

Tatra Mt. Math. Publ. **46** (2010), 41–45 DOI: 10.2478/v10127-010-0017-6

NOTES ON THE IDEAL (a)

Andrzej Nowik

ABSTRACT. For any topologies $\tau_1 \subseteq \tau_2$, we consider the ideal of sets A such that for each nonempty $U \in \tau_2$ there exists $W \in \tau_1$ such that $U \cap W \neq \emptyset$ and $A \cap U \cap W = \emptyset$. For τ_1 , the standard Euclidean topology, and for τ_2 , the density topology, we obtain the ideal (a) investigated by Z. Grande and E. Strońska.

1. Notations and definitions

Let τ_e denote the standard Euclidean topology in \mathbb{R} . For any topology τ in \mathbb{R} , $\mathsf{ND}(\tau)$ is the ideal of nowhere dense sets of τ . For simplicity, we put $\mathsf{ND} = \mathsf{ND}(\tau_e)$, and for every set $X \subseteq \mathbb{R}$, we denote by $\mathsf{ND}(X)$ the collection of all nowhere dense subsets of X in the Euclidean topology of X. By $cl_{\tau}(X)$ we denote the closure of X in the topology τ . If τ is any topology in \mathbb{R} then by τ_X we denote the subspace topology in X induced from τ , and by $\mathsf{ND}_{\tau_X}(X)$ the ideal of all nowhere dense subsets of X in the subspace topology τ_X .

Denote by μ the Lebesgue measure in \mathbb{R} . For every measurable A, by $\Phi(A)$ let us denote the set of density points of A:

$$\Phi(A) = \left\{ x \in \mathbb{R} \colon \liminf_{h \to 0^+} \frac{\mu(A \cap [x - h, x + h])}{2h} = 1 \right\}.$$

We write τ_d to denote the density topology on \mathbb{R} , namely: $U \in \tau_d \iff U$ is Lebesgue measurable and $U \subseteq \Phi(U)$.

Let \mathcal{N}, \mathcal{M} denote the σ -ideal of null sets of reals, the σ -ideal of meager sets (i.e., sets of first category), respectively.

For any topology on \mathbb{R} , by $\mathcal{M}(\tau)$ we denote the σ -ideal of meager sets in the topology τ .

For any collection \mathcal{F} of subsets of \mathbb{R} such that there is no countable $\mathcal{F}_0 \subseteq \mathcal{F}$ such that $\cup \mathcal{F}_0 = \mathbb{R}$, by $\sigma(\mathcal{F})$, we denote the σ -ideal $\{X \subseteq \mathbb{R} : \exists_{\mathcal{F}_0 \subseteq \mathcal{F}} | \mathcal{F}_0 | \leq \aleph_0 \land X \subseteq \cup \mathcal{F}_0\}$.

²⁰¹⁰ Mathematics Subject Classification: Primary 03E15; Secondary 03E20, 28E15. Keywords: density topology, nowhere dense sets, meager sets, ideal of sets, porous sets. Partially supported by grant BW/5100-5-0155-9.

ANDRZEJ NOWIK

Let us recall the following definition of special σ -ideal of small subsets of \mathbb{R} :

DEFINITION 1.1. Given a set $X \subseteq \mathbb{R}$, the porosity of X at a real $r \in \mathbb{R}$ is defined by

$$p(X,r) = \limsup_{\epsilon \to 0^+} \frac{\lambda(X, (r-\epsilon, r+\epsilon))}{\epsilon},$$

where $\lambda(X, I)$ denotes the maximal length of an open subinterval of the interval I which is disjoint from X.

A set X is porous $(X \in \mathcal{P})$ if and only if $\forall_{a \in X} p(X, a) > 0$. Let $\sigma \mathcal{P}$ denote the sigma-ideal generated by porous sets.

Notice that we have $\sigma \mathcal{P} \subseteq \mathcal{N} \cap \mathcal{M}$.

2. The ideal (a)

Let us recall the following definition introduced by Z. Grande and E. Strońska:

DEFINITION 2.1 ([GS]). We say that a set $A \subseteq \mathbb{R}$ satisfies condition (a) (this notation is taken from [GS]) if for each nonempty set $U \subseteq cl(A)$ belonging to τ_d the intersection $A \cap U$ is a nowhere dense subset (in the Euclidean topology) of U.

OBSERVATION 2.2. Suppose that $A \subseteq \mathbb{R}$. The following conditions are equivalent:

- (1) $A \in (a);$
- (2) $\forall_{U \in \tau_d \setminus \{\emptyset\}} A \cap U \in \mathsf{ND}(U);$
- (3) $\forall_{U \in \tau_d \setminus \{\emptyset\}} \exists_{W \in \tau_e} U \cap W \neq \emptyset \land U \cap W \cap A = \emptyset.$

The definition of property (a) can be formulated in the general case of the bitopological space.

Throughout the rest of this section, we will assume that (X, τ_1, τ_2) is a bitopological space (i.e., τ_1 and τ_2 are topologies on X, see [D]) such that τ_1 is coarser than τ_2 : $\tau_1 \subseteq \tau_2$.

DEFINITION 2.3. Define $A \in (a)(\tau_1, \tau_2)$ if for each nonempty set $U \subseteq cl_{\tau_1}(A)$ such that $U \in \tau_2$, the intersection $A \cap U$ is a nowhere dense subset in the subspace topology τ_{1_U} of U and denote

 $\mathsf{ND}(\tau_1, \tau_2) = \{ A \subseteq X \colon \forall_{U \in \tau_2 \setminus \{\emptyset\}} \exists_{W \in \tau_1} U \cap W \neq \emptyset \land U \cap W \cap A = \emptyset \}.$

Notice that the first definition generalizes Definition 2.1 to any bitopological space. We have

THEOREM 2.4. Suppose that $X \subseteq \mathbb{R}$. The following conditions are equivalent:

- (1) $A \in (a)(\tau_1, \tau_2);$
- (2) $\forall_{U \in \tau_2 \setminus \{\emptyset\}} A \cap U \in \mathsf{ND}_{\tau_{1_U}}(U);$
- (3) $A \in \mathsf{ND}(\tau_1, \tau_2).$

Proof.

 $(2) \Rightarrow (1)$. Obvious.

(1) \Rightarrow (3). Suppose that $A \in (a)(\tau_1, \tau_2)$ and let $U \in \tau_2 \setminus \{\emptyset\}$. If $U \subseteq cl_{\tau_1}A$, then $U \cap A \in \mathsf{ND}_{\tau_1_U}(U)$, so there exists $W \in \tau_1 \setminus \{\emptyset\}$ such that $W \cap U \neq \emptyset$ and $W \cap U \cap A = \emptyset$. On the other hand, assume that $U \setminus cl_{\tau_1}A \neq \emptyset$. Then define $W = X \setminus cl_{\tau_1}A$. It is easy to see that $W \in \tau_1, W \cap U \neq \emptyset$ and $W \cap U \cap A = \emptyset$. (3) \Rightarrow (2). Suppose that $A \in \mathsf{ND}(\tau_1, \tau_2)$ and let $U \in \tau_2 \setminus \{\emptyset\}$. Let $W_1 \in \tau_1$ be such that $W_1 \cap U \neq \emptyset$. Then $U \cap W_1 \in \tau_2 \setminus \{\emptyset\}$, so there exists $W \in \tau_1$ such that $U \cap W_1 \cap W \neq \emptyset$ and $U \cap W_1 \cap W \cap A = \emptyset$. This shows that $A \cap U \in \mathsf{ND}_{\tau_{1_U}}(U)$. \Box

Notice the following easy observations and conclusions:

(1) $\mathsf{ND}(\tau_e, \tau_d) = (a);$

(2) Assume that

 $\forall_{x \in X} X \setminus \{x\} \in \tau_1 \land \{x\} \notin \tau_2 \tag{1}$

and $|X| \ge 2$. Then $\mathsf{ND}(\tau_1, \tau_2)$ is an ideal of sets which contains singletons; (3) $\mathsf{ND}(\tau_1, \tau_2) \subseteq \mathsf{ND}(\tau_1) \cap \mathsf{ND}(\tau_2)$.

Let us notice that in [D] there was defined another version of nowhere dense sets in bitopological space, namely, let us recall the following definition.

DEFINITION 2.5 ([D]). A subset $A \subseteq X$ is $(2,1) - \mathsf{ND}(\tau_1, \tau_2)$ if and only if $\operatorname{int}_{\tau_2}(\operatorname{cl}_{\tau_1}(A)) = \emptyset$.

However, this property is different from the notion $ND(\tau_1, \tau_2)$ since, as we can easy observe, $(2, 1) - ND(\tau_e, \tau_d)$ is the ideal generated by closed measure zero sets.

We have

THEOREM 2.6. For any $A \subseteq X$, the following conditions are equivalent:

(1) $A \in \mathsf{ND}(\tau_1, \tau_2);$ (2) $\forall_{\tau_1 \subseteq \tau \subseteq \tau_2} A \in \mathsf{ND}(\tau):$

$$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \tau topology \end{array}$$

Proof.

(1) \Rightarrow (2). Suppose that τ is a topology on \mathbb{R} such that $\tau_1 \subseteq \tau \subseteq \tau_2$. Take $U \in \tau \setminus \{\emptyset\}$. Then $U \in \tau_2 \setminus \{\emptyset\}$, so there exists $W \in \tau_1$ such that $U \cap W \neq \emptyset$ and $U \cap W \cap A = \emptyset$. Since $W \in \tau$, this shows that $A \in \mathsf{ND}(\tau)$.

(2) \Rightarrow (1). Suppose that $U \in \tau_2 \setminus \{\emptyset\}$. Let τ be a topology generated by $\tau_1 \cup \{U\}$, i.e., $\tau = \{U_1 \cup (U \cap U_2) : U_1, U_2 \in \tau_1\}$. Since $A \in \mathsf{ND}(\tau)$, we conclude that there

ANDRZEJ NOWIK

exists $V \in \tau \setminus \{\emptyset\}$ such $V \subseteq U$ and $V \cap A = \emptyset$. Let $U_1, U_2 \in \tau_1$ be such that $V = U_1 \cup (U \cap U_2)$. Then $V = U \cap V = U \cap (U_1 \cup U_2)$. Define $W = U_1 \cup U_2$, then $W \in \tau_1, U \cap W \neq \emptyset$ and $U \cap W \cap A = \emptyset$, which shows that $A \in \mathsf{ND}(\tau_1, \tau_2)$. \Box

COROLLARY 2.7. For every $X \subseteq \mathbb{R}$, $X \in (a)$ if and only if for every topology τ on \mathbb{R} finer than the Euclidean topology and coarser than the density topology, we have $X \in \mathsf{ND}(\tau)$.

THEOREM 2.8. Suppose that A is a closed set in the topology τ_1 . Then, $A \setminus int_{\tau_2}(A) \in \mathsf{ND}(\tau_1, \tau_2)$.

Proof. Let $U \in \tau_2 \setminus \{\emptyset\}$. Suppose that $U \setminus A \neq \emptyset$. Define $W = \mathbb{R} \setminus A$. Then, $U \cap W \neq \emptyset$ and $U \cap W \cap (A \setminus \operatorname{int}_{\tau_2}(A)) = \emptyset$.

On the other hand, suppose that $U \subseteq A$. Then $U \subseteq \operatorname{int}_{\tau_2}(A)$. Put $W = \mathbb{R}$, then $U \cap W \neq \emptyset$ and $U \cap W \cap (A \setminus \operatorname{int}_{\tau_2}(A)) = \emptyset$.

This shows that $A \setminus \operatorname{int}_{\tau_2}(A) \in \mathsf{ND}(\tau_1, \tau_2).$

As a corollary we obtain the following result, which was not explicitly stated in [GS], but probably implicitly contained in this article.

COROLLARY 2.9 ([GS]). For every closed (in the Euclidean topology) set $E \subseteq \mathbb{R}$ we have $E \setminus \Phi(E) \in (a)$.

Proof. This follows from the fact that $\mathsf{ND}(\tau_e, \tau_d) = (a)$ and that for every closed set $E \subseteq \mathbb{R}$ (in the Euclidean topology), we have $\operatorname{int}_{\tau_d}(E) = \Phi(E)$. \Box

3. Porous sets

The aim of this chapter is to prove the following inclusion.

Theorem 3.1. $\mathcal{P} \subseteq (a)$.

Proof. Suppose that $A \in \mathcal{P}$, and let $U \in \tau_d \setminus \{\emptyset\}$. If $U \cap A = \emptyset$, then define $W = \mathbb{R}$; then $U \cap W \neq \emptyset$ and $U \cap W \cap A = \emptyset$. On the other hand, suppose that $U \cap A \neq \emptyset$. Let $x_0 \in U \cap A$ be arbitrary. Since $A \in \mathcal{P}$, we have

$$\exists_{\eta>0}\forall_{\epsilon>0}\exists_{0<\delta<\epsilon}\lambda\big(A,(x_0-\delta,x_0+\delta)\big)>\delta\cdot\eta.$$
(2)

Since x_0 is a density point of U let $\epsilon_0 > 0$ be such that

$$\forall_{0 < \epsilon < \epsilon_0} \frac{\mu([x_0 - \epsilon, x_0 + \epsilon] \cap U)}{2\epsilon} > \left(1 - \frac{\eta}{2}\right)$$

Let us choose (by (2)) $\delta \in (0, \epsilon_0)$ such that

$$\lambda (A, (x_0 - \delta, x_0 + \delta)) > \delta \cdot \eta.$$
(3)

NOTES ON THE IDEAL (a)

Then, we have

$$\frac{\mu([x_0-\delta,x_0+\delta]\cap U)}{2\delta} > 1 - \frac{\eta}{2}.$$
(4)

By (3), let $J \subseteq (x_0 - \delta, x_0 + \delta)$ be an open interval such that $A \cap J = \emptyset$ and $|J| > \delta \cdot \eta$. Suppose, on the contrary, that $U \cap J = \emptyset$. Then,

$$(x_0 - \delta, x_0 + \delta) \cap U \subseteq (x_0 - \delta, x_0 + \delta) \setminus J,$$

 $\mathrm{so},$

$$\mu (U \cap [x_0 - \delta, x_0 + \delta]) = \mu (U \cap (x_0 - \delta, x_0 + \delta))$$

$$\leq 2\delta - |J|$$

$$< 2\delta - \eta \delta$$

$$= \delta (2 - \eta).$$

Thus,

$$\frac{\mu(U\cap[x_0-\delta,x_0+\delta])}{2\delta} < 1-\frac{\eta}{2},$$

which is a contradiction to (4).

Therefore, $U \cap J \neq \emptyset$. Define W = J, then, $U \cap W \neq \emptyset$, $W \in \tau_e$ and $W \cap U \cap A = \emptyset$.

This shows that $A \in (a)$.

Let us notice that the inclusion from Theorem 3.1 is not reversible, since there exists a closed set of measure zero which is not porous and the set belongs (as it was stated in [GS]) to the ideal (a).

REFERENCES

- [GS] GRANDE, Z.—STROŃSKA, E.: On an ideal of linear sets, Demonstratio Math. 36 (2003), 307–311.
- [B] BUCZOLICH, Z.: Category of density points of fat Cantor sets, Real Anal. Exchange 29 (2003/2004), 497–502.
- [D] DVALISHVILI, B. P.: Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures, and Applications, in: North-Holland Mathematics Studies, Vol. 199, Elsevier, Amsterdam, 2005.

Received November 1, 2009

University of Gdańsk Institute of Mathematics Wita Stwosza 57 PL-80-952 Gdańsk POLAND E-mail: matan@julia.univ.gda.pl