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MATHEMATICAL MODEL OF PHYSICAL RNGS

BASED ON COHERENT SAMPLING

Florent Bernard — Viktor Fischer — Boyan Valtchanov

ABSTRACT. Random number generators represent one of basic cryptographic
primitives used in creating cryptographic protocols. Their security evaluation
represents very important part in the design, implementation and employment
phase of the generator. One of important security requirements is the existence
of a mathematical model describing the physical noise source and the statistical

properties of the digitized noise derived from it. The aim of this paper is to propose
the model of a class of generators using two jittery clocks with rationally related
frequencies. The clock signals with related frequencies can be obtained using
phase-locked loops, delay-locked loops or ring oscillators with adjusted oscillation
periods. The proposed mathematical model is used to provide entropy per bit
estimators and expected bias on the generated sequence. The model is validated

by hardware experiments.

1. Introduction

Random number generators (RNGs) represent one of the basic cryptographic
primitives used in creating cryptographic protocols. Their applications include
the generation of cryptographic keys, initialization vectors, challenges, nonces
and padding values, and also the implementation of counter-measures against
side-channel attacks, etc. Depending on the intended security level, RNGs aimed
at cryptographic applications must fulfill several security requirements, but first
of all, their output values must have good statistical properties and be unpre-
dictable.

While deterministic (or pseudo-random) RNGs can easily fulfill the first con-
dition, their output can be guessed with a non negligible probability because of
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an existing underlying algorithm. This is the reason why such a generator must
be cryptographically strong and initialized by a truly random seed. On the other
side, physical (or true-random) RNGs use some uncontrollable physical phenom-
ena and generated numbers are unpredictable, but their statistical parameters
are very often insufficient and have to be enhanced by post-processing.

Recently, a very frequent requirement in RNGs design refers to their feasibility
in logic devices, such as Application Specific Integrated Circuits (ASICs) or Field
Programmable Logic Devices (FPGAs). Because of the nature of these devices,
only limited inherent sources of randomness are available. Most generators use
the timing jitter of the clock signal generated in free-running oscillators [1], [2],
[3], [4], while others use the tracking jitter of phase-locked loops (PLLs) [5], [6]
or metastability [7], [8].

Security evaluation represents a very important part in the RNG design and
applications [9], [10]. One important requirement in RNG security evaluation is
the existence of a mathematical model of the physical noise source and the sta-
tistical properties of the digitized noise derived from it [9]. In [11], K i l l m a n n
and S c h i n d l e r have developed a model for the physical RNG using a pair
of noisy diodes. However, it is not directly applicable to generators employing
jittery clock signal especially generators based on coherent sampling. The aim
of this paper is to give a mathematical model of a class of RNGs that use two
noisy clocks with rationally related frequencies. Such signals can be obtained us-
ing PLLs, Delay-locked loops (DLLs) or ring oscillators with adjusted oscillation
periods. The proposed mathematical model is used to estimate the expected en-
tropy per bit of the randomness source and to compute the bias on the generated
sequence. The model is validated by hardware experiments.

The paper has the following structure: Section 2 presents mathematical mod-
eling of physical RNGs based on the coherent sampling using two related-freq-
uency signals. In Section 3, entropy per bit estimators of the randomness source
are given and the expected bias is computed thanks to the model. Finally, Sec-
tion 4 concludes the paper.

2. RNG based on the coherent sampling

2.1. Sampling

The general principle of the RNG based on the sampling of a jittery clock is
presented in Figure 1. At least one jittery clock signal clj having a Tclj period
is sampled using a synchronous or asynchronous flip-flop at instants defined by
a reference clock signal clk having a Tclk period.
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The sampling process produces the ‘das’ (digitized analog signal) random
numbers, which can be post processed to finally give internal random num-
bers [10]. In this paper, we focus on the randomness extraction process, which
generates das random numbers and determines the level of entropy included
in the generated numbers. The objective is to characterize the entropy in rela-
tionship with the source of randomness and the randomness extraction in order
to maximize it. If the obtained entropy is high enough, the post-processing of the
das signal is not necessary (but still possible). For this reason, post-processing
is not considered in this paper.

Figure 1. RNG based on the sampling of a jittery clock signal.

2.2. Coherent sampling

Coherent sampling is a well-known technique to capture repetitive signals
at finer time intervals than a sampling clock cycle time and it is widely used
to implement waveform measurement with high time resolution. More precisely,
coherent sampling is defined as follows:

���������� 1 (Coherent sampling)� Coherent sampling refers to a rational re-
lationship between input sampled signal with frequency fclj , sampling signal
with frequency fclk, number of cycles of a sampled signal, Ncyc, and number
of samples, Msamp, such as

fclj
fclk

=
Ncyc

Msamp
.

Remark 1� Even if coherent sampling is defined for arbitrary values of Ncyc and
Msamp it is recommended to choose them relatively high and coprimes in order
to have the highest repetition period of samples or in other words the highest
resolution of the sampled signal. In the following, we will only consider coherent
sampling when Ncyc and Msamp are coprimes.

One of the way to guarantee this relationship in electronic devices is to em-
ploy the PLL as clock generator of one or both related clocks. Indeed, the PLL
provides two positive integer coefficients, a multiplicative one KM and a dividing
one KD such as

fout =
KM

KD
fin.
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where fout is the frequency of the output signal from the PLL and fin is the
frequency of the input signal of the PLL.

The principle of the RNG based on coherent sampling using PLL is presented
in Figure 2. The jittery clock signal clj having a Tclj period is sampled (using
a synchronous or asynchronous flip-flop) by a signal clk having a T period, while
both signal frequencies are mutually related thanks to the use of PLLs as given
above. The clk signal can be produced by a quartz or another PLL. The dec-
imator employed in the generator has to be included in the stochastic model,
as it is used to extract randomness. The decimator process consists in a XOR
operation of the KD bits sampled. The result of this operation is one bit from
which we want to estimate the entropy.

Figure 2. RNG based on the coherent sampling employing one or two
phase-locked loops (PLLs).

2.3. Mathematical Model

First, we suppose that both clj and clk signals are ideal. That means related
frequencies/periods are constant and signals do not contain any randomness.

In reality signals are seen as random variables with given distributions de-
scribed with a mean and a variance. The ideal behavior is important because it
corresponds to the description of the mean of these random variables.

2.3.1. Ideal behavior

���������� 2 (Phase of the clj signal in time domain)�

ϕ :
R

+ −→ [0, Tclj[,

t �−→ ϕ(t)

is defined to be a continuous function of time t expressing the phase of the clj
signal at time t.

The clj signal is sampled with the clk signal every Tclk seconds. Samples are
obtained at discrete moment of time: i× Tclk with i ∈ N.
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���������� 3 (Samples)� Let i ∈ N, we define ϕi the phase of the signal clj at
time i × Tclk, ϕi = ϕ(i × Tclk). Moreover, the ith sample is a bit Bi defined as

follows: 1 if ϕi ≤ Tclj
2 and 0 otherwise.

Following Definition 3, we clearly have:

	
��������� 1 (Ideal behavior)� Let i ∈ N,

ϕi = ϕ0 + i× Tclk mod Tclj

= ϕ0 + i× Tclk −
⌊
ϕ0 + i× Tclk

Tclj

⌋
× Tclj (1)

and

Bi = 1−
⌊
2ϕi

Tclj

⌋

= 1−
⌊
2× (ϕ0 + i× Tclk mod Tclj)

Tclj

⌋
(2)

= 1−
⎢⎢⎢⎣2×

(
ϕ0 + i× Tclk −

⌊
ϕ0+i×Tclk

Tclj

⌋
× Tclj

)
Tclj

⎥⎥⎥⎦ .

In the case of coherent sampling, frequencies fclj and fclk are rationally rela-
ted: there exist two co-prime positive integers KM and KD such that

fclj
fclk

= KM

KD

which is equivalent to
KM × Tclj = KD × Tclk.

���������� 4 (TQ period)� We call TQ the period KM ×Tclj = KD×Tclk. If KD

is sufficiently high, the set {ϕi}i∈{0,...KD−1} allows to rebuild the shape of clj
signal.

Based on these definitions, Figure 3 presents an example of such a coherent
sampling.

Then following Proposition 1, we have:

	
��������� 2 (Ideal behavior of coherent sampling)�

ϕi = ϕ0 + i× Tclkid
−
⌊

ϕ0

Tcljid
+

i×KM

KD

⌋
× Tcljid (3)

and

Bi = 1−
⌊

ϕi

Hcljid

⌋

= 1−
⌊
2×

(
ϕ0

Tcljid
+

i×KM

KD
−
⌊
i×KM

KD
+

ϕ0

Tcljid

⌋)⌋
. (4)
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Tclk Tclk Tclk Tclk Tclkϕ0

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

TQ = KM × Tclj = KD × Tclk

B0 = 0 B1 = 1 B2 = 0 B3 = 0 B4 = 1

clj

clk

Figure 3. Ideal clock sampling example with rationally related frequencies.

From Equation (4), it is easy to get all informations needed to characterize
the output of the RNG (e.g., number of bits equal to one per period TQ, since
if it is odd (or even), the bit after the decimation process is ′1′ (or ′0′), . . . ).

2.3.2. Behavior with timing jitter

In electronic devices, signals are not ideal because of electronic noise. They
contain randomness that can be expressed in the frequency domain as a phase
noise or in the time domain as the timing jitter.

���������� 5 (Timing jitter)� Let n be a positive integer. The timing jitter δn
is the timing deviation of a rising edge that appears at time tn from its ideal
position n× T0 where T0 is the ideal constant period of the signal:

δn = tn − nT0. (5)

Each signal (clj or clk) contains its own absolute timing jitter. But in reality,
when sampling clj with clk, we measure the relative timing jitter.

���������� 6 (Relative timing jitter)� The relative timing jitter is obtained
when supposing that the reference clock signal is jitter-free and the sampled
clock clj is the only jittery clock containing both clj and clk absolute jitter
contributions.

Therefore signal clk has a constant period Tclk and signal clj has a period
which is considered to be a random variable Tj with mean Tclj and variance σ2

j .

Remark 2� It is not necessary to know precisely the law of Tj since we just
need the mean and the variance of this random variable.
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Describing the ith sample as it is done in equation (3) makes no sense because
the operation mod Tclj supposes Tclj to be constant which is no longer the case.
Instead, we use cumulative sums of realizations of Tj:

���������� 7 (Cumulative sums)� Let i ∈ N, and let {Tj1 , . . . , Tji} be a set of i
independent realizations of the random variable Tj . The cumulative sum of these
realizations, denoted Tjacc

(i) is defined as:

Tjacc
(i) :=

i∑
l=1

Tjl . (6)

The following proposition gives the expression of ϕi.

	
��������� 3 (Relative timing jitter behavior)� Let i ∈ N and let

ind(i) := max
{
m ∈ N | Tjacc

(m) < i× Tclk + ϕ0

}
.

Then
ϕi = ϕ0 + i× Tclk − Tjacc

(
ind(i)

)
. (7)

The value of Tjacc
(m) is not precisely known because it depends on the relative

timing jitter between signals clk and clj. In other words,

Tjacc
(m) = δm +m× Tclj ,

where δm has a mean 0 and a variance σ2
m.

Using equation (7) we can see ϕi as a random variable following the same law
as δind(i) but with mean

μind(i) := i× Tclk + ϕ0 − ind(i)× Tclj

and with variance σ2
ind(i).

2.4. Behavior in the special case of the coherent sampling

It can be seen in Figure 3 that successive samples are not sorted in an in-
creasing order. In [12], a reorganization of these samples is proposed when KM

and KD are co-primes. The reorganization is given with the formula

j(i) = i×KM mod KD for i from 0 to KD − 1. (8)

KM and KD are co-primes so this application is bijective. Then the reciprocal
transformation is

i(j) = j ×K−1
M mod KD (9)

and we have:

0 < ϕi(1) − ϕ0 mod Tclj < · · · < ϕi(KD−1) − ϕ0 mod Tclj . (10)

The first (i ≥ 1) sample after the reorganization is defined to be the closest one
to the initial phase ϕ0 = ϕi(0) and following samples are sorted in an increasing
order. This allows to get a reconstruction of the Tclj period. The expression
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of ϕi as a random variable can also be simplified as it is shown in the following
proposition.

	
��������� 4 (The random variable ϕi(j))� ϕi(j) is a random variable with

mean μi(j)ϕ0 + j × Tclj
KD

mod Tclj and with variance σ2
ind(i(j)).

P r o o f. According to previous definitions and notations, ϕi(j) is clearly a ran-

dom variable with variance σ2
ind(i(j)).

Let
Δ := μi(j+1) − μi(j) mod Tclj

be the distance between two consecutive means of samples regarding the increas-
ing order modulo Tclj . Then,

Δ =
(
i(j + 1)− i(j)

)× Tclk mod Tclj .

We should distinguish between two cases:

0 ≤ i(j + 1)− i(j) < KD
or

−KD < i(j + 1)− i(j) < 0 ⇒ 0 < i(j + 1)− i(j) +KD < KD.

The difference modulo KD between i(j + 1) and i(j) is the general case.

Δ =
((

(j + 1)K−1
M − jK−1

M

)
mod KD

)
× Tclk mod Tclj

=
((

K−1
M

)
mod KD

)
× Tclj×KM

KD
mod Tclj

=
((

KMK−1
M

)
mod KD

)
× Tclj

KD
mod Tclj

=
Tclj
KD

.

Then,

μϕi(1)
= μϕi(0)

+
Tclj
KD

μϕi(j+1)
= μϕi(j+1)

+
Tclj
KD

}
⇒ μϕi(j)

= ϕ0 + j × Tclj
KD

.

�

With the presented model of the random variable ϕi(j), we are now able to give
the probability for each sample to be at logic level ’1’. Let us denote by Xi(j)

the random variable with values in {0, 1}, that determines the logical level of
the sampled bit at time ϕ0 + i(j)× Tclk.

Even if the mean of ϕi(j) is in the interval [0, Tclj [, the influence of the σind(i(j))

jitter can make a realization of this random variable to be < 0 or > Tclj . For
this reason, the probability to sample a ′1′ is given by

P
(
Xi(j) =

′ 1′
)
= P

(
0 < ϕi(j) <

Tclj
2

)
+ P

(
Tclj < ϕi(j) < 3

Tclj
2

)
. (11)
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Remark 3� The condition ϕi(j) < 3
Tclj
2 should normally be true most of the time

because σind(i(j)) <<
Tclj
2 . This is what we suppose in the following, therefore

P
(
ϕi(j) < 3

Tclj
2

)
= 1.

And we have the following proposition:

	
��������� 5 (Probability to sample a ’1’ in a coherent sampling)�

P (Xi(j) =
′ 1′) = P

(
ϕi(j) <

Tclj
2

)
− P

(
ϕi(j) < 0

)
+ 1− P

(
ϕi(j) < Tclj

)
. (12)

3. Application: Entropy estimators and bias for the
TRNG based on coherent sampling

In the previous section, we did not need to know the law of the random vari-
able ϕi(j). In the following, one has to know what is the probability distribution
of the random variable. In order to model the generator behavior, designers
have to investigate and to model the source of the electronic noise (law, mean,
variance) inside electronic devices before employing it.

In general, it is a difficult problem, however, it is assumed that in electronic
devices many independent perturbations contribute to the noise. According to
the central limit theorem, many researchers assume that the source of random-
ness should follow a normal distribution.

To show the validity of our model, we apply this assumption on the TRNG
principle based on PLLs proposed in [5].

3.1. PLL based TRNG

The principle was presented in Figure 2. Due to phase locking, the clock jitter
of Tjacc

(m), ∀m ∈ N is supposed to be constant and equals to the clock jitter
obtained in one period Tj .

Using results of Section 2 and the normal distribution of the electronic noise,
we can claim that ϕi(j) is a random variable following a normal distribution with

mean μj = ϕ0 + j × Tclj
KD

and variance σ2
j .

Then, according to equation (12), the probability to sample a ′1′ is given by

P (Xi(j) =
′ 1′) =

1√
2πσj

⎛
⎜⎝

Hcljid∫
0

e
− (x−μj)

2

2σ2
j dx + 1 −

Tcljid∫
−∞

e
− (x−μj)

2

2σ2
j dx

⎞
⎟⎠ . (13)
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Using equation (13), we plot for each sample in one period TQ the point(
i(j), P (Xi(j) =

′ 1′)
)
. Then, according to our mathematical model, we can re-

build the “ideal” period Tclj as it is shown in Figure 4 for parameters KD = 203
and KM = 260. Figure 5 represents the reconstruction of the Tclj period from
real hardware—the FPGA device.1 We can see that the reality is sufficiently well
described by our mathematical model.

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

samples index

P
(X

=
’1

’)

Figure 4. Probability of
individual samples in the
reconstructed Tclj period
with σj = 60 ps and ϕ0 =
π
2

using equation (13).

Figure 5. Accumulated
and reconstructed Tclj
period with KM = 260,
KD = 203, fclk = 58 MHz

and fclj = 74.386 MHz.

After the validation of the model, we can use it to compute the entropy per
bit and the bias at the generator output, depending on the standard deviation
σj of the clock jitter.

3.2. Bias and entropy

Following the decimation process, the output bit Bout is defined as follows.

���������� 8 (Output bit for one period TQ)�

Bout := ⊕KD−1

i=0 Xi = ⊕KD−1

j=0 Xi(j).

The probability that Bout = 1 is given by

P (Bout = 1) (14)

=
1

2
+ (−2)KD−1

(
P (X0 = 1)− 1

2

)
. . .

(
P (XKD−1

= 1)− 1

2

)
.

1ACTEL Fusion evaluation board featuring the FPGA device AFS600FG256ES.
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The proof of this result, based on the independence of random variables {Xi}i,
can be found in [13]. The independence of {Xi}i is derived from the independence
of electronic noise realizations inside the chip.

If the output bits Bout were unbiased,

P (Bout = 1) = P (Bout = 0) =
1

2
.

Thus, according to equation (14), the bias is defined as follows:

���������� 9 (Bias)�

Bias(Bout) = abs

(
(−2)KD−1

(
P (X0 = 1)− 1

2

)
. . .

(
P (XKD−1 = 1)− 1

2

))

The entropy of the output bit Bout is defined as usually.

���������� 10 (Entropy)�

Entropy(Bout) =

− P (Bout = 1) log2
(
P (Bout = 1)

)− P (Bout = 0) log2
(
P (Bout = 0)

)
.

Then using our model, it is possible to plot the bias (Figure 6) and the entropy
(Figure 7) of the output bit Bout, depending on the value of the clock jitter σj.
These plots are very interesting because they can be used to derive what is the
value of the jitter that is needed to obtain a sufficiently low bias and sufficiently
high entropy value (close to one) for Bout at the output.

Example. For example, if we want the entropy to be greater than 0.999 and
the bias lower than 0.001, the clock jitter must be greater than 80 ps as it can
be seen in Figure 8 and 9.

4. Conclusion

Security evaluation of physical RNGs is a difficult and important task. Statis-
tical tests are definitely not absolute criteria for their evaluation. For this reason,
a mathematical characterization of the generator principle including randomness
extraction (e.g., decimation process) must be done during the RGN evaluation
process. The main contribution of this paper is the proposal of a statistical model
of the RNG using two jittery clocks with rationally related frequencies describ-
ing random number generators based on coherent sampling. One of the way to
guarantee the clock relationship is to use PLLs in hardware. They have some use-
ful properties simplifying the mathematical model (rational related frequencies,
phase locking, limited jitter accumulation. . . ).
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Figure 9. Minimum clock
jitter required to satisfy
Entropy(Bout) < 0.999.

The proposed model is validated by a hardware implementation. Finally, it
is used to estimate the entropy per bit and the bias of the output bit-stream
depending on the clock jitter value. This relationship can be used for tuning the
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parameters of the generator and estimating its robustness against manipulations
and attacks.
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