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A HELLY THEOREM IN METRIC SPACES AND

MAJORED OPERATIONS

Miloslav Duchoň — Peter Maličký

ABSTRACT. We present a generalization of a Helly type theorem given in
[Duchoň, M.—Maličký, P.: A Helly theorem for functions with values in met-
ric spaces, Tatra Mt. Math. Publ. 44 (2009), 159–168.] for sequences of functions
with values in metric spaces and apply it to representations of some majored
mappings on the space of continuous functions. A generalization of the Riesz the-

orem is formulated and proved. In particular, a representation of certain majored
linear operators on the space of continuous functions, into a Banach space.

1. Introduction

It is well known that the following theorem is true, [BDS], [Na], [W].

����� ��������	
	��� 	������ Every continuous linear functional L on
the set of continuous functions f defined on [0, 1] has the form

Lf =

1∫
0

f(s) dg(s) (R)

with a function g of bounded variation on [0, 1].

This theorem has many extensions and generalizations with various proofs.
One of the possible proofs is based on the Helly theorem [Na] and also on the
moment problem theorem [Na]. It can be shown that the problem of determining
the general continuous linear functionals on the set of continuous functions is
equivalent to that of determining the set of all moment sequences. It is our pur-
pose to extend this result to majored linear operators from continuous functions
to Banach spaces.

Helly’s theorem had been of some importance a long time above all in the
probability theory in connection with a problem of moments of distributions.
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Recall that in this connection, real-valued nondecreasing functions f on the
interval [a, b] of the real line are considered and that the following facts are
true, [Na].

(1) (First Helly’s theorem) Given a uniformly bounded sequence (fn) of real-
-valued nondecreasing functions, there exists a subsequence (fnk

) of (fn)
converging to a real-valued nondecreasing function f on [a, b].

(2) (Second Helly’s theorem) Given a sequence (fn) of real-valued nondecreas-
ing functions on [a, b], converging to a real-valued nondecreasing function f,
then, for every continuous function g on [a, b], we have

lim
n→∞

b∫
a

g(t) dfn(t) =

b∫
a

g(t) df(t).

More generally there are true the following facts.

(1) (First Helly’s theorem) Given the sequence (fn) of complex-valued func-
tions of uniformly bounded variation on [a, b] such that for some x0 ∈ [a, b]
the sequence

(
fn(x0)

)
is bounded then there exists a subsequence (fnk

) of
(fn) converging to a some function f of bounded variation on [a, b].

(2) (Second Helly’s theorem) Given a sequence (fn) of functions of uniformly
bounded variation on [a, b], converging to a some function f of bounded
variation, then, for every continuous function g on [a, b], we have

lim
n→∞

b∫
a

g(t) dfn(t) =

b∫
a

g(t) df(t) .

2. A Helly type theorem in metric spaces

First we recall the definition of a bounded variation of the function with values
in a metric space, [DM].

������	���� Let D be a subset of the real line, (X, d) be metric space and
h : D → X be a function. If the set of all sums

∑n
i=1 d

(
h(ti−1), h(ti)

)
, where

(ti)
n
i=0 is an increasing sequence of elements of D, is bounded then g is said to

be a function of bounded variation on D. The corresponding least upper bound
is a variation of function h on a set D.

For the next we shall need the following proposition [DM].

�������	��� 1� Let D be a dense subset of the interval [a, b], (X, d) be a com-
plete metric space and h : D → X be a function of bounded variation on D.
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(i) For any t ∈ (a, b] (resp. t ∈ [a, b)) there exists limit h(t−0) (resp. h(t+0))

(ii) Function f : (a, b] → X (resp. g : [a, b) → X) defined by f(t) = h(t − 0)
(resp. g(t) = h(t + 0)) are functions of bounded variation on (a, b] (resp.
[a, b)).

(iii) f(t−0) = g(t−0) = h(t−0) for all t ∈ (a, b] and f(t+0) = g(t+0) = h(t+0)
for all t ∈ [a, b).

(iv) Function f (resp. g) is continuous at the point t ∈ (a, b) if and only if
h(t− 0) = h(t+ 0).

(v) For all t ∈ (a, b), except possibly countable set, h(t− 0) = h(t+ 0).

P r o o f. Let (ti)
∞
i=0 be an increasing (resp. decreasing) sequence elements of D.

Since (X, d) is a complete metric space, it is sufficient to show that
(
h(ti)

)∞
i=0

is
a Cauchy sequence. To see this, note that series

∞∑
i=1

d
(
h(ti−1), h(ti)

)
is convergent and

d
(
h(tn), h(tm)

) ≤ m∑
i=n+1

d
(
h(ti−1), h(ti)

) ≤ ∞∑
i=n+1

d
(
h(ti−1), h(ti)

)
for any n < m. It proves (i).

Let (ti)
n
i=0 be an increasing sequence elements of (a, b]. Take ε > 0 and a se-

quence (si)
n
i=0 of D such that s0 < t0 < s1 < t1 < . . . < tn−1 < sn < tn and

d
(
f(ti), h(si)

)
< ε

2n . Then

n∑
i=1

d
(
f(ti−1), f(ti)

) ≤ n∑
i=1

(
d(f(ti−1), h(si−1)

)
+ d

(
h(si−1), h(si)

)
+ d

(
h(si), f(ti)

))
≤

n∑
i=1

d
(
h(si−1), h(si)

)
+

n∑
i=1

d
(
f(ti−1), h(si−1)

)

+

n∑
i=1

d
(
f(ti), h(si)

)

< ε+

n∑
i=1

d
(
h(si−1), h(si)

)
.

It means that f is of bounded variation. Bounded variation of g may be proved
analogously. It proves (ii).
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Now we prove

f(t− 0) = h(t− 0) for t ∈ (a, b].

Let (ti)
∞
i=0 be an increasing sequence of elements of (a, b] with limn→∞ tn = t.

Take a sequence (si)
∞
i=0 of D such that s0 < t0 < s1 < t1 < . . . < tn−1 < sn <

tn < . . . and d
(
f(ti), h(si)

)
< 1

n . Clearly

f(t− 0) = lim
n→∞ f(tn) = lim

n→∞h(sn) = h(t− 0).

Equalities

g(t− 0) = h(t− 0) for t ∈ (a, b],

f(t+ 0) = h(t+ 0)

and

g(t+ 0) = h(t+ 0) for t ∈ [a, b)

may be proved analogously. It proves (iii).

Part (iv) follows from (iii).

Let M be a variation of g on D and n > 0 be a fixed. Assume that there are
m points t1, . . . tm, where m > nM , such that inequality

d
(
f(ti), h(ti + 0)

)
>

1

n

is satisfied for all i = 1, . . . ,m. There is ε > 0 such that

d
(
f(ti), h(ti + 0)

)
> 2ε+

1

n
for all i = 1, . . . ,m.

We may assume that (ti)
m
i=1 is an increasing sequence. There are sequences

(si)
m
i=1 and (ui)

m
i=1 in D such that s1 < t1 < u1 < s2 < t2 < u2 < . . . , tm−1 <

um−1 < sm < tm < um,

d
(
f(ti), h(si)

)
< ε and d

(
h(ti + 0), h(ui)

)
< ε for all i = 1, . . . ,m.

Now
m∑
i=1

d
(
h(si), h(ui)

)
>

m∑
i=1

(
d
(
f(ti), h(ti + 0)

)− 2ε
)
>
m

n
> M

what is a contradiction. Therefore inequality

d
(
h(t− 0), h(t+ 0)

)
> 0

may be satisfied only for countably many t ∈ (a, b). �

Now we first formulate a Helly type theorem for functions taking values in
a one relatively compact set and having uniformly bounded variations given
in [DM]. We shall bring it with the proof since we shall need it in the proving
the another type of Helly theorem.
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����� 	����� �� Let (X, d) be a complete metric space and (gn)n∈ N a se-
quence of functions from [a, b] into X such that

a) the set gn(x) is relatively compact for any x ∈ [a, b],

b) the functions (gn)n∈N have uniformly bounded variations.

Then there exists a subsequence of the sequence (gn)n∈N converging pointwise
in X to a function g : [a, b] → X of bounded variation.

P r o o f. Let D be a countable set dense in [a, b] and b ∈ D. By the diagonal
procedure we obtain a subsequence (hn)n∈N of (gn)n∈N converging for every
t ∈ D to a function h(t) which has bounded variation on D. Hence for every
t ∈ [a, b) there exists the limit h(t+ 0). Put

g(t) = h(t+ 0), for t ∈ [a, b)
and

g(b) = h(b).

Let δ > 0 be given. We prove that

lim sup
n→∞

d(hn(t), g(t)) ≤ δ

for every t ∈ [a, b), except possible, finite number m ≤ 2M/δ, where M is the
upper bound of variations of all gn. So, assume that for some m > 2M/δ there
are points t1 < t2 < . . . < tm < b such that

lim sup
n→∞

d
(
hn(ti), g(ti)

)
> δ for all i = 1, 2, . . . ,m .

There is a subsequence (hnk
)∞k=1 such that

d
(
hnk

(ti), g(ti)
)
> δ for all i = 1, 2, . . . ,m and k = 1, 2, . . .

Since g(ti) = h(ti + 0), there is a sequence (si)
m
i=1 in D such that

d
(
g(ti), h(si)

)
<
δ

4
for all i = 1, 2, . . . ,m

and t1 < s1 < t2 < s2 < . . . , tm−1 < sm−1 < tm < sm. Let k be so large that

d(hnk
(si), h(si)) ≤ δ

4
, for all i = 1, . . . ,m .

Then

M ≥
m∑
i=1

d
(
hnk (ti), hnk (si)

)

�
m∑
i=1

(
d
(
hnk (ti), g(ti)

)− d
(
g(ti), h(si)

) − d
(
h(si), hnk (si)

))

>
m∑
i=1

(
δ − δ

4
− δ

4

)
=

mδ

2
> M.
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which is not possible. So,

lim sup
n→∞

d
(
hn(t), g(t)

)
= 0

for every t ∈ [a, b), except possible, countable set A ⊂ [a, b). The last application
of the diagonal procedure gives a sequence convergent to g̃(t) on A. For some
t ∈ A it may be g̃(t) �= g(t). Therefore g has to be redefined on A by g(t) =
g̃(t). �

3. A Helly type theorem in Banach spaces

In the following we shall use the next proposition for functions with values in
Banach space.

�������	��� 2� Let D ⊂ [a, b], X be a Banach space and fn : D → X be
a sequence of functions of uniformly bounded variations which converges weakly
on D to a function f. Then f is of bounded variation on D.

P r o o f. Note that for any sequence (xn)
∞
n=0 weakly converging in X to x0 we

have ‖x0‖ ≤ lim infn→∞ ‖xn‖. �

Now we shall prove Helly type theorem for functions with values in one weakly
compact set of Banach space X and having uniform bounded variations.

����� 	����� �� Let X be a Banach space and (gn)n∈N a sequence of func-
tions from [a, b] into X such that

a) the set gn(t) is relatively weakly compact for any t ∈ [a, b],

b) the functions (gn)n∈N have uniformly bounded variations.

Then there exists a subsequence of the sequence (gn)n∈N converging weakly point-
wise in X to a function g : [a, b] → X of bounded variation.

P r o o f. Since all functions fn have bounded variations, their ranges have
(strongly) compact closures. Let X0 be a Banach space generated by ranges
of all fn. Clearly, X0 is separable. There is a sequence of uj ∈ X∗

0 separating
points of X0 with ‖uj‖ = 1. Linear functionals uj may be extended to the whole
space X (without increasing norm). Let p : X → X be a seminorm defined by

p(x) =

∞∑
j=1

1

2j
|uj(x)|.

Clearly p(x) ≤ ‖x‖ for any x ∈ X. The restriction of p onto X0 is a norm. Let d
be a metric on X0 associated with p. Since X0 is weakly closed, it contains weak
closures of all its subsets, in particular, weak closures of

{
fn(t) : n ∈ N

}
for any
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t ∈ [a, b]. These closures are assumed to be weakly compact. For any weakly
compact C ⊂ X0 the metric d is (weakly) continuous on C × C. Therefore the
weak topology on C is metrizable by the metric d. Let D be a countable set dense
in [a, b] and b ∈ D. By the diagonal procedure we obtain a subsequence (hn)n∈N

of (gn)n∈N converging for every t ∈ D to a function h(t) which has bounded
variation on D (with respect to ‖ . ‖) and also with respect to the metric d.
Hence for every t ∈ [a, b) there exists the (strong) limit h(t+0). This limit exists
with respect to the metric d as well. Put

g(t) = h(t+ 0), for t ∈ [a, b)
and

g(b) = h(b).

Now we can repeat the proof of Helly theorem 1, because the weak convergence
of sequences may be reduced to the convergence with respect to the metric d. �

4. Integral representation for majored linear operators

From the preceding generalization of Helly theorem we will derive the result
giving the representation of majored linear mapping. First we recall the definition
of majored linear mapping [Di].

For each subset A of [a, b], let C
(
[a, b], A

)
denote the space of continuous func-

tions on [a, b] vanishing outside A. Let X be a Banach space. If F : C
(
[a, b]

) → X
is a linear mapping, define for each A,

|||FA||| = sup
∑
i

||F (fi)||,

where the supremum is over all finite families {fi} in C
(
[a, b], A

)
with∑

i

|fi(t)| ≤ cA(t) for all t ∈ [a, b].

If F : C
(
[a, b]

) → X is a linear mapping, then (see [Di, § 19, pp. 380, 383]), the
mapping F is called majored (also dominated), if

|||FA||| <∞ (M)

for all A in B([a, b]). An equivalent definition of majored mapping is as follows.

If F : C
(
[a, b]

) → X is a linear mapping, it is majored (dominated) if and
only if there exists a nonnegative Borel measure μ on B([a, b]) such that

||F (ψ)|| ≤
b∫

a

|ψ(t)| dμ(t), ψ ∈ C
(
[a, b]

)
.
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Since such F can be extended to all bounded Borel functions, it is easy to see
that it is weakly compact linear mapping on C[0, 1] into X.

Let on the interval [a, b] a function g of bounded variation with values in Ba-
nach space X be given. This function makes it possible to every continuous
function f on [a, b] to associate the element of X of the form

F (f) =

b∫
a

f(x) dg(x). (!)

The following properties are true. Let f1, f2, f ∈ C[a, b]. Then

F (f1 + f2) = F (f1) + F (f2), (a)

‖F (f)‖ ≤ V b
aM (f), M (f) = max |f(x)|, V b

a = Varba(g). (b)

We shall now prove a Riesz type representation theorem for majored linear
mapping.

������ (Riesz type)� Let on the set C[a, b] the majored linear mapping F with
values in a Banach space X be given. Then there exists a function g of bounded
variation with values X such that for every function f ∈ C[a, b] we have

F (f) =

b∫
a

f(x) dg(x). (1)

P r o o f. It is enough to consider the case a = 1, b = 1, because the general case
can be reduced to this case by means of a linear transformation of argument.

Put

ϕn,k =

(
n

k

)
xk(1− x)n−k.

It is easy to see that for every x ∈ [0, 1] we have

n∑
k=0

ϕn,k(x) = 1.

Moreover, for x ∈ [0, 1] every member of this sum is nonnegative. Hence, for
complex numbers ak such that

|ak| ≤ 1, k = 0, 1, . . . , n,

we have ∣∣∣∣∣
n∑

k=0

akϕn,k

∣∣∣∣∣ ≤ 1. (2)
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Note that the considered majored linear operator F is defined for functions f
continuous on [0, 1]. It is known that majored linear mapping is weakly compact,
hence there exists a weakly compact subset W of X such that

F (f) ∈M (f)W,

or, equivalently mapping the unit sphere in C[0, 1] into W. From this and (2) we
obtain

n∑
k=0

akF (ϕn,k) ∈W.

Further from the majority of operator F we obtain

n∑
k=0

‖F (ϕn,k)‖ ≤ sup
∑
i

‖F (fi)‖ ≤ ‖|FA‖| <∞, (3)

where the supremum is over all finite families fi ∈ C
(
[a, b], A

)
with

∑ |fi(t)| ≤
cA(t) for all t ∈ [a, b], for all A ∈ B([a, b]).

Let us define the step function gn to put

gn(0) =0,

gn(x) =F (ϕn,0)

(
0 < x <

1

n

)
,

gn(x) =F (ϕn,0) + F (ϕn,1)

(
1

n
≤ x <

2

n

)
,

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

gn(x) =

n−1∑
k=0

F (ϕn,k)

(
n− 1

n
≤ x < 1

)
,

gn(1) =

n∑
k=0

F (ϕn,k).

By (3) the functions gn have bounded (with one number) total variations.
Moreover, because F is weakly compact operator on C[0, 1] into X, it takes unit
sphere in C[0, 1] into a weakly compact set W in X. Hence the set

{
gn(x)

}
,

n = 1, 2, . . . is contained in W for all x ∈ [0, 1]. Therefore on the base of Helly
theorem 2 from the sequence

{
gn(x)

}
it is possible to choose the subsequence{

gni
(x)

}
which converges weakly in each point of [0, 1] to a function of the

bounded variation.
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If f is a continuous function on [0, 1], then on the base of [Na, Th 3, § 6] it
can be shown that

1∫
0

f(x) dgn(x) =

n∑
k=0

f

(
k

n

)
F (ϕn,k),

from where 1∫
0

f(x) dgn(x) =F (Bn),

where

Bn(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k,

is the Bernstein polynomial for the function f.

By theorem of S. N. Bernstein [Na, § 5, ch. IV]
M (Bn − f) → 0, n→ ∞,

and by the definition of continuous linear operator we have

‖F (Bn)− F (f)‖ = ‖F (Bn − f)‖ ≤ KM (Bn − f).

This means that

F (Bn) → F (f),

from where

lim
n→∞

1∫
0

f(x) dgn(x) =F (f).

But if n → ∞, going through the values n1, n2, . . . , then by Helly theorem
(cf. also [Na, § 7], and [DD1]), we obtain

lim
n→∞

1∫
0

f(x) dgn(x) =

1∫
0

f(x) dg(x).

Therefore we obtain

F (f) =

1∫
0

f(x) dg(x).

�

Remark 1� We have derived [DM] a representation theorem for majored oper-
ators using Helly theorem in linear metric spaces. To prove it by means of the
Helly theorem from that paper [DM] we were able to do it for compact and ma-
jored mappings. In this paper it is done for Banach spaces without compactness
condition. On the other hand, our approach based on Helly type theorem is more
“constructive” and simpler than used, but in more general context, in [Di].
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Remark 2� Let T = [a, b] and let g be a function of bounded variation,
[Di, p. 362]. We can always suppose that g is continuous on the left in all points
of T except for b. In this case, if u < b we have

m
(
(a, u)

)
= g(u)− g(a+ 0),

m
(
[a, u]

)
= g(u+ 0)− g(a),

m
(
[a, u)

)
= g(u)− g(a),

m
(
(a, u]

)
= g(u+ 0)− g(a+ 0).

If u = b, we put b− 0 instead of u, and u instead of u+ 0.

m
(
(a, b)

)
= g(b− 0)− g(a+ 0),

m
(
[a, b]

)
= g(b)− g(a),

m
(
[a, b)

)
= g(b− 0)− g(a),

m
(
(a, b]

)
= g(b)− g(a+ 0).

Then m can be uniquely extended to a regular Borel measure with bounded
variation, defined on the sigma ring of Borel sets A ⊂ T = [a, b].

Let g : T → X be a function with bounded variation on T = [a, b] and v(t) =
V t
a (g) be variation of g. If m : B([a, b]) → X is the measure corresponding to
g and μ is the measure corresponding to v, and if g is continuous on the left
in [a, b) then μ is the variation of m, and if S is the semiring of the intervals of
the form [u, v) and [u, b], then for all I ∈ S, we have |m|(I) = μ(I).

From the preceding we may derive the following result.

������� Let L : C[a, b] → X be a majored linear mapping. Then there exists
a Borel measure m : B([a, b]) → X with finite variation such that

L(f) =

b∫
a

f(x) dm(x), f ∈ C[a, b].

Now we give an example of continuous linear mapping on continuous functions
into Banach space which is not majored (with finite variation) nor (weakly)
compact.

Example ( [Di, p. 401]). Let K = [0, 1] and C(K) be the space of the real
continuous functions on K. Take X = C(K) and consider the linear mapping
U : C(K) → X defined by

U (f) = f, f ∈ C(K).
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For every Borel set A ⊂ K we have, evidently,

‖UA‖ = sup
{‖UA(f)‖, ‖f‖ ≤ 1

}
= 1,

the mapping U is not weakly compact. But for every open set G ⊂ K we have

|||UG||| = sup
∑

‖U (fi)‖ = ∞,

where the supremum is taken for all the finite families (fi) of C(K,A) with∑
i |fi(t)| ≤ cA(t) for all t in [a, b]. Hence U is not majored.

In fact, for every n we can find a family of n functions f1, . . . , fn of C(K,G)
with ‖fi‖ = 1 and |fi|.|fj | = 0 if i �= j. Then∑

‖U (fi)‖ =
∑

‖fi‖ = n,

therefore ‖|UG‖| > n, consequently ‖|UG‖| = ∞.

The conjugate space of C(K) is isomorph to the space M (K) of the regular
real Borel measures on K, C′(K) =M (K).

For every measure

μ ∈M (K) and U : C(K) → C(K)

define a linear functional Uμ by

Uμ(f) =< U (f), μ >=< f, μ >=

∫
fdμ.

On the other hand, by a theorem, [Di, p. 401], or [BDS] there exists an additive
set functionm : B →M ′ = C′∗(K) with finite semi-variation, such that for every
μ ∈ M , the scalar-valued set function mμ,mμ(A) =< m(A), μ > is a regular
measure and we have

Uμ(f) =

∫
f dmμ, f ∈ C(K)

It follows that ∫
fdμ =

∫
f dmμ, f ∈ C(K),

i.e., mμ = μ, for every μ ∈M . For every set A ∈ B we have m(A) ∈M ′ and

‖m(A)‖ = sup
‖μ‖≤1

|mμ(A)| = sup
‖μ‖≤1

|μ(A)| = 1.

It follows thatm cannot be regular and countably additive and that the variation
of m on A, |m|(A) = ∞, i.e., m has not finite variation. On the other hand, the
semivariation m̃(A) of m on A,

m̃(A) = sup
‖μ‖≤1

m̄μ(A) = sup
‖μ‖≤1

|μ|(A) = 1.
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