
Tatra Mt. Math. Publ. 45 (2010), 93–105

DOI: 10.2478/v10127-010-0008-7

�

�
�����������	 
��	�����
��

PHASE TRANSITION IN A SYSTEM OF RANDOM

SPARSE BOOLEAN EQUATIONS

Thorsten Schilling — Pavol Zajac

ABSTRACT. Many problems, including algebraic cryptanalysis, can be trans-
formed to a problem of solving a (large) system of sparse Boolean equations.
In this article we study 2 algorithms that can be used to remove some redun-
dancy from such a system: Agreeing, and Syllogism method. Combined with
appropriate guessing strategies, these methods can be used to solve the whole
system of equations. We show that a phase transition occurs in the initial reduc-

tion of the randomly generated system of equations. When the number of (partial)
solutions in each equation of the system is binomially distributed with probability
of partial solution p, the number of partial solutions remaining after the initial
reduction is very low for p’s below some threshold pt, on the other hand for p > pt
the reduction only occurs with a quickly diminishing probability.

1. Introduction

Given an equation system (1) over a finite field Fq it is a well known NP-
-complete problem to determine a common solution to all equations. Finding
a solution to such an equation system can be interesting in algebraic cryptanal-
ysis, e.g., when the solution to the equation system is a constraint to a used,
unknown key.

Experiments with different solving algorithms suggest that during the solving
the number of possible solutions is not decreasing continously. That means that
during the solving process the overall number of solutions does not decrease
constantly, but that at some point the number of possible solutions decreases
rapidly.

In this paper we try to determine this point of phase transition in order to
get a better measure for the hardness of a given problem.

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 08A70, 82B26.
Keywords: algebraic cryptanalysis, agreeing, Boolean equations, SAT problem.
This material is based upon work supported under the grant NIL-I-004 from Iceland,
Liechtenstein and Norway through the EEA Financial Mechanism and the Norwegian

Financial Mechanism.

93



THORSTEN SCHILLING — PAVOL ZAJAC

The paper is organized as follows. In Section 2 we explain the basic represen-
tation of equations and the idea how the number of potential solutions to the
equation system can be reduced. Section 3 explains the Agreeing algorithm and
the reduction by Agreeing. Section 4 explains the reduction technique by syl-
logisms. In Section 5 we make a direct comparison of these both techniques.
Section 6 shows our experimental results on a series of random sample instances
and Section 7 concludes the paper.

2. Representation of the system of sparse Boolean
equations and its reduction

Let X = {x1, x2, . . . , xn} be a set of variables (unknowns), and let Xi ⊂ X
for i = 1, . . .m, such that |Xi| = l. We consider Xi to be chosen uniformly at
random from all possible l-subsets of X. Let F be a system of Boolean equations

f1(X1) = 0, . . . fm(Xm) = 0, (1)

such that fi depends only on variables from the set Xi. Let Vi be a set of vectors
that are projections of solutions of fi(X) = 0 into variables of Xi. We call
(Xi, Vi) a symbol, and we say that the symbol represents the equation

fi(Xi) = 0.

We call vectors of Vi partial solutions of the system.

To compute all solutions of the whole system we can apply the so called
Gluing procedure [2]. The procedure is as follows: We merge two symbols:

(Xi, Vi), (Xj, Vj)

together and enumerate all possible solutions Vij of a new symbol (Xi∪Xj , Vij).
Then we replace the original two symbols with a new one. Until some point the
total number of solutions grows (very quickly). Gluing new symbols together
removes some of the partial solutions, until only the valid solutions of the sys-
tem remain. More advanced algorithms based on Gluing use different Gluing
strategies, and strategies for removal excess solutions before/without Gluing,
and some combinations with guessing variable values or solutions of individual
equations. The fastest algorithm based on Gluing up to date is the Improved
Agreeing-Gluing Algorithm introduced in [5].

In this article we want to focus on methods that do not use Gluing or any
guessing. Consider the situation where Vi contains just one solution. We know
immediately the values of l variables. Thus these values can be substituted into
all other equations, and conflicting partial solutions get removed. Solutions from
the set Vj can be removed if it shares some variables with Vi. If the remaining

94



PHASE TRANSITION IN RANDOM EQUATIONS

number of possible solutions in Vj is small, we can find new “fixed” values of vari-
ables, and spread this information, until (almost) all variables have fixed values.
This technique is also called the Spreading of constants [9]. A more advanced
version, the local reduction technique [9], uses fixed (resp. forbidden) solutions
for groups of variables. The similar method, although differently formulated is
the Agreeing method. Agreeing uses a more efficient representation, and can be
extended to more efficient variants [3], [4]. A different reduction method based
on Syllogism rule (transitiveness of the implication relation) was also presented
in [9], and was later adapted to the symbol representation [7].

We investigate the behavior of the reduction methods in a random sparse
Boolean equation system as a function of one additional parameter: The prob-
ability of a partial solution p. We do not explicitly write down the closed form
for fi, instead we generate each symbol in a stochastic manner. We want to inves-
tigate the systems that have at least one solution, so we generate first a random
solution x. Then for each symbol we generate the set Vi in such a way that
the probability of v ∈ Vi is 1, if v is a projection of x to Xi, and p other-
wise. The number of solutions in each symbol is then binomially distributed
|Vi| ∼ Bi(2l, p).

We call the variable xj fixed, if the projection of all v ∈ Vi to xj in some
equation (Xi, Vi), with xj ∈ Xi contains only one value, either 0 or 1. The system
is solved by an algorithm A, if all variables are fixed after the application of the
algorithm A. To investigate various algorithms we run the following experiment:

(1) Given the set of parameters (m,n, l, p)1, generate a set of N random equa-
tion systems (as defined above).

(2) For each system, apply the reduction algorithm A.

(3) Compute the fixation ratio r = f
n , where f is the number of fixed variables

(after the application of A).

(4) Compute the average fixation ratio r̂ = 1
N

∑
r for the whole set of exper-

iments.

If the average fixation ratio stays near 0, then we didn’t learn any signif-
icant information about the solution of the system by the application of the
algorithm A. To solve the system, we must either use a different algorithm, or
reduce the system by guessing some solutions. The basic guessing is exponential
in nature, thus the system (in our settings) needs an exponential time to solve.
On the other hand, if the average fixation ratio is near 1, we have a high chance
to solve the whole (randomly generated) system just by applying A. In this case,
if the runtime of algorithm A is bounded in polynomial time, we can say that
the average instance of the problem (m,n, l, p) is solvable in polynomial time.

1We use m = n, as this is the most important situation.

95



THORSTEN SCHILLING — PAVOL ZAJAC

3. Reduction by Agreeing

In order to find a solution to a set of symbols the Agreeing algorithm attempts
to delete vectors from symbols Si which cannot be part of a common solution.
In the following, the projection of a vector vk on variables X is denoted by vk[X]
and V [X] denotes the set of projections of all vectors vk ∈ V on variables X.

Given two symbols Si = (Xi, Vi) and Sj = (Xj , Vj) with i �= j we say that Si

and Sj are in a non-agreeing state if there exists at least one vector ap ∈ Vi such
that ap[Xi ∩ Xj ] �∈ Vj [Xi ∩ Xj ]. If there exists a solution to the system, each
symbol will contain one vector that matches the global solution. The vector ap
cannot be combined with any of the possible assignments in symbol Sj , hence it
cannot be part of a solution to the whole system and can be deleted. The deletion
of all vectors ap ∈ Vi and bq ∈ Vj which are incompatible with all vectors
in Vj and Vi, respectively, is called agreeing. If by agreeing the set of vectors
of a symbol gets empty, there exists no solution to the equation system. The
agreeing of all pairs of symbols in a set of symbols S = {S0, . . . , Sm−1} until no
further deletion of vectors can be done is called the Agreeing algorithm.

Algorithm 1 Agreeing Algorithm

1: procedure Agree(S)
2: while (Xi, Vi), (Xj , Vj) ∈ S which do not agree do
3: Y ← Xi ∩Xj

4: Delete all ap ∈ Vi for which ap[Y ] �∈ Vj[Y ]
5: Delete all aq ∈ Vj for which aq[Y ] �∈ Vi[Y ]
6: end while
7: end procedure

After running Algorithm 1 on S we call S pair-wise agreed. On the average
all Si ∈ S have exactly one vector left. The solution to the system is then the
gluing of the remaining vectors and the system can be regarded as solved. If on
the other hand one or more symbols get empty, i.e., Vi = ∅, the system has no
common solution.

Example (Agreeing). The following pair of symbols is in a non-agreeing state:

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

,
S1 0 1 3
b0 0 0 0
b1 1 0 1

.

The vectors a2, a3 differ from each bj in their projection on common variables
x0, x1 and can be deleted. Likewise, b1 cannot be combined with any of the ai

96



PHASE TRANSITION IN RANDOM EQUATIONS

and can also be deleted. After agreeing the symbols become:

S0 0 1 2
a0 0 0 0
a1 0 0 1

,
S1 0 1 3
b0 0 0 0

.

Guessing and Agreeing. In a usual setting, e.g., given as an input equation sys-
tems from ciphers, Agreeing does not yield a solution immediately. The algorithm
has to be modified in a way that one has to introduce guesses.

4. Reduction by Syllogisms

Let (X, V ) be an equation, xi, xj ∈ X. Let us have two constants a, b ∈ F2

such that for each v = (xi1 , . . . , xi, xj, . . . , xil) ∈ V : (xi + a)(xj + b) = 0.
We say that equation (X, V ) is constrained by (x1 + a)(x2 + b) = 0, or that
(x1 + a)(x2 + b) = 0 is a 2-constraint for the equation (X, V ). A solution x of
the whole system F projected to variables Xi must also be a partial solution in
Vi. Thus x is constrained by every 2-constraint which we place on each of the
equations in the system. Thus we can apply 2-constraints found in (Xi, Vi) to
remove those partial solutions of (Xj , Vj), that violate some of the 2-constraints.
This is the basis of the syllogism reduction technique, that is similar to Agreeing.
The main difference is the addition of creating new 2-constraints by the syllogism
rule (see below).

We can see each 2-constraint (xi+a)(xj+b) = 0 as one clause of type x
(a)
i ∨x(b)

j ,

where x(0)= x (negation of x), and x(1)= x. All such clauses must be satisfied
by the solution of the system. However, if some vector y satisfies all such clauses,
it does not automatically mean it is a solution of the system2. To check whether
the set of 2-constraints written in a form of clauses is satisfiable is the well known
2-SAT problem. We must note, that we are not solving the 2-SAT problem, if we
already know that the solution exists. However, if the system contains a large
set of 2-constraints, we expect that if we remove the correct solution the system
becomes unsatisfiable. Then we expect to be able to remove almost all invalid
solutions from the system using just the 2-constraints.

We can also rewrite the 2-constraint in the form of two (equivalent) implica-
tions:

x
(a+1)
i =⇒ x

(b)
j and x

(b+1)
i =⇒ x

(a)
j .

Implication is a transitive relation, i.e., if x ⇒ y and y ⇒ z, it follows that
x ⇒ z. This derivation is also called the syllogism rule. Thus, if we have two

2It is only true, if the set of 2-constraints is tight, i.e., for each equation (X,V ) we can find
such a set of 2-constraints, that no other assignment of variables is permissible except those

in V.

97



THORSTEN SCHILLING — PAVOL ZAJAC

2-constraints (xi + a)(xj + b) = 0, (xj + b+1)(xk + c) = 0, we can derive a new
2-constraint (xi + a)(xk + c) = 0. The new 2-constraints then can be used to
remove additional partial solutions from the system. It is also possible to derive
special 2-constraints in the form (xk + a)(xk + a) = 0, which simply means that
xk = a, and thus xk is fixed.

A set of 2-constraints is transitively closed, if we cannot derive any more
2-constraints using the transitiveness property of the underlying implications.
A transitively closed set of 2-constraints thus contain the maximum of informa-
tion we can get from the system (using just 2-constraints). We represent a set
of 2-constraints in a form of the implication graph. Vertices of the graph are
labelled by {x1, x2, . . . , xn, x1, x2, . . . , xn}. Edge (x, y) exists if there is an im-
plication x ⇒ y (so a single 2-constraint is always represented by 2 edges).
To find the transitively closed set of 2-constraints, we compute the transitive
closure of the implication graph (by some of the known algorithms).

The Syllogism reduction method thus works as follows:

(1) Examine the set of equations, and find all 2-constraints.

(2) For each 2-constraint, add corresponding implications to the implication
graph.

(3) Compute the transitive closure of the implication graph.

(4) Apply all 2-constraints back to the set of equations, i.e., remove all so-
lutions from each Vi that violate any of the 2-constraints stored in the
implication graph.

(5) If some solutions were removed, repeat the algorithm, otherwise output
the reduced system.

The transitive closure of an implication graph can be computed, e.g., by
Warshall’s algorithm [6] in O(n3). After each repetition of the transitive clo-
sure algorithm, we must remove/add at least one partial solution, otherwise the
method stops. Thus the worst case complexity is upper bounded in O(Mn3),
where M ≈ mp2l is the initial number of solution. Actually the number of repe-
titions of the algorithm is very small in practice, especially if the system cannot
be reduced (usually just one repetition). However, we need an additional O(n2)
memory storage for the implication graph. A more detailed analysis is provided
in [8].

The original method presented in [9] uses immediate resolution of transitive
closure after adding each new 2-constraint (also the implication graph is rep-
resented differently), but the algorithm gives the same results (although the
running times differ, but these depend also on the implementation, and the
platform used, respectively). Experimental results in [9] also show that a phase
transition effect exists, but no theoretical explanation or expected parameters
are provided.

98



PHASE TRANSITION IN RANDOM EQUATIONS

4.1. The heuristic model for the expected behavior

The phase transition in the syllogism method can be connected to the corre-
sponding representation of the problem in CNF clauses x

(a)
i ∨x(b)

j . Each of these
clauses must be satisfied simultaneously, so we get a 2-SAT problem instance in n
variables with k clauses, where k is the total number of clauses (2-constraints)
in the system. It was shown in [1] that if we have a random 2-SAT problem
with k clauses in n variables, having k

n = α fixed as n → ∞, then for α > 1
almost every formula is unsatisfiable, and for α < 1 almost all formulas can be
satisfied. To use this result for the syllogism method, we must first estimate the
number of constraints in the system.

����� 1� Let S = (X, V ) be a randomly chosen symbol with l = |X| ≥ 2
active variables, and s = |V | distinct solutions. Let ps,l denote a probability,
that a randomly chosen constraint (xi + a)(xj + b) = 0, xi, xj ∈ X, a, b ∈ {0, 1}
holds for an equation defined by symbol S. Then

ps,l =

s−1∏
i=0

3 · 2l−2 − i

2l − i
. (2)

P r o o f. There are 2l possible solutions. For s = 1, there are 2l−2 solutions for
which the constraint (xi + a)(xj + b) = 0 does not hold, namely those where
xi = a + 1 and xj = b+ 1. For all other 3 · 2v−2 solutions the constraint holds,
so the probability

p1,l =
3 · 2l−2

2l
=

3

4
.

If we have already i constrained solutions, we can choose the next constrained
solution from only 3 · 2l−2 − i vectors out of 2l − i, thus

pi+1,l = pi,l
3 · 2l−2 − i

2l − i
.

By expanding this recursion we get equation (2). �

Using ps,l from equation (2), we can compute the probability of a constrained
solution in a symbol from system generated with the binomial distribution:

Pl,p =

2l∑
s=0

(
2l

s

)
ps(1− p)2

l−sps,l . (3)

The expected number of constraints in an equation is

α(l, p) = 4

(
l

2

)
Pl,p.

The total number of expected constraints is k = αm. We do not take into account
the constraints found by the syllogism rule. The phase transition point should

99



THORSTEN SCHILLING — PAVOL ZAJAC

Table 1. Probabilities pt at which the phase transition in syllogism me-
thod is expected to occur.

l pt pt · 2l
5 0.3694 11.8

6 0.2258 14.5

7 0.1293 16.6

8 0.0711 18.2

9 0.0381 19.5

10 0.0201 20.6

be near the value pt for which k
n

= 1. For our experiments m = n, thus we
are looking for pt for which α(l, pt) = 1. If p > pt we get α(p, l) < 1, thus the
corresponding 2-SAT problem is very likely satisfiable, and the syllogism method
cannot eliminate much solutions. If p < pt, α(p, l) > 1, and the corresponding
2-SAT problem is very likely unsatisfiable. Then almost all excess solutions get
removed by 2-constraints during the application of the syllogism method. The
expected phase transition probabilities are summarized in Table 1.

5. Qualitative comparison of the methods

There exists a set of equations with all partial solutions in Agreeing state,
that can be reduced by the Syllogism method. One of the examples is presented
in Table 1. In the example, we get constraints between variables 1, 2 (x2 ⇒ x1),
variables 2, 3 (x3 ⇒ x2), but originally no constraint between variables 1, 3.
A new constraint (x3 ⇒ x1) can be derived using the transitive closure. This
new constraint removes one partial solution (x1 = 0, x3 = 1, x6 = 1), and
furthermore allows us to find a fixed solution x6 = 0. We remark that the same
effect is obtained, if we glue two of the equations together, and agree them with
the third equation. It is thus possible, that the syllogism method can reduce the
system that the agreeing method is unable to.

If two equations have only one or two common variables, and if they are
not agreeing, it is possible to find a 2-constraint in at least one of them, that
can be used to reduce the solutions in the second one. After the reduction we
get the same result as if agreeing was run. However, if we have more than two
common variables, it is possible that no 2-constraints can be found that restrict
the solutions, one such example is provided in the Figure 2. As l—the number
of variables per equation—grows, this situation becomes more probable, and the
agreeing method will be able to reduce more solutions as the syllogism method.

100



PHASE TRANSITION IN RANDOM EQUATIONS

S0 1 2 4
a0 0 0 0
a1 0 0 1
a2 1 0 1
a3 1 1 1

,

S1 2 3 5
b0 0 0 1
b1 1 0 0
b2 1 0 1
b3 1 1 1

,

S2 1 3 6
c0 0 0 0
c1 0 1 1
c2 1 0 0
c3 1 1 0

.

Figure 1. Example of the agreeing equation system (or a part of one)
reducible by the method of Syllogisms.

S0 1 2 3

a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 0 0
c4 1 1 1

,

S1 1 2 3

b0 0 0 0
b1 1 1 0
b2 0 1 1
b3 1 0 1
b4 0 0 0

.

Figure 2. Example of the disagreeing equation system without any 2-constraints.

The Syllogism method is preferable, if only weak connections (usually only
one common variable) are between equations. In these cases, we can derive more
information using the Syllogism rule than just by Agreeing (which only checks
projection to this single common variable). In a system of random equations, this
situation is more probable, when the system is very sparse. The Agreeing method
provides more information when there are 3 or more common variables, and a low
probability of 2-constraints. The practical experiments show (see Section 6) that
the two methods have almost the same behaviour when l = 7. The method of
syllogisms is preferable for l < 7, and vice-versa.

6. Experimental results

In this section we present the results of the experiments used to locate the
point of phase transition for equation systems with m = n = 80 variables and
varying sparsity. We used each of the methods on the same set of N = 1000
random equation system, and p = 0, 0.005, . . . , 0.35 and sparsities l = 6, 7, 8.
Figure 3 shows the phase transition for different methods, and sparsities, re-
spectively.

Table 2 summarizes the upper and lower bound for the transition in systems
with m = n = 100. Precision for p is 0.02. The lower bound is the highest p, for

101



THORSTEN SCHILLING — PAVOL ZAJAC

Figure 3. Plot of the average fixation ratio showing the phase transition effect.

Table 2. Experimental bounds on phase transition for m = n = 100.

Agreeing Syllogisms

l low up low up

5 0.26 0.42 0.34 0.46

6 0.18 0.32 0.22 0.34

7 0.12 0.20 0.14 0.22

8 0.08 0.14 0.06 0.14

9 0.04 0.10 0.04 0.08

which all 1000 equations were solved, and the upper bound is the lowest p, for
which no equation was solved, respectively.

7. Conclusions

The experimental results confirm the phase transition effect. The transition is
not sharp for smaller systems and sparsities. There is a region of probabilities p,
where it is possible to generate both solvable and unsolvable systems. However,
as the number of variables and equation grows, the phase transition becomes

102



PHASE TRANSITION IN RANDOM EQUATIONS

sharper, and it is less probable to reduce the system above the phase transition
point.

A typical situation for the random equation system is p = 1
2 , which is above

the phase transition point in every case examined. However, the consequence
of the phase transition effect for smaller p’s is that we can reduce the required
number of guesses required before we can solve the whole equation system even
if it is originally above the phase transition point.

Let us suppose we have a system of m (random) equations with n = m
variables, l-sparse. Each of 2l {0, 1}-vectors can be a solution of an equation in
the system with probability p (usually 1

2 ), i.e., the expected number of solutions

in each equation is p2l. The expected total number of partial solutions (listed in
symbols) is then mp2l. Let us guess the value of one variable, without the loss of
generality x1. We expect x1 to be an active variable on average in l equations.
Thus we expect that we remove on average a half of lp2l partial solutions. The
expected new number of solutions is thusmp2l−p2l−1, which is the same number,
as if expect from a system generated with a lower solution probability

p′ = p
(
1− l

2m

)
.

After x (independent) guesses we expect the same number of partial solutions
as in a system generated with

px = p
(
1− l

2m

)x
.

To reach the zone below the phase transition point, we need to find px ≤ pt.
The expected number of required guesses to reach this point is then

x =
log pt − log p

log(1− l
2m )

.

It means, that we have to check only 2x instead of the full 2n possible vectors
to eliminate incorrect/find the correct solution. If we can write x = cn for some
constant c, we get the complexity estimate O(2cn) to determine the whole so-
lution of the system by the guessing algorithm (in combination with A, e.g.,
Agreeing or Syllogism method). Estimates based on lower bounds from exper-
imental results (see Table 2) are summarized in Table 3. We must stress, that
this is only an estimate based on experiments. It is necessary to provide proper
mathematical models to find the exact asymptotic behaviour of the methods.
However, a full mathematical model for the reduction that takes into account
all parameters m,n, p, l for both the Agreeing and Syllogism methods is still
an open question.

Another consequence is for the guessing order. If we want to guess a new value,
we should choose the variable in such a way, so that we affect the highest number
of partial solutions by the guess (resp. by guessing 0 as well as guessing 1).

103



THORSTEN SCHILLING — PAVOL ZAJAC

Table 3. Estimated complexities O(Cn) of the guessing algorithm for dif-
ferent l’s. pA is the experimental lower bound for phase transition of Agree-
ing, and pS is the experimental lower bound for phase transition of Syllo-
gism method. Columns Worst and IAG are provided for comparison

with [5].

l pA C pS C Worst IAG

5 0.26 1.199 0.34 1.113 1.569 1.182
6 0.18 1.266 0.22 1.209 1.637 1.239
7 0.12 1.327 0.14 1.287
8 0.08 1.373 0.06 1.444

In this way, after removing the partial solutions that have an incorrect value for
the guessed variable, we get nearer to the phase transition point. This should be
the best generic guessing strategy possible. If we want to evaluate more advanced
guessing strategy, e.g., applications of learning [4], it can be considered effective,
if it gives a solution to the system in lower number of guesses (on average) than
the guessing strategy using the phase transition.

The phase transition point is also useful for evaluating the different reduc-
tion algorithms. If two polynomial time reduction algorithms A1, A2 both have
a phase transition effect at solution probabilities p1 < p2, then a theoretically
a more effective one is A2. However, in practice, the advantage of A2 can only be
realized in large systems, which cannot be solved with the present computational
resources.

Acknowledgements. We would like to thank the anonymous reviewer for his
insightful comments.

REFERENCES

[1] GOERDT, A.:A threshold for unsatisfiability, J. Comput. System Sci. 53 (1996), 469–486.
[2] RADDUM, H.—SEMAEV, I.: New technique for solving sparse equation systems, Cryp-

tology ePrint Archive: Report 2006/475, http://eprint.iacr.org/2006/475.
[3] RADDUM, H.—SEMAEV, I.: Solving multiple right hand sides linear equations, Des.

Codes Cryptogr. 49 (2008), 147–160.

[4] SCHILLING, T.—RADDUM, H.: Solving equation systems by Agreeing and Learning, in:
Arithmetics of Finite Fields, WAIFI 2010 (M.A. Hasan and T. Helleseth, eds.), Lecture
Notes in Comput. Sci., Vol. 6087, Springer-Verlag, Berlin, 2010, pp. 151–165

[5] SEMAEV, I.: Improved Agreeing-Gluing Algorithm, Cryptology ePrint Archive: Report
2010/140, http://eprint.iacr.org/2010/140.

[6] WARSHALL, S.: A theorem on Boolean matrices, J. Assoc. Comput. Mach. 9 (1962),

11–12.

104



PHASE TRANSITION IN RANDOM EQUATIONS

[7] ZAJAC, P.: Solving SPN-based system of equations with syllogisms, in: 1st Plenary Con-

ference of the NIL-I-004, Bergen, 2009 (A. Kholosha, K. Nemoga, M. Sýs, eds.), STU
Bratislava, 2009, pp. 21–30.

[8] ZAJAC, P.: Implementation of the method of syllogisms, (preprint).
[9] ZAKREVSKIJ, A.—VASILKOVA, I.: Reducing large systems of Boolean equations, in:

4th International Workshop on Boolean Problems, Freiberg University of Mining and
Technology, Freiberg, 2000, pp. 21–28.

Received April 30, 2010 Thorsten Schilling
Department of Informatics
University of Bergen
PB 7800
N–5020 Bergen

NORWAY

E-mail : thorsten.schilling@ii.uib.no

Pavol Zajac
Department of Applied Information and

Information Technology
Slovak University of Technology
Ilkovičova 3
SK–812-19 Bratislava
SLOVAKIA

E-mail : pavol.zajac@stuba.sk

105


	1. Introduction
	2. Representation of the system of sparse Boolean equations and its reduction
	3. Reduction by Agreeing
	4. Reduction by Syllogisms
	4.1. The heuristic model for the expected behavior

	5. Qualitative comparison of the methods
	6. Experimental results
	7. Conclusions
	REFERENCES

