Tatra Mt. Math. Publ. **44** (2009), 97–103 DOI: 10.2478/v10127-009-0050-5

ON REPRESENTATION OF MULTIMEASURE

Jolanta Olko

ABSTRACT. We consider a multimeasure with the Radon-Nikodym derivative and apply its Castaing representation to get a representation of the multimeasure.

We assume that X is a real normed space; we denote by $P_o(X)$ the family of nonempty subsets of X, by $P_f(X)$, $P_{fc}(X)$ the families of closed and closed convex members of $P_o(X)$, respectively. In the sequel, (T, A) stands for measurable space, μ for positive real measure.

We say that a multifunction $F\colon T\to P_o(X)$ is measurable if for every open set $U\subset X$

 $F^-(U) := \{ t \in T : F(t) \cap U \neq \emptyset \} \in \mathcal{A}.$

The function $f: T \to X$ is a selection of F if $f(t) \in F(t)$ for $t \in T$.

For measurable multifunctions we have the following characterization (see [3], [2], [5]).

THEOREM 1. Let X be a complete separable metric space. A multifunction $F: T \to P_f(X)$ is measurable if and only if there exists a sequence $\{f_n : n \in \mathbb{N}\}$ of measurable selections of F such that

$$F(t) = \operatorname{cl} \{ f_n(t) : n \in \mathbb{N} \}, \quad for \quad t \in T.$$

The sequence $\{f_n : n \in \mathbb{N}\}$ is called Castaing representation of F.

A measurable multifunction $F: T \to P_0(X)$ is Aumann integrable if S_F , the set of all Bochner integrable selections of F, is nonempty. Then Aumann integral $\int_A F d\mu := \{ \int_A f d\mu : f \in S_F \}$ is the set of all Bochner integrals of fuctions of S_F .

We say that a multifunction $M: \mathcal{A} \to P_f(X)$ is a weak multimeasure if for every $x^* \in X^*$, a mapping $A \mapsto \sup\{x^*(x) : x \in M(A)\}$ is a signed measure. M is additive if and only if $M(A \cup B) = \operatorname{cl}(M(A) + M(B))$ for disjoint sets $A, B \in \mathcal{A}$.

EXAMPLE 1 ([6, Ex. 4.6]). If $F: T \to P_f(X)$ is an Aumann integrable multifunction, then a multifunction $A \mapsto \operatorname{cl} \int_A F d\mu$, $A \in \mathcal{A}$, is a weak multimeasure.

²⁰⁰⁰ Mathematics Subject Classification: 28B20, 54C65. Keywords: multimeasure, representation, Aumann integral.

JOLANTA OLKO

A multifunction $F: T \to P_f(X)$ is the Radon-Nikodym derivative of a multimeasure $M: \mathcal{A} \to P_f(X)$ with respect to μ if

$$\int_{A} F d\mu = M(A) \quad \text{for every} \quad A \in \mathcal{A}.$$

Since the Radon-Nikodym derivative of a multimeasure M has Castaing representation, we can look for a similar representation for M.

A vector measure $m: A \to X$ is called a measure selection of M if $m(A) \in M(A)$ for every $A \in A$. The set of all measure selections of multimeasure M will be denoted by S_M .

Let $\mathcal{M} := \{m : \mathcal{A} \to X : m \text{ is a vector measure}\}.$

We say that $D \subset \mathcal{M}$ is decomposable if and only if for every measurable set $A \in \mathcal{A}$ and $m, n \in D$

$$m\chi_A + n\chi_{T\setminus A} \in D$$
,

where $m\chi_A(B) = m(B \cap A)$.

We say that $A_1, \ldots, A_n \in \mathcal{A}$ is a partition of T if the sets are mutually disjoint and $\bigcup_{i=1}^n A_i = T$.

A decomposable hull of $S \subset \mathcal{M}$ is the smallest, in the sense of inclusion, decomposable set containing S. Moreover, (cf. [7]),

$$\operatorname{dec} S := \bigcap \{D : S \subset D, D \text{ is decomposable}\}\$$

$$= \left\{ \sum_{i=1}^{k} m_i \chi_{A_i} : k \in \mathbb{I} N, m_i \in S, \{A_1, \dots, A_k\} \text{ is a partition of } T \right\}.$$

LEMMA 1. Let (T, \mathcal{A}, μ) be a measure space, X be a normed space. Let $M: \mathcal{A} \to P_f(X)$ be a multimeasure with the Radon-Nikodym derivative $F: T \to P_f(X)$. Then M is an additive weak multimeasure with a decomposable set S_M .

Proof. According to Example 1, M is a weak multimeasure, since M has closed values and $M(A) = \int_A F d\mu$ for $A \in \mathcal{A}$.

To prove the additivity of M, take disjoint sets $A, B \in \mathcal{A}$.

$$x = \int_{A \cup B} f \, d\mu = \int_{A} f \, d\mu + \int_{B} f \, d\mu \in M(A) + M(B) \subset \operatorname{cl} \big(M(A) + M(B) \big).$$

If $x \in M(A) + M(B)$, then there exist $f, g \in S_F$ such that

$$x = \int_A f \, d\mu + \int_B g \, d\mu = \int_{A \cup B} (\chi_A f + \chi_B g) \, d\mu = \int_{A \cup B} (\chi_A f + \chi_{T \setminus A} g) \, d\mu.$$

Since S_F is decomposable (see [5]), $\chi_A f + \chi_{T \setminus A} g \in S_F$ and we have

$$x \in \int_{A \cup B} F \, d\mu = M(A).$$

ON REPRESENTATION OF MULTIMEASURE

Therefore,

$$M(A) + M(B) \subset M(A \cup B)$$

and, by the closedness of values of M, we have

$$\operatorname{cl}(M(A) + M(B)) \subset M(A \cup B).$$

Finally, on account of Lemma 4 in [7], the set S_M is decomposable.

Let $m_n: T \to X$, $n \in \mathbb{N}$ be vector measures. It is natural to ask whether a multifunction

$$A \mapsto M(A) := \operatorname{cl} \{ m_n(A) : n \in \mathbb{N} \}, \qquad A \in \mathcal{A}$$

is a weak multimeasure with a decomposable set S_M . The answer is in the following example (see [7]).

EXAMPLE 2. Let $T = [0, 1] \subset \mathbb{R}$, \mathcal{A} be σ -algebra of Lebesgue measurable subsets of T. Let m be Lebesgue measure on \mathcal{A} . Then multifunction given by

$$M(A) = \{m(A), 2m(A)\}, \qquad A \in \mathcal{A}$$

is a weak multimeasure but S_M is not decomposable. Consequently, M has not the Radon-Nikodym derivative.

THEOREM 2. Let (T, \mathcal{A}, μ) be a σ -finite measure space, X be a separable Banach space. Let $M: \mathcal{A} \to P_f(X)$ be a multimeasure with the Radon-Nikodym derivative $F: T \to P_f(X)$. Then there exists a sequence $\{m_n : n \in \mathbb{N}\}$ of measure selections of M such that

$$M(A) = \operatorname{cl} \{ m(A) : m \in \operatorname{dec} \{ m_n : n \in \mathbb{N} \} \}, \quad A \in \mathcal{A}.$$

Proof. Let $\{f_n : n \in \mathbb{N}\}$ be Castaing representation of the measurable multifunction F. Define vector measures

$$m_n(A) := \int_A f_n d\mu, \quad \text{for} \quad n \in \mathbb{N}, \quad A \in \mathcal{A}$$

and let $S := \{m_n : n \in \mathbb{N}\}.$

It is clear that for every $A \in \mathcal{A}$, $m_{k_1}, \ldots, m_{k_n} \in S$ and a partition A_1, \ldots, A_n of T

$$\left(\sum_{i=1}^{n} m_{k_i} \chi_{A_i}\right)(A) = \sum_{i=1}^{n} m_{k_i} (A \cap A_i) = \sum_{i=1}^{n} \int_{A \cap A_i} f_{k_i} d\mu = \int_{A} \left(\sum_{i=1}^{n} \chi_{A_i} f_{k_i}\right) d\mu,$$

where $\sum_{i=1}^{n} \chi_{A_i} f_{k_i} \in \text{dec} \{f_n : n \in \mathbb{N}\}$. On the other hand, by the above equalities, we see that any function $g \in \text{dec} \{f_n : n \in \mathbb{N}\}$ generates measure from dec S.

Therefore,

$$\det\{m_n : n \in \mathbb{N}\} = \left\{ \int_{(\cdot)} g \, d\mu : g \in \det\{f_n : n \in \mathbb{N}\} \right\}$$
 (1)

and consequently, for every $A \in \mathcal{A}$,

$$\left\{ m(A) : m \in \operatorname{dec} \left\{ m_n : n \in \mathbb{N} \right\} \right\} = \left\{ \int_A g \, d\mu : g \in \operatorname{dec} \left\{ f_n : n \in \mathbb{N} \right\} \right\}. \tag{2}$$

We will show that for every $A \in \mathcal{A}$,

$$M(A) = \operatorname{cl} \{ m(A) : m \in \operatorname{dec} S \}.$$

Observe that $S \subset S_M$ and on account of Lemma 1 S_M is decomposable. Therefore, $\operatorname{dec} S \subset S_M$ and

$$\{m(A) : m \in \operatorname{dec} S\} \subset M(A), \qquad A \in \mathcal{A}.$$

Consequently, by the closedness of values of M,

$$\operatorname{cl}\left\{m(A): m \in \operatorname{dec} S\right\} \subset M(A).$$

To prove the converse inclusion, take $A \in \mathcal{A}$ and $x \in M(A)$. Then there exists $f \in S_F$ such that $x = \int_A f \, d\mu$. Fix $\epsilon > 0$. According to Lemma 1.3 in [5], there exist $f_{k_1}, \ldots, f_{k_n} \in \{f_n : n \in \mathbb{N}\}$ and A_1, \ldots, A_n a partition of T such that

$$\int_{T} \left\| f - \sum_{i=1}^{n} \chi_{A_i} f_{k_i} \right\| d\mu < \epsilon.$$

Thus, the function $g := \sum_{i=1}^n \chi_{A_i} f_{k_i} \in \text{dec} \{f_n : n \in \mathbb{N}\}$ and, moreover,

$$\left\|x - \int_{A} g \, d\mu \right\| = \left\| \int_{A} f \, d\mu - \int_{A} g \, d\mu \right\| \le \int_{A} \|f - g\| \, d\mu \le \int_{T} \|f - g\| \, d\mu < \epsilon.$$

Consequently,

$$x \in \operatorname{cl}\left\{\int_A g \, d\mu : g \in \operatorname{dec}\left\{f_n : n \in \mathbb{N}\right\}\right\}$$

which together with (2) completes the proof.

According to (1) we have a reformulation of the above theorem.

COROLLARY 1. Let (T, \mathcal{A}, μ) be a σ -finite measure space, X be a separable Banach space. Let $M: \mathcal{A} \to P_f(X)$ be a multimeasure with the Radon-Nikodym

derivative $F: T \to P_f(X)$. Then

$$M(A) = \operatorname{cl}\left\{m(A) : m \in \operatorname{dec}\left\{\int_{(\cdot)} f_n d\mu : n \in \mathbb{N}\right\}\right\},$$

where $\{f_n : n \in \mathbb{N}\}\$ is Castaing representation of F.

A partial converse of Theorem 2 is following.

THEOREM 3. Let (T, \mathcal{A}, μ) be a finite measure space, X be a separable Banach space with the Radon-Nikodym property. If $\{m_n : n \in \mathbb{N}\}$ is a sequence of vector measures of bounded variation absolutely continuous with respect to μ , then there exists Aumann integrable multifunction $F: T \to P_f(X)$ such that

$$M(A) := \operatorname{cl} \left\{ m(A) : m \in \operatorname{dec} \left\{ m_n : n \in \mathbb{N} \right\} \right\} = \operatorname{cl} \int_A F d\mu, \qquad A \in \mathcal{A}$$

Proof. Let $S := \{m_n : n \in \mathbb{N}\}$ and $M(A) := \operatorname{cl}\{m(A) : m \in \operatorname{dec} S\}$ for $A \in \mathcal{A}$. Since X has the Radon-Nikodym property and $m_n \ll \mu$ for $n \in \mathbb{N}$ there exists $f_n := \frac{dm_n}{d\mu}$ for every $n \in \mathbb{N}$. Observe that analogously to the previous theorem, conditions (1) and (2) are satisfied.

Define $F(t) := \operatorname{cl} \{ f_n(t) : n \in \mathbb{N} \}$. Observe that each f_n is integrable, therefore $S_F \neq \emptyset$. We will show that $M(A) = \operatorname{cl} \int_A F \, d\mu$ for $a \in \mathcal{A}$.

Take $A \in \mathcal{A}$. By (2)

$$\left\{m(A): m \in \operatorname{dec}\left\{m_n: n \in \mathbb{N}\right\}\right\} = \left\{\int_A g \, d\mu: g \in \operatorname{dec}\left\{f_n: n \in \mathbb{N}\right\}\right\} \subset \int_A F \, d\mu$$

hence,

$$\operatorname{cl}\left\{m(A): m \in \operatorname{dec}\left\{m_n: n \in \mathbb{N}\right\}\right\} \subset \operatorname{cl}\int_A F \, d\mu.$$

Now, let $A \in \mathcal{A}$ and $x \in \int_A F d\mu$. There exists $f \in S_F$ such that $x = \int_A f d\mu$. Fix $\epsilon > 0$. According to Lemma 1.3 in [5], there exist $f_{k_1}, \ldots, f_{k_n} \in \{f_n : n \in \mathbb{N}\}$ and A_1, \ldots, A_n a partition of T such that

$$\int_{T} \left\| f - \sum_{i=1}^{n} \chi_{A_i} f_{k_i} \right\| d\mu < \epsilon.$$

Define $g := \sum_{i=1}^n \chi_{A_i} f_{k_i}$. It follows that $g \in \text{dec} \{f_n : n \in \mathbb{N}\}$ and

$$\left\| x - \int_A g \, d\mu \right\| = \left\| \int_A f \, d\mu - \int_A g \, d\mu \right\| \le \int_T \|f - g\| \, d\mu < \epsilon$$

which means that (see (2))

$$x \in \operatorname{cl}\left\{ \int_A g \, d\mu : g \in \operatorname{dec}\left\{f_n : n \in \mathbb{N}\right\} \right\} = \operatorname{cl}\left\{m(A) : m \in \operatorname{dec}\left\{m_n : n \in \mathbb{N}\right\}\right\}.$$

Thus, $\int_A F d\mu \subset M(A)$ which with closedness of M(A) completes the proof. \square

By the above proof and by Theorem 4.5 in [5], we have what follows.

COROLLARY 2. Let (T, A) be a measurable space and μ be finite measure with no atoms, let X be a separable reflexive Banach space. If $\{m_n : n \in \mathbb{N}\}$ is a sequence of vector measures of bounded variation absolutely continuous with respect to μ , then there exists Aumann integrable multifunction $F: T \to P_{fc}(X)$ such that

$$\operatorname{cl}\left\{m(A): m \in \operatorname{dec}\left\{m_n: n \in \mathbb{N}\right\}\right\} = \int_A F \, d\mu, \qquad A \in \mathcal{A}.$$

Moreover, $\left\{\frac{dm_n}{d\mu}: n \in \mathbb{N}\right\}$ is Castaing representation of F.

Proof. According to the above theorem, there exists $F: T \to P_f(X)$ such that

$$\operatorname{cl}\left\{m(A): m \in \operatorname{dec}\left\{m_n: n \in \mathbb{N}\right\}\right\} = \operatorname{cl}\int_A F \, d\mu, \qquad A \in \mathcal{A}$$

By Corollary 4.3 in [5], for $A \in \mathcal{A}$

$$\operatorname{cl} \int_{A} F \, d\mu = \operatorname{cl} \int_{A} \operatorname{cl} \operatorname{conv} F \, d\mu.$$

However, on account of Theorem 4.5 in [5], the integral $\int_A \operatorname{cl} \operatorname{conv} F d\mu$ is closed, so $M(A) = \int_A \operatorname{cl} \operatorname{conv} F d\mu$ for, $A \in \mathcal{A}$ and the proof is complete.

Finally, we have a characterization of multimeasures with a representation generated by Castaing representation of their Radon-Nikodym derivative.

THEOREM 4. Let (T, A) be a measurable space and μ be finite measure with no atoms, let X be a separable reflexive Banach space. A multimeasure $M: A \to P_f(X)$ has the Radon-Nikodym derivative $F: T \to P_{fc}(X)$ if and only if there exists a sequence of vector measures $\{m_n : n \in \mathbb{N}\}$ of bounded variation absolutely continuous with respect to μ such that

$$M(A) = \operatorname{cl} \{ m(A) : m \in \operatorname{dec} \{ m_n : n \in \mathbb{N} \} \}.$$

ON REPRESENTATION OF MULTIMEASURE

REFERENCES

- [1] ARTSTEIN, Z.: Set-valued measures, Trans. Amer. Math. Soc. 165 (1972), 103-125.
- [2] AUBIN, J. P.—FRANKOWSKA, H.: Set-Valued Analysis. Systems Control Found. Appl., Vol. 2, Birkhäuser, Boston, MA, 1990.
- [3] CASTAING, C.—VALADIER, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., Vol. 580, Springer-Verlag, New York, 1977.
- [4] GODET-THOBIE, C.: Some results about multimeasures and their selectors, in: Measure Theory, Proc. Conf., Oberwolfach, 1979, Lecture Notes in Math., Vol. 794, Springer--Verlag, New York, 1980, pp. 112-116.
- [5] HIAI, F.—UMEGAKI, H.: Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.
- [6] HU, S.—PAPAGEORGIU, N. S.: Handbook of Multivalued Analysis. Vol. I: Theory, in: Math. Appl., Vol. 419, Kluwer Acad. Publ., Dordrecht, 1977.
- [7] OLKO, J.: Note on decomposable sets, Tatra Mt. Math. Publ. 40 (2008), 43-51.

Received December 1, 2008

Institute of Mathematics Pedagogical University Podchorążych 2 PL-30-084 Kraków POLAND

E-mail: jolko@up.krakow.pl