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THE DIESTEL-FAIRES THEOREM ON SERIES

Charles Swartz

ABSTRACT. We give a proof of an Orlicz-Pettis Theorem of Diestel and Faires
on weak* subseries convergent series in the dual of a Banach space using an

elementary theorem on real valued matrices.

The Orlicz-Pettis Theorem on subseries convergence has proven to be one
of the most useful theorems in functional analysis with applications to Banach
space theory, vector measures and vector integration. The version of the theorem
for normed spaces asserts that a series which is subseries convergent in the
weak topology is subseries convergent in the norm topology (for the history of
the Orlicz-Pettis Theorem, see [FL], [DU], [Ka]). Simple examples show that
the analogue of the Orlicz-Pettis Theorem fails for the weak* topology of dual
spaces (see Example 1), and, in fact, D i e s t e l and F a i r e s have shown that a
Banach space X has the property that series in the dual X ′ are weak* subseries
convergent if and only if they are norm subseries convergent ⇐⇒ the space X ′

contains no subspace isomorphic to l∞. This result of Diestel/Faires is actually a
corollary of a much more general result concerning vector valued measures. There
have been a number of additional proofs of the Diestel/Faires result, but all of
the proofs, including the original, use non-trivial properties of vector measures.
For example, the proof in [DU, D i e s t e l and U h l] uses a lemma of Rosenthal
on vector measures and the proof in [Sw2] uses a lemma of Drewnowski on
finitely additive set functions. Since the statement of the Diestel/Faires result
for series involves only series, it would seem to be desirable to give a proof which
only involves basic properties of series and does not invoke properties of vector
valued measures. In this brief note we will show that a simple theorem about
real valued infinite matrices given in [AS] can be employed to give a proof of
the Diestel/Faires result which involves only basic properties of series in normed
spaces (actually we consider only one part of the Diestel/Faires result).

First, we give an example showing a straightforward analogue of the Orlicz-
Pettis Theorem fails for the weak* topology.
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Example 1. Let ej be the sequence with 1 in the jth coordinate and 0 in the
other coordinates. Then the series

∑
j e

j is weak* subseries convergent in l∞,

the dual of l1, but is not norm, ‖·‖∞ , subseries convergent.

We begin by giving a statement of the matrix result which will be used to
derive the Diestel/Faires result.

������� 2� Let tij ∈ R for i, j ∈ N. If every increasing sequence {mj} has
a subsequence {nj} such that the series

∑∞
j=1 tninj

converges and the sequence{∑∞
j=1 tninj

}
i
is bounded, then for every ε > 0 there exists a subsequence {pj}

such that ∞∑
j=1,j �=i

∣∣tpipj

∣∣ < ε.

See [AS] for the proof which is entirely elementary and where the proof is
compared to Rosenthal’s Lemma.

Let X be a Banach space with dual X ′ throughout. A series
∑

j xj in a

topological vector space (E, τ) is subseries convergent if the subseries
∑∞

j=1 xnj
is

τ convergent for every subsequence {nj} and the series is l∞ multiplier (bounded
multiplier) convergent if the series

∑∞
j=1 tjxj is τ convergent for every {tj} ∈ l∞.

We consider series which are weak* subseries convergent in X ′ and develop some
of the properties of these series which will be needed.

First, since the weak* topology of X ′ is sequentially complete ( [Sw1, 9.11],
[Wi, 3.3.13]), any series

∑
j x

′
j in X ′ which is subseries convergent in the weak*

topology is also l∞ multiplier convergent in the weak* topology (see [Day, IV.1]
or [Sw1, 16.20], [Sw2, 8.2.1]; the proof in [Sw2, 8.2.1] is based on an interesting
inequality of M c A r t h u r and R u t h e r f o r d). We also require the follow-
ing result. In what follows if E,F are two vector spaces in duality, the weak
(strong) topology on E induced by F will be denoted by σ(E,F ) (β(E,F ))
(see [Sw1], [Wi]).

���	�
���� 3� Let
∑

j x
′
j be subseries convergent in the weak* topology of X ′.

The linear operator U : l∞ → X ′ defined by U{tj} =
∑∞

j=1 tjx
′
j [weak* sum] is

continuous with respect to the norm topologies of l∞ and X ′.

P r o o f. Let {tj} ∈ l∞, x ∈ X. Then⎛
⎝

∞∑
j=1

tjx
′
j

⎞
⎠x =

∞∑
j=1

tjx
′
j(x)

so {x′
j(x)} ∈ l1. This equality implies that U is σ(l∞, l1)− σ(X ′, X) continuous

and, therefore, U is β(l∞, l1) = ‖·‖∞ −β(X ′, X) = ‖·‖ continuous ([Sw1, 26.15],
[Wi, 11.2.6]). �
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Finally, we have a result often used in establishing Orlicz-Pettis theorems.

����� 4� If each series
∑

j x
′
j in X ′ which is subseries convergent in the weak*

topology satisfies
∥∥x′

j

∥∥ → 0, then every series in X ′ which is weak* subseries
convergent is norm subseries convergent.

P r o o f. For the proof, see [Day, IV.1.1], [Sw1, 16.20], [Sw2, 10.2.8]. �

Now we state and prove the Diestel/Faires result using Theorem 2.

������� 5� If X ′ contains a series which is weak* subseries convergent but
not norm subseries convergent, then X ′ contains a subspace isomorphic to l∞

(note Example 1).

P r o o f. By Lemma 4 there exists a series
∑

j x
′
j in X ′ which is weak* subseries

convergent and satisfies
∥∥x′

j

∥∥ > δ > 0 for some δ and all j. For each j pick

xj ∈ X, ‖xj‖ = 1, such that
∣∣x′

j(xj)
∣∣ > δ. Consider the matrix M = [x′

j(xi)].
For every subsequence {mj},∣∣∣∣∣∣

∞∑
j=1

x′
mj

(xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

⎛
⎝

∞∑
j=1

x′
mj

⎞
⎠ (xi)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
∞∑
j=1

x′
mj

∥∥∥∥∥∥
,

where
∑∞

j=1 x
′
mj

is the weak* sum of the series. Therefore, the matrixM satisfies

the conditions of Theorem 2. Let {pj} be the subsequence of Theorem 2 with
ε = δ/2. Now define a linear operator

U : l∞ → X ′ by U{tj} =

∞∑
j=1

tjx
′
pj

[weak* sum].

By Proposition 3, U is norm continuous. We show U has a continuous inverse
and this will establish the result. For t = {tj} ∈ l∞, i ∈ N, we have

‖Ut‖ =

∥∥∥∥∥∥
∞∑
j=1

tjx
′
pj

∥∥∥∥∥∥
≥

∣∣∣∣∣∣

⎛
⎝

∞∑
j=1

tjx
′
pj

⎞
⎠ (xpi

)

∣∣∣∣∣∣

≥ |ti|
∣∣x′

pi
(xpi

)
∣∣ −

∞∑
j=1,j �=i

∣∣∣tjx′
pj
(xpi

)
∣∣∣

≥ |ti| δ − ‖t‖∞
∞∑

j=1,j �=i

∣∣∣x′
pj
(xpi

)
∣∣∣

≥ |ti| δ − ‖t‖∞ δ/2.

Taking the supremum over i gives ‖Ut‖ ≥ (δ/2) ‖t‖∞ which implies U has a
continuous inverse. �
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D i e s t e l and F a i r e s have also shown that the converse of Theorem 5
holds giving a characterization of dual spaces containing a copy of l∞. Their
proof uses geometric properties of Banach spaces and the series in Example 1
as a prototype of series which are weak* subseries convergent but not norm
subseries convergent.

There are other applications of the matrix Theorem 2 to Banach spaces and
vector valued measures given in [AS].
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