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ON THE CALCULATION OF THE LINEAR

EQUIVALENCE BIAS OF JUMP CONTROLLED

LINEAR FINITE STATE MACHINES

Cees J. A. Jansen

ABSTRACT. Jump controlled linear finite state machines were introduced sev-
eral years ago as building blocks for stream ciphers that can efficiently be imple-
mented in hardware and have intrinsically good side channel resistance. These
constructions have found their way in concrete stream cipher designs. The bias in
the distribution of linear relations of low degree in the key stream is important for

the cryptographic strength of these stream ciphers. Recently, an algorithm was
presented by the author to determine this bias. In this paper a new algorithm is
introduced, that makes use of the properties of jump registers and has sub ex-
ponential order in the degree of the characteristic polynomial of the linear finite
state machine.

1. Introduction

Jump controlled linear finite state machines are introduced in [2], [3], [4] as
efficient building blocks for stream ciphers. As is discussed in [6], the bias in the
distribution of linear relations of low degree is important for the cryptographic
strength of stream ciphers based on irregularly jumping linear finite state ma-
chines (LFSMs). If this bias is too high, a key recovery attack could be feasible,
which breaks the cipher. Research has shown that this Linear Equivalence Bias
(LEB) depends solely on the characteristic polynomial of the LFSM. In [7] an ef-
ficient algorithm is given to determine the LEB for polynomials of degrees up
to 30. This limit comes from the exponential memory usage of the algorithm.
Although the described algorithm has proved its usefulness in practice, the quest
for a more efficient algorithm has led to a new algorithm. The basis for this new
algorithm is formed by the fact that in a jump controlled LFSM the coefficients
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of the linear relations in the output stream turn out to be symmetric Boolean
functions (SBFs) of the jump control bits. It has been observed in [8] that the
functions of the jump control signals in the matrices, given by eqations (5) and
(8) in [7] are symmetric in their variables. These symmetries make evaluation
of these functions quite simple and, hence, avoid the necessity of storing long
truth table vectors. As a consequence, it turns out to be feasible to find short
descriptions of the linear relation coefficients in terms of symmetric Boolean
functions represented by i-bit vectors for each coefficient ai. These symmetry
properties and their implications are shown in [8]. Exploiting specific proper-
ties of these SBFs and jump controlled LFSMs paves the way for an extremely
efficient algorithm to determine the LEB of high degree polynomials (≥ 120)
in a matter of seconds on a common laptop.

In this paper we describe the new algorithm and illustrate that its time and
memory orders are sub exponential with small enough constants to process poly-
nomials of high degree. Concrete performance figures will demonstrate the use-
fulness of the new algorithm. Section 2 recaps the main results of [8]. The efficient
algorithm to determine the LEB is developed in Section 3. In Section 4 a statis-
tical experiment is described, which illustrates the sub exponential order of the
new algorithm. The paper ends with some conclusions in Section 5.

2. Linear relation coefficients and symmetric
Boolean functions

A symmetric Boolean function, SBF for short, is a function defined here as
follows.

���������� 1� Let Sn(x1, x2, . . . , xn) be a function of n binary variables x1, . . .
. . . , xn, mapping binary n-tuples to a binary output value and let π denote
a permutation on n elements. The function Sn is called symmetric if and only if

∀π∀(x1,x2,...,xn)

(
Sn

(
π(x1, x2, . . . , xn)

)
= Sn(x1, x2, . . . , xn)

)
.

In [8] it is shown that the coefficients of the linear relations that occur in
the output stream of jump controlled linear finite state machines are symmet-
ric functions of their two-valued jump control variables. As the most impor-
tant consequence, a table similar to Table 1 of [7] is now constructed. Instead
of hexadecimal representations of truth tables in each entry, it suffices to place
a representation of the SBF in each entry as shown in Table 1. In this table the
SBFs are represented by their vectors (ψi+1, . . . , ψ1, ψ0) as hexadecimal integers
f i = ψ0 + 2ψ1 + · · ·+ 2i+1ψi+1. The series of column entries 1, 2, 6, . . . is easily
calculated. In the column of coefficient ai let f

i
0 = 1, f i1 = 2, then

f ik =
(
2f ik−1 mod 2i+2

)⊕ f ik−1, for k > 1,

52



ON THE CALCULATION OF THE LEB OF JUMP CONTROLLED LFSMS

Table 1. Linear relation coefficients expressed as symmetric Boolean functions.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

c0 1 0 0 0 0 0 0 0 0

c1 2 1 0 0 0 0 0 0 0

c2 2 2 1 0 0 0 0 0 0

c3 2 6 2 1 0 0 0 0 0

c4 2 2 6 2 1 0 0 0 0

c5 2 6 A 6 2 1 0 0 0

c6 2 2 E A 6 2 1 0 0

c7 2 6 2 1E A 6 2 1 0

c8 2 2 6 2 1E A 6 2 1

c9 2 6 A 6 22 1E A 6 2 · · ·
c10 2 2 E A 26 22 1E A 6

c11 2 6 2 1E 2A 66 22 1E A

c12 2 2 6 2 3E 2A 66 22 1E

c13 2 6 A 6 2 7E AA 66 22

c14 2 2 E A 6 2 FE AA 66

c15 2 6 2 1E A 6 2 1FE AA

c16 2 2 6 2 1E A 6 2 1FE

c17 2 6 A 6 22 1E A 6 202

c18 2 2 E A 26 22 1E A 206
...

...
...

...
...

...
...

...
...

...

where ⊕ denotes bitwise modulo 2 addition (XOR). For a given characteristic
polynomial of degree L and coefficients c0, c1, . . . , cL the linear relation coef-
ficients are calculated by taking a linear combination of the SBFs, as given
by eqation (1).

ai =

L∑
k=i

ckf
i
k−i . (1)

3. Calculating the LEB using SBFs

The result of the previous section implies that the huge tables introduced
in Section 3 of [7] are not needed to calculate the linear relation coefficients.
But how does this affect the calculation of the LEB? At first sight, one might
think that only i + 2 values of ai need to be calculated, as the values of SBFs
depend only on the weight of their arguments. However, the LEB is defined as
the number of the most often occurring linear relation. Does this mean that we
still have to go through all 2L combinations of jump control variables, evaluate all
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SBFs and count the occurrences of all (L+1)-bit patterns? No, we can do much
better by traversing the Binary Weight Triangle (BWT), a matrix structure
that contains the values of the SBFs representing the linear relation coefficients
a0, a1, . . . , aL, which are SBFs of 1, 2, . . . , L+ 1 variables, respectively, as given
by (2). The notation ai(w) is used to denote the value of ai for argument vectors
with Hamming weight w.

Weight a0 a1 . . . aL−2 aL−1 aL

0 a0(0) a1(0) · · · aL−2(0) aL−1(0) 1
1 a0(1) a1(1) · · · aL−2(1) aL−1(1) 1
2 a1(2) · · · aL−2(2) aL−1(2) 1
...

. . .
...

...
...

L− 1 aL−2(L− 1) aL−1(L− 1) 1
L aL−1(L) 1

(2)

The BWT is computed directly from the coefficients of the characteristic polyno-
mial of degree L using Table 1. The computational effort is of order L2. Clearly,
the BWT contains all linear relations by its definition. For the explanation of
the BWT traversing algorithm, the following definitions are given.

Weight set: A weight set Ei = {w0, w1, . . .}, i = 0, 1, . . . , L− 1. A set of all
weights wk (k is an enumeration variable) of argument vectors, where argu-
ment vectors are vectors of values of jump control variables. All argument
vectors having weights in a set result in the same value of a linear relation
coefficient ai. In general, weight sets do not contain all weights that result
in the same value of a coefficient ai.

Ensemble of weight sets: Ei =
{
E0

i , E
1
i , . . .

}
, i = 0, 1, . . . , L − 1. A set

of all sets Ek
i , with k an enumeration variable.

Extended weight set: Ẽj
i = {wk} ∪ {wk + 1} = Ej

i ∪ (Ej
i + 1). The union

of the set of weights {wk} and the same set with all its weights increased
by one. This extension arises when an additional argument variable is
considered going from ai to ai+1, implying that weights stay the same if
this variable has the value 0, and weights are increased by one otherwise.

Conditional splitting: Extended weight sets Ẽi are split into two successor
sets E′

i+1 and E′′
i+1, one with weights resulting in ai+1 = 0 and one with

weights resulting in ai+1 = 1, according to the values in the BWT. If for

all weights in some Ẽj
i, the corresponding ai+1 assumes only one value,

then Ej
i+1= Ẽj

i, else two disjoint sets Ek
i+1 and Ek′

i+1 result.

Multiplicity set: A multiplicity set Mi = (m0,m1, . . .), i = 0, 1, . . . , L− 1.
A set of multiplicities mk, where k is an enumeration variable, correspond-
ing to weights of argument vectors. In order to determine the LEB, which is
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the multiplicity of the linear relation that occurs most, the mk count the
number of argument vectors that result in one and the same linear rela-
tion with a coefficient ai of some binary value for all weights given by its
weight set Ei. The multiplicity of a weight wk in a set El

i+1 is equal to the
sum of the multiplicities of weights wk and wk − 1 of the preceding weight
set Ej

i. The sum of all multiplicities in all multiplicity sets corresponding
to the weight sets in an ensemble sum up to 2i+1, the total number of value
combinations of the (i+ 1) jump control variables.

Traversing the BWT: Starting with i = 0 and proceeding from left to
right in the Binary Weight Triangle until i = L−1, successive ensembles Ei
are determined recursively by the three steps:
(1) Extending all weight sets in the ensemble.
(2) Conditionally splitting all weight sets in the ensemble using the values

of the coefficients ai+1(k) in the BWT and adding the resulting sets
to Ei+1.

(3) Update the multiplicities in the corresponding multiplicity sets.

From the above definitions it is clear that the number of weight sets in Ei+1

can be any number ranging from the number of weight sets in Ei up to twice
that number. However, a doubling of weight sets only occurs if and only if some
ai is a linear or affine function of all its variables, which, as a consequence of
the jump mechanism, does not occur, except for aL−1. Also, the number of
weight sets stays the same if and only if some ai is a constant function, which
occurs for aL. Next, consider the weight sets in all ensembles as nodes in a
directed graph, and draw edges between nodes if and only if the corresponding
weight sets are related by set extension and conditional splitting. The resulting
graph is an (incomplete) binary tree containing all linear relations that occur for
the characteristic polynomial, used to construct the BWT. Now the following
algorithm is evident.

	
�����
� 1�

1. Calculate the BWT of C(x).
2. Traverse the BWT.
3. Create a binary tree with linear relations.

Figure 1 shows a partial result (i = 0, . . . , 6) of Algorithm 1 for the polyno-
mial x14+x13+x12+x11+x9+x7+x5+x3+x2+x+1, 75267O in octal notation,
that was used in version 2 of the Pomaranch stream cipher [6]. From Figure 1
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Figure 1. Linear relations from the binary weight triangle of polynomial 75267.
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two things are immediately clear. Firstly, it can be seen that the order is qua-
dratic with the number of linear relations, and therefore the number of weight
sets grows exponentially. Secondly, multiple copies of weight sets occur in en-
sembles. A dramatic improvement of the algorithm is achieved if we apply the
convention that weight sets cannot occur more than once in an ensemble. How-
ever, in order to count the number of linear relations a Linear Relations Counter
(LRC) is maintained for each weight set in an ensemble. Moreover, as a conse-
quence of this weight set unicity, the processing of the multiplicity sets needs
to be adapted, because identical copies of weight sets may have different multi-
plicity sets associated with them. Finally, weight sets can have more than one
predecessor sets in this case, making it necessary to select one out of several
multiplicity sets.

Linear relations counter: A linear relations counter Ri is the value that
indicates the number of linear relations associated with a weight set Ei.
Splitting an extended set results in two sets with identical LRC values.
Also, if a weight set Ei+1 has more than one preceding weight sets Ek1

i ,

Ek2
i , . . ., the resulting LRC value is the sum of the corresponding preceding

LRC values, i.e., Ri+1 = Rk1
i +Rk2

i + · · · . In this way, the total number of
Linear Relations is the sum of all LRCs in EL. By keeping track of which
set originates from a preceding set with ai(wk) = 0 and ai(wk) = 1, the
actual values of the linear relation coefficients are obtained.

Multiplicity set: The previous definition is modified as follows. The multi-
plicity of a weight wk in a set El

i+1 is equal to the sum of the multiplicities
of weights wk and wk − 1 of the preceding weight set Ej

i. If more than one
weight set precedes the current weight set, then the multiplicities of the
weight set with the highest total multiplicity over all weights in the weight
set are taken. This is allowed, because only the highest total multiplicity is
of interest for the LEB. By examining all weight sets for i = L the weight
set with the highest total provides the LEB.

The following algorithm shows the steps resulting from Algorithm 1 with the
weight set unicity modifications discussed above.

	
�����
� 2�

1. Calculate the BWT of C(x).
2. Traverse the BWT with modified update of multiplicities.
3. Remove multiple copies of weight sets.
4. Create a graph with weight sets as nodes and extension relations as edges.

As a further improvement to the algorithm, if the degree of the characteris-
tic polynomial is L, then aL = 1 and need not be considered in calculating the
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������ "1" {7,6} (31,31) [16]

"0" {8} (16) [12]

"1" {7,6,5} (16,15,15) [17]

"0" {9,8} (12,24) [8]

"1" {7} (12) [4]

"0" {10,9,8} (6,12,6) [3]

"0" {11,10,9,8} (1,2,2,2) [1]

"1" {5,4} (12,12) [42]

"1" {6,5} (12,12) [14]

"0" {3} (6) [23]

"1" {6,5,4} (6,6,6) [20]

"0" {3,2} (24,12) [7]

"1" {4} (12) [14]

"0" {3,2,1} (12,6,3) [4]

"0" {2,1,0} (1,2,1) [1]

Figure 2. Algorithm 2 output stages 8–12 for polynomial 75267.

LEB. Taking irreducible polynomials of degree L > 1 implies that c0 = 1 and
also

∑
ci = 1, so that a0 = 1. Also, from the Doubling Rule (see [6]) it follows

that linear relations with aL−1 = 0 and aL−1 = 1 occur equally often. Con-
sequently, aL, aL−1 and a0 need not be considered. Figures 2 and 3 show the

58



ON THE CALCULATION OF THE LEB OF JUMP CONTROLLED LFSMS

"1" {6,5} (6,6) [1]

"0" {7} (1) [1]

"1" {6,5,4} (1,5,5) [1]

"1" {4,3} (6,6) [6]

"1" {5,4} (4,4) [1]

"0" {2} (3) [4]

"1" {5,4,3} (3,3,3) [3]

"0" {2,1} (6,3) [2]

"1" {3} (3) [4]

"0" {2,1,0} (3,2,1) [1]





�



�
�
�
���








�



�
�
�
���

�����������	



�����������	
������

������
�����	

�����	

�����	

 "0" {6,5} (12,6) [1]

"1" {7} (6) [2]

"1" {8,7} (1,1) [1]

"0" {6,5,4} (6,10,5) [5]

"0" {5,4} (6,12) [6]

"1" {3} (6) [19]

"0" {2} (3) [4]

"0" {2,1} (9,3) [3]

"0" {4} (3) [4]

"1" {3,0} (3,1) [1]�����	
������

�����	
�
�
�
���

�����	
�����������	






��

�
�
��
���


�
�
�
���

������



������



������



"0" {6,5} (16,15) [12]

"1" {7} (12) [3]

"0" {8} (6) [3]

"1" {9,7} (1,1) [1]

"1" {7,4} (6,5) [5]

"1" {4} (12) [10]

"1" {4,3} (6,6) [19]

"0" {2} (12) [7]

"1" {3} (3) [4]

"1" {3,1} (9,3) [3]

"0" {5} (3) [4]

"0" {0} (1) [1]

"1" {4,3,1} (3,3,1) [1]

"0" {5,4} (1,5) [1]

"1" {3} (4) [1]

"1" {3,2} (3,3) [3]

"0" {1} (3) [2]

"1" {2} (2) [1]

"1" {2,0} (2,1) [1]�����	
�
�
�
���

�����	
�
�
�
���

�����	

�����	
�����������	



������



"0" {5} (6) [1]

"1" {6,4} (1,5) [1]

"0" {3} (6) [6]

"1" {4} (4) [1]

"1" {4,2} (3,3) [3]

"1" {2,1} (3,3) [2]

"1" {2} (2) [1]

"1" {2,1,0} (2,1,1) [1]�����	



�����	





�
�����	
������

�����	







������



������ "1" {6,5} (6,6) [1]

"0" {7} (1) [1]

"1" {6,5,4} (1,5,5) [1]

"1" {4,3} (6,6) [6]

"1" {5,4} (4,4) [1]

"0" {2} (3) [4]

"1" {5,4,3} (3,3,3) [3]

"0" {2,1} (6,3) [2]

"1" {3} (3) [4]

"0" {2,1,0} (3,2,1) [1]

"0" {3,2} (1,3) [1]

"1" {1} (2) [1]

"1" {1,0} (1,1) [1] 





�
������
������ "0" {4,3} (1,4) [1]

"1" {2} (3) [3]

"0" {1} (2) [1]

"0" {1,0} (2,1) [1]�����	
�����������	






������



"0" {5,4} (1,5) [1]

"1" {3} (4) [1]

"1" {3,2} (3,3) [3]

"0" {1} (3) [2]

"1" {2} (2) [1]

"1" {2,0} (2,1) [1]

" " {0} (1) [0] 
 "1" {1,0} (1,1) [1] 



� "0" {2,1} (1,2) [1]

"1" {0} (1) [1] 





� "0" {3,2} (1,3) [1]

"1" {1} (2) [1]

"1" {1,0} (1,1) [1]

Figure 3. Algorithm 2 output stages 0–8 for polynomial 75267.

resulting graph for the polynomial 75267O up to EL−2. Taking the maximum
over all sums of multiplicities in multiplicity sets in E12 identifies the value 124
(= 93 + 31) as the LEB. Summing up all all LRC values in this ensemble yields
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544 linear relations at that stage, in agreement with the total of 1088 linear
relations for this polynomial. Backtracking through the graph reveals the linear
relations 1000011000100(01) and 1000011000100(11) that occur 124 times.

4. The order of Algorithm 2

It is not straightforward to assess the order of the described algorithm on the-
oretical grounds, as the relations between the number of weights in a weight set
and the number of weight sets in an ensemble on the one hand, and the degree of
the characteristic polynomial L on the other hand, seem quite complex. In order
to get a realistic impression of the complexity behaviour of Algorithm 2, a statis-
tical experiment was set up. The algorithm was run for irreducible polynomials
of various degrees from 5 through 120, that were taken at random from [1].
For certain values of the degree L of the polynomials (L = 10, 20, . . . , 100, 120)
ten different polynomials were processed with Algorithm 2 and the EL−2 deter-
mined. For these degrees the geometric means of the number of weight sets in
the ensembles EL−2 were calculated. These values were then plotted in a graph.
The results are depicted in Figure 4.

Figure 4. Cardinalities of ensembles EL−2 from the statistical experiment.
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Table 2. Statistical experiment weight sets of ensemble EL−2.

EL−2

deg L # pol min avg max Calc EL−2

5 3 3 3.634 4 7.83
10 10 10 12.34 14 16.76
14 2 18 20
18 2 42 48
20 10 36 46.88 66 47.54
29 1 85
30 1 120
32 2 87 105
40 10 109 213.52 353 198.29
50 2 231 420
61 8 222 533.62 1122 605.86
65 1 524
70 1 1813
80 10 903 1566.28 2518 1402.30
90 1 1928
100 10 887 2863.76 6567 3036.15
120 10 2297 6167.97 12017 6064.77

From this figure it can already be seen that the complexity order is sub
exponential. This is further supported by the fact that an almost straight line
is obtained if one plots the values of log log EL−2 as a function of logL. Next,
least squares curve fitting was used to obtain the best matching straight line.
The number of weight sets in the ensemble EL−2 as a function of the polynomial
degree L, obtained as best match, is given by (3) below.

EL−2 = exp(0.9911L0.4540). (3)

Table 2 lists all obtained data with the rightmost column containing the cal-
culated values using the least squares fit parameters. For comparison, the best
exponential curve fit was also calculated from the same data. The best exponen-
tial curve fit is given by (4).

EL−2 = 25.76(1.04875)L. (4)

The results are shown in Figure 5, with log log EL−2 on the y-axis and L on
the x-axis in a log scale. This figure illustrates the sub exponential behaviour
of Algorithm 2.
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Figure 5. Least squares fitted curves of log log EL−2 versus logL.

5. Conclusions

This paper presents a new and efficient algorithm to solving the problem
of finding the linear equivalence bias of jump controlled linear finite state ma-
chines. A statistical experiment provides evidence that the algorithm is sub ex-
ponential in the degree of the characteristic polynomial of the linear finite state
machine. In particular, implementing Algorithm 2 in software on a PC to cal-
culate the linear equivalence bias of high degree polynomials is quite straight-
forward. Polynomials of degree 120 are processed in a matter of seconds on
a standard laptop.

Future research includes generalizations in two directions: 1) general clock
control in stead of jumping, and 2) extended linear relation, i.e., linear relations
of length greater than the degree of the characteristic polynomial.
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guridad de la Información, Volume Tomo I (S. González, C. Mart́ınez, eds.), Servicio de

Publicaciones de la Universidad de Oviedo, 2002, pp. 11–29.

62



ON THE CALCULATION OF THE LEB OF JUMP CONTROLLED LFSMS

[3] JANSEN, C. J. A.: Streamcipher design: Make your LFSRs jump! in: ECRYPT The

State of the Art of Stream Ciphers (SASC), Workshop Record, Network of Excellence in
Cryptology, 2004, pp. 94–108.

[4] JANSEN, C. J. A.: Stream cipher design based on jumping finite state machines, Cryp-
tology ePrint Archive, Report 2005/267, http://eprint.iacr.org/2005/267/.

[5] JANSEN, C. J. A.—HELLESETH, T.—KHOLOSHA, A.: Cascade jump controlled se-
quence generator and Pomaranch stream cipher (Version 3). eSTREAM, ECRYPT

Stream Cipher Project, End of 2nd Phase, March 2007,
http://www.ecrypt.eu.org/stream/p3ciphers/pomaranch/pomaranch p3.pdf.

[6] JANSEN, C. J. A.—KHOLOSHA, A.: Countering the correlation attack on Pomaranch.
eSTREAM, ECRYPT Stream Cipher Project, Phase 1, October 2005,
http://www.ecrypt.eu.org/stream/papersdir/070.pdf.

[7] JANSEN, C. J. A.: Linear relations in irregularly clocked linear finite state machines.

in: 29th Symposium on Information Theory in the Benelux, Leuven (L. Van der Perre
et al., eds.), Werkgemeenschap voor Informatie- en Communicatietheorie IMEC, Leuven,
2008, pp. 223–229.

[8] JANSEN, C. J. A.: Linearities in cascade jump controlled stream ciphers, in: Proc. of
the NATO, Advanced Research Workshop on Enhancing Cryptographic Primitives with

Techniques from Error Correcting Codes (B. Preneel et al., eds.) Veliko Tarnovo, Bulgaria,
2008, IOS Press, Amsterdam, 2009, pp. 179–191.

Received May 20, 2010 DeltaCrypto BV
Riebeeckstraat 10
5684ej Best

THE NETHERLANDS

E-mail : cees.jansen@deltacrypto.nl

63


	1. Introduction
	2. Linear relation coefficients and symmetric Boolean functions
	3. Calculating the LEB using SBFs
	4. The order of Algorithm 2
	5. Conclusions
	REFERENCES

