeomorphic with any other topology \mathcal{T}_f and that, under some assumptions, homeomorphic f-density topologies have to be comparable.

We denote by \mathbb{R} the set of real numbers, by \mathbb{N} the set of positive integers, by \mathcal{L} the family of Lebesgue measurable subsets of \mathbb{R} and by |E| the Lebesgue measure of a measurable set E. The family of all functions $f: (0; \infty) \to (0; \infty)$ such that

(A1) $\lim_{x \to 0^+} f(x) = 0$,

(A2)
$$\liminf_{x\to 0^+} \frac{f(x)}{x} < \infty$$

(A3) f is nondecreasing

is denoted by \mathcal{A} . Let $f \in \mathcal{A}$. We say that x is a right-hand f-density point of a measurable set E if

$$\lim_{h \to 0^+} \frac{|(x; x+h) \setminus E|}{f(h)} = 0.$$

By $\Phi_f^+(E)$ we denote the set of all right-hand *f*-density points of *E*. In the same way, one can define *left-hand f-density points* of *E* and the set $\Phi_f^-(E)$. We say that *x* is an *f-density point* of *E* if it is a right and a left-hand *f*-density point of *E*. By $\Phi_f(E)$ we denote the set of all *f*-density points of *E*, i.e., $\Phi_f(E) = \Phi_f^+(E) \cap \Phi_f^-(E)$. For any $f \in \mathcal{A}$, the family

$$\mathcal{T}_f = \left\{ E \in \mathcal{L}; \ E \subset \Phi_f(E) \right\}$$

forms a topology stronger than the natural topology on the real line (see [1, Th. 7] and [3, Th. 1]). It is called the *f*-density topology. Properties of Lebesgue measure imply that any *f*-density topology is invariant with respect to translations and symmetries. In [2], it has been shown that properties of *f*-density operator Φ_f

²⁰¹⁰ Mathematics Subject Classification: 54A10; 26A15; 28A05.

Keywords: density point, density topology, homeomorphism.

MAŁGORZATA FILIPCZAK — TOMASZ FILIPCZAK

and f-density topology \mathcal{T}_f depend on value of $\liminf_{x\to 0^+} \frac{f(x)}{x}$. The family of all functions $f \in \mathcal{A}$ with $\liminf_{x\to 0^+} \frac{f(x)}{x} > 0$ is denoted by \mathcal{A}^1 . For any f from \mathcal{A}^1 , \mathcal{T}_f has properties similar to properties of the density topology. In particular, it is completely regular but not normal. Topologies generated by functions from $\mathcal{A} \setminus \mathcal{A}^1$ are even not regular (see [2, Th. 7 and Th. 9]).

The family of all increasing sequences tending to infinity is denoted by S. Let $\langle s \rangle \in S$. We say that x is an $\langle s \rangle$ -density point of a measurable set E if

$$\lim_{n \to \infty} \frac{\left| E \cap \left[x - \frac{1}{s_n}; x + \frac{1}{s_n} \right] \right|}{\frac{2}{s_n}} = 1.$$

The set of all $\langle s \rangle$ -density points of E is denoted by $\Phi_{\langle s \rangle}(E)$. In [6], it was proved that $\Phi_{\langle s \rangle}$ is a lower density operator and the family

$$\mathcal{T}_{\langle s \rangle} = \left\{ E \in \mathcal{L}; \ E \subset \Phi_{\langle s \rangle}(E) \right\}$$

is a topology containing the density topology \mathcal{T}_d .

It is clear that $\mathcal{T}_f = \mathcal{T}_{\langle s \rangle} = \mathcal{T}_d$ for f(x) = x and $s_n = n$. Any $\langle s \rangle$ -density topology is an f-density topology for some $f \in \mathcal{A}^1$. It is sufficient to set

$$f(x) = \frac{1}{s_n}$$
 for $x \in \left[\frac{1}{s_n}; \frac{1}{s_{n-1}}\right)$.

However, there is a function in \mathcal{A}^1 which generates the topology different from each $\mathcal{T}_{\langle s \rangle}$ (see [3, Th. 5 and Th. 6]).

PROPOSITION 1. For any function $f \in A$, there is a sequence $\langle s \rangle \in S$ such that $\mathcal{T}_f \subset \mathcal{T}_{\langle s \rangle}$.

Proof. Since $M = \liminf_{x \to 0+} \frac{f(x)}{x} < \infty$, there is a decreasing sequence (a_n) tending to 0 such that

$$\frac{f\left(a_{n}\right)}{a_{n}} < M + 1.$$

It is sufficient to show that condition $0 \in \Phi_f^+(E)$ implies $0 \in \Phi_{\frac{1}{\langle a \rangle}}^+(E)$. Suppose that

$$\lim_{x \to 0+} \frac{|(0;x) \setminus E|}{f(x)} = 0$$

Then, we have

$$0 \le \frac{|(0;a_n) \setminus E|}{a_n} < \frac{|(0;a_n) \setminus E|}{f(a_n)} (M+1) \underset{n \to \infty}{\longrightarrow} 0,$$

and consequently, $0 \in \Phi^+_{\frac{1}{\langle a \rangle}}(E)$.

THEOREM 1. The families of connected sets in the natural topology and any *f*-density topology are equal.

8

Proof. In [7, Th. 10], it was proved that the families of connected sets in the natural topology \mathcal{T}_0 and any $\langle s \rangle$ -density topology are equal. Since $\mathcal{T}_0 \subset \mathcal{T}_f \subset \mathcal{T}_{\langle s \rangle}$ for some $\langle s \rangle \in \mathcal{S}$, we conclude our claim.

LEMMA 1. If $\mathcal{T}_{f_1} \setminus \mathcal{T}_{f_2} \neq \emptyset$ for some f_1 , f_2 from \mathcal{A} , then there are a positive number η and sequences (a_n) , (b_n) satisfying $0 < b_{n+1} < a_n < b_n$, $\lim_{n\to\infty} b_n = 0$ such that 0 is a right-hand f_1 -density point of the complement of the set

$$\bigcup_{n=1}^{\infty} \left[a_n; b_n \right]$$

and

$$\frac{b_n - a_n}{f_2(b_n)} > \eta \tag{1}$$

for each n.

Proof. Let A be a set from $\mathcal{T}_{f_1} \setminus \mathcal{T}_{f_2}$. There exists an f_1 -density point x of A which is not an f_2 -density point of A. Replacing A with A - x or with -A + x, we may assume that $0 \in \Phi_{f_1}^+(A) \setminus \Phi_{f_2}^+(A)$. Thus, there are a positive number η and a decreasing sequence (h_n) tending to 0 such that

$$\frac{\left|\left[0;h_{n}\right]\setminus A\right|}{f_{2}\left(h_{n}\right)}>2\eta.$$

We will define sequences (b_n) and (c_n) . Let $b_1 = h_1$ and c_1 be a point from $(0; b_1)$ such that

$$\frac{\left|\left[c_{1};b_{1}\right]\setminus A\right|}{f_{2}\left(b_{1}\right)}>\eta$$

Suppose that we have defined b_k , c_k with $c_k < b_k$. Let n_k be a number satisfying $h_{n_k} < c_k$. We set $b_{k+1} = h_{n_k}$ and define c_{k+1} as a point from $(0; b_k)$ such that

$$\frac{|[c_{k+1}; b_{k+1}] \setminus A|}{f_2(b_{k+1})} > \eta$$

Thus, we have defined (b_n) and (c_n) . Let

$$a_n = b_n - |[c_n; b_n] \setminus A|$$
$$B = \bigcup_{n=1}^{\infty} [a_n; b_n].$$

and

The inequality (1) is evident. To finish the proof, we have to show that 0 is a right-hand
$$f_1$$
-density point of $\mathbb{R} \setminus B$. Since

$$\lim_{x \to 0+} \frac{|[0;x] \setminus A|}{f_1(x)} = 0.$$

it suffices to prove that for $x \in (0; b_1]$

$$|B \cap [0; x]| \le |[0; x] \setminus A|.$$
 (2)

9

For every n, we have

$$|B \cap [0; b_n]| = \sum_{k=n}^{\infty} (b_k - a_k) = \sum_{k=n}^{\infty} |[c_k; b_k] \setminus A| \le |[0; b_n] \setminus A|.$$

Consequently, for $x \in (b_{n+1}; a_n]$

$$|B \cap [0; x]| = |B \cap [0; b_{n+1}]| \le |[0; b_{n+1}] \setminus A| \le |[0; x] \setminus A|,$$

and for $x \in (a_n; b_n]$

$$|B \cap [0;x]| = |B \cap [0;b_n]| - |B \cap [x;b_n]| \le |[0;b_n] \setminus A| - (b_n - x) \le |[0;x] \setminus A|.$$

This gives (2), and completes the proof.

This gives (2), and completes the proof.

THEOREM 2. If $f_1, f_2 \in \mathcal{A}$ and $h: (\mathbb{R}, \mathcal{T}_{f_1}) \to (\mathbb{R}, \mathcal{T}_{f_2})$ is a homeomorphism, then

- (1) h and h^{-1} are continuous (in a usual sense), strictly monotonic and satisfy Lusin's condition (N),
- (2) the sets

$$A := \{x; \text{ there exists derivative } h'(x)\},\$$

$$B := \{x; \text{ there exists derivative } (h^{-1})'(h(x))\}$$

have full measure,

(3) if
$$h'(x) = 1$$
 for every $x \in A \cap B$, then $\mathcal{T}_{f_1} = \mathcal{T}_{f_2}$.

Proof. We will show that h is continuous, strictly monotonic and satisfies condition (N) (the proof for h^{-1} is similar). Theorem 1 implies that, for any open interval (a; b), the set $J = h^{-1}((a; b))$ is an interval, too. Obviously, interval (a; b) is \mathcal{T}_{f_2} -open, hence J is \mathcal{T}_{f_1} -open, and consequently, $J \subset \Phi_{f_1}(J)$. Since no end of an interval can be its f_1 -density point, the interval J has to be open. Thus, h is continuous. Since h is also an injection, it is strictly monotonic. Let P be a null set. Then P and all subsets of P are closed in \mathcal{T}_{f_1} . Consequently, $h\left(P\right)$ and all its subsets are closed in $\mathcal{T}_{f_{2}}$, and so they are measurable. Hence, h(P) is of measure zero, which finishes the proof of (1).

Any monotonic function is almost everywhere differentiable, and so, A has full measure. In the same manner, we conclude that the set

$$C := \left\{ y; \text{ there exists derivative } \left(h^{-1} \right)' (y) \right\}$$

has full measure. From (1), it follows that $B = h^{-1}(C)$ is of full measure.

Suppose that h'(x) = 1 for $x \in A \cap B$. By (1) and Banach-Zarecki theorem we deduce that h(x) and h(x) - x are absolutely continuous on any interval [a; b] (see [8]). Consequently, h(x) = x, which gives $\mathcal{T}_{f_1} = \mathcal{T}_{f_2}$.

ON HOMEOMORPHISMS OF DENSITY TYPE TOPOLOGIES

THEOREM 3. Let f_1 , f_2 be in \mathcal{A}^1 . If topological spaces $(\mathbb{R}, \mathcal{T}_{f_1})$ and $(\mathbb{R}, \mathcal{T}_{f_2})$ are homeomorphic, then topologies \mathcal{T}_{f_1} and \mathcal{T}_{f_2} are comparable, i.e., $\mathcal{T}_{f_1} \subset \mathcal{T}_{f_2}$ or $\mathcal{T}_{f_2} \subset \mathcal{T}_{f_1}$.

Proof. Suppose, contrary to our claim, that \mathcal{T}_{f_1} and \mathcal{T}_{f_2} are not comparable. Let h be a homeomorphism from $(\mathbb{R}, \mathcal{T}_{f_1})$ onto $(\mathbb{R}, \mathcal{T}_{f_2})$. By Theorem 2, h is strictly monotonic and for some x_0 , there exist derivatives $h'(x_0)$, $(h^{-1})'(h(x_0))$ with $h'(x_0) = c \neq 1$. Since f-density topologies are invariant with respect to translations and symmetries, we can assume that h is increasing and $h(x_0) = x_0 = 0$. Moreover, we can also assume that 0 < c < 1 (we replace h with h^{-1} , if necessary).

Since $\liminf_{x\to 0+} \frac{f_2(x)}{x} > 0$, there are positive numbers β, δ such that

$$\frac{x}{f_{2}(x)} < \beta \qquad \text{for} \quad x \in (0; \delta) \,.$$

From Lemma 1, it follows that there is a positive number η and a set

$$B = \bigcup_{n=1}^{\infty} [a_n; b_n] \subset (0; \delta)$$

such that $B' \in \mathcal{T}_{f_1}$ and

$$\frac{b_n - a_n}{f_2(b_n)} > \eta.$$

The proof will be completed by showing that $0 \notin \Phi_{f_2}(h(B'))$. Let $\varepsilon = \frac{c\eta}{4\beta}$. Since 0 < h'(0) = c < 1, we have

$$\left| \frac{h(a_n)}{a_n} - c \right| < \varepsilon, \quad \left| \frac{h(b_n)}{b_n} - c \right| < \varepsilon \quad \text{and} \quad h(b_n) < b_n$$

for sufficiently large n. Hence,

$$(c - \varepsilon) a_n < h(a_n) < (c + \varepsilon) a_n,$$

$$(c - \varepsilon) b_n < h(b_n) < (c + \varepsilon) b_n,$$

and

$$h(b_n) - h(a_n) > c(b_n - a_n) - 2\varepsilon b_n.$$

Thus,

$$h(B) \cap [0; b_n] = \bigcup_{k=1}^{\infty} [h(a_k); h(b_k)] \cap [0; b_n] \supset [h(a_n); h(b_n)],$$

and consequently,

$$\frac{\left|\left[0;b_{n}\right]\setminus h\left(B'\right)\right|}{f_{2}\left(b_{n}\right)} \geq \frac{h\left(b_{n}\right)-h\left(a_{n}\right)}{f_{2}\left(b_{n}\right)}$$
$$\geq c\frac{\left(b_{n}-a_{n}\right)}{f_{2}\left(b_{n}\right)}-2\varepsilon\frac{b_{n}}{f_{2}\left(b_{n}\right)}$$
$$> c\eta-2\varepsilon\beta$$
$$=\frac{c\eta}{2}>0,$$

which gives $0 \notin \Phi_{f_2}(h(B'))$.

There exist functions $f_1, f_2 \in \mathcal{A}^1$ such that topological spaces $(\mathbb{R}, \mathcal{T}_{f_1})$ and $(\mathbb{R}, \mathcal{T}_{f_2})$ are homeomorphic and $\mathcal{T}_{f_1} \neq \mathcal{T}_{f_2}$. An easy example can be found between topologies generated by sequences. Let $\alpha \in (0; 1), \langle s \rangle = (n!)_{n \in \mathbb{N}}$ and $\langle \alpha s \rangle = (\alpha n!)_{n \in \mathbb{N}}$. From [6, Th. 4] and [5, Remark 13], it follows that $\mathcal{T}_{\langle s \rangle} \subsetneq \mathcal{T}_{\langle \alpha s \rangle}$ and the function $h(x) = \alpha x$ is a homeomorphism from $(\mathbb{R}, \mathcal{T}_{\langle s \rangle})$ onto $(\mathbb{R}, \mathcal{T}_{\langle \alpha s \rangle})$.

There are also homeomorphic topologies generated by functions from \mathcal{A}^1 and different from topologies generated by sequences. Let $f_{\alpha}(x) = f\left(\frac{\alpha}{x}\right)$. It is easy to check that $h(x) = \alpha x$ is a homeomorphism from $(\mathbb{R}, \mathcal{T}_f)$ onto $(\mathbb{R}, \mathcal{T}_{f_{\alpha}})$ for $\alpha \neq 0$. In [3, Th. 6], there is defined a function $f^* \in \mathcal{A}^1$ such that $\mathcal{T}_{f^*} \notin \{\mathcal{T}_{\langle s \rangle}; \langle s \rangle \in \mathcal{S}\}$. From [4], it follows that $\mathcal{T}_{f^*_{\alpha}} \notin \{\mathcal{T}_{\langle s \rangle}; \langle s \rangle \in \mathcal{S}\}$ and $\mathcal{T}_{f^*_{\alpha}} \subsetneq \mathcal{T}_{f^*_{\beta}}$ for any $\alpha > \beta > 1$.

THEOREM 4. The density topology \mathcal{T}_d is not homeomorphic with any other topology \mathcal{T}_f .

Proof. Suppose on the contrary that for some $f \in \mathcal{A}$, the topology \mathcal{T}_f is different but homeomorphic with \mathcal{T}_d . Since topologies generated by functions from $\mathcal{A} \setminus \mathcal{A}^1$ are not regular, $f \in \mathcal{A}^1$, and consequently, $\mathcal{T}_f \supseteq \mathcal{T}_d$ (compare [3, Th. 3]).

Let h be a homeomorphism from $(\mathbb{R}, \mathcal{T}_f)$ onto $(\mathbb{R}, \mathcal{T}_d)$. Following the proof of Theorem 3, we can assume that h(0) = 0, h and h^{-1} are differentiable at 0 and h'(0) > 0. Since the density topology is invariant with respect to homothetic transformations, the function $h_{\alpha}(x) = \alpha h(x)$ is a homeomorphism from $(\mathbb{R}, \mathcal{T}_f)$ onto $(\mathbb{R}, \mathcal{T}_d)$ for each positive α . Replacing h with h_{α} if necessary, we can assume that h'(0) < 1. Thus, it is sufficient to repeat the proof of Theorem 3 to get a contradiction.

REFERENCES

- FILIPCZAK, M.—FILIPCZAK, T.: A generalization of the density topology, Tatra Mt. Math. Publ. 34 (2006), 37–47.
- [2] FILIPCZAK, M.—FILIPCZAK, T.: On f-density topologies, Topology Appl. 155 (2008), 1980–1989.

ON HOMEOMORPHISMS OF DENSITY TYPE TOPOLOGIES

- [3] FILIPCZAK, M.—FILIPCZAK, T.: Density topologies generated by functions and by sequences, Tatra Mt. Math. Publ. 40 (2008), 103-115.
- [4] FILIPCZAK, M.—FILIPCZAK, T.: On the comparison of the density type topologies generated by sequences and by functions, Comment Math. 49 (2009), 161–170.
- [5] FILIPCZAK, M.—FILIPCZAK, T.—HEJDUK, J.: On the comparison of the density type topology, Atti Sem. Mat. Fis. Univ. Modena 52 (2004), 37-46.
- [6] FILIPCZAK, M.—HEJDUK, J.: On topologies associated with the Lebesgue measure, Tatra Mt. Math. Publ. 28 (2004), 187–197.
- [7] FILIPCZAK, M.-HEJDUK, J.-WILCZYŃSKI, W.: On homeomorphisms of the density type topologies, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 45 (2005), 151-159.
- [8] NATANSON, I. P.: Theory of Functions of a Real Variable (2nd ed.), Frederick Ungar Publ. Co., New York. 1961.

Received September 19, 2009

Małgorzata Filipczak Faculty of Mathematics and Computer Sciences Łódź University ul. Stefana Banacha 22 PL-90-238 Łódź POLAND

E-mail: malfil@math.uni.lodz.pl

Tomasz Filipczak Institute of Mathematics Łódź Technical University ul. Wólczańska 215 PL-93-005 Łódź POLAND E-mail: tfil@math.uni.lodz.pl