

TATRA

APPLICATION OF HUREWICZ THEOREM TO CLASSIFICATION OF Π_1^1 -COMPLETE SETS

Michal Staš

ABSTRACT. We present a simple proof of a dichotomy theorem by Kechris-Louveau-Woodin [Kechris, A. S., Louveau, A.: Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser. **128** (1987), 104–138] telling that every $\Pi_1^1 \sigma$ -ideal of compact subsets of a Polish space is either G_{δ} or else Π_1^1 -complete.

The descriptive hierarchy of sets raised a question of describing Π_1^1 (coanalytic) sets which are not Σ_1^1 (analytic), i.e., the true Π_1^1 sets. Following M. J. Souslin [4], we know that a set which is both analytic and coanalytic is Borel. Since there are Π_1^1 but not Borel sets, an important kind of true Π_1^1 sets is that of Π_1^1 -complete set. In particular, Π_1^1 -complete set on a hyperspace.

The main goal of this note is a simple proof of the Kechris-Louveau-Woodin Dichotomy Theorem [3]. The original proof by A. S. Kechris based on the game theory using Hurewicz Theorem [1] is elementary, however, rather complicated. We will use common set theoretical terminology and notations, say those of [2].

Let X be a Polish space. A subset P of X is called Π_1^1 -hard if for any Polish space Y and any Π_1^1 subset Q of Y, there is a Borel function $f: Y \to X$ such that $Q = f^{-1}[P]$. A Π_1^1 set which is Π_1^1 -hard is said to be Π_1^1 -complete. Replacing Π_1^1 with Σ_1^1 , we obtain the definition of Σ_1^1 -hard and Σ_1^1 -complete set.

Following Souslin's theorem again, we know that no Π_1^1 -complete set is Σ_1^1 . If X, Y are Polish spaces, $f: X \to Y$ is a Borel function, $P \subseteq X$ is Π_1^1 -complete and $Q \subseteq Y$ is Π_1^1 and such that $P = f^{-1}[Q]$, then Q is also Π_1^1 -complete. This is a standard procedure for showing the Π_1^1 -completeness of a set. Likewise, the Π_1^1 -hardness of a set.

²⁰¹⁰ Mathematics Subject Classification: Primary 54B20, 54A20; Secondary 03E75, 54E35, 54H05.

Keywords: analytic set, coanalytic set, Π^1_1 -complete set, hyperspace, σ -ideal of compact sets, Hurewicz theorem.

The work on this research has been partially supported by the grant 1/0032/09 of Slovak Grant Agency VEGA and by the grant 30/2009/M of Faculty of Science of Pavol Jozef Šafárik University in Košice VVGS PF.

MICHAL STAŠ

For each topological space X let $\mathcal{K}(X)$ denote the space of all compact subsets of X equipped with the **Vietoris topology** generated by the sets

$$\{K \in \mathcal{K}(X) : K \cap V \neq \emptyset\} \text{ and } \{K \in \mathcal{K}(X) : K \subseteq V\},\$$

V being a non-empty open set.

The Vietoris topology is induced by the **Hausdorff metric** on $\mathcal{K}(X)$ which is defined as

$$\delta(K,L) = \begin{cases} \max\{\max_{x \in K} \operatorname{dist}(x,L), \max_{y \in L} \operatorname{dist}(y,K)\} & \text{if } K, L \neq \emptyset, \\ 0 & \text{if } K = L = \emptyset, \\ 1 & \text{if exactly one of } K, L \text{ is } \emptyset. \end{cases}$$

Any subtree of ${}^{<\omega}\omega$ can be identified with its characteristic function as a member of ${}^{<\omega}\omega_2$. If ${}^{<\omega}\omega_2$ is given the product topology with $2 = \{0, 1\}$ discrete, then it is homeomorphic to the Cantor space ω_2 . The set of all subtrees of ${}^{<\omega}\omega$ is a closed subset of ${}^{\omega}2$. Moreover, the set of those subtrees of ${}^{<\omega}\omega$ having all branches finite, is a Π_1^1 -complete set.

A. S. Kechris [3] has proved the next result. We now present a slightly modified version of his proof.

LEMMA 1. If Q is a countable dense subset of ${}^{\omega}2$ then $\mathcal{K}(Q)$ is Π^1_1 -complete.

Proof. Let $Q \subseteq {}^{\omega}2$ be a countable dense set. Q is an F_{σ} set, so $\mathcal{K}(Q)$ is Π_1^1 .

Let $P \subseteq {}^{\omega}2$ be a Π^1_1 -complete set as mentioned above. Since ${}^{\omega}2 \setminus P$ is Σ^1_1 , there exists a continuous mapping $\lambda : {}^{\omega}\omega \to {}^{\omega}2$ such that $\lambda({}^{\omega}\omega) = {}^{\omega}2 \setminus P$. Let $\pi : \omega \times \omega \to \omega$ be any bijection and $t : {}^{\omega}\omega \to {}^{\omega}2$ be the mapping defined by

$$t(v)\big(\pi(n,m)\big) = \begin{cases} 0 & \text{if } v(n) = m, \\ 1 & \text{other,} \end{cases}$$

for $v \in {}^{\omega}\omega$. Then the set $t({}^{\omega}\omega)$ is equal to

$$\begin{split} &\bigcap_{n} \bigcup_{m} \Big\{ \delta \in {}^{\omega}2 : \delta\big(\pi(n,m)\big) = 0 \Big\} \\ &\cap \bigcap_{n} \bigcap_{m} \bigcap_{k \neq m} \Big\{ \delta \in {}^{\omega}2 : \delta\big(\pi(n,m)\big) = 0 \to \delta(\pi(n,k)) = 1 \Big\} \end{split}$$

and therefore, is a G_{δ} subset of ${}^{\omega}2$. Let $G \subseteq {}^{\omega}2 \times {}^{\omega}2$ be such that

$$(x,y) \in G \Leftrightarrow \lambda(t^{-1}(y)) = x.$$

Then G is a G_{δ} set. If we denote $F = ({}^{\omega}2 \times {}^{\omega}2) \setminus G$, then $x \in P \Leftrightarrow (\forall y \in {}^{\omega}2) (x, y) \in F$.

66

Since ${}^{\omega}2 \times {}^{\omega}2$ is homeomorphic to ${}^{\omega}2$, there exists a continuous $h : {}^{\omega}2 \times {}^{\omega}2 \to {}^{\omega}2$ such that $h^{-1}(Q) = F$. The mapping $\mu : {}^{\omega}2 \to \mathcal{K}({}^{\omega}2)$ defined by

$$\mu(x) = h[\{x\}, ^{\omega} 2]$$

is continuous and

$$x \in P \Leftrightarrow \mu(x) \in \mathcal{K}(Q).$$

Thus, $P = \mu^{-1}(\mathcal{K}(Q))$ and therefore $\mathcal{K}(Q)$ is Π_1^1 -complete.

Note that if Q is a set of all eventually periodic sequences in ${}^{\omega}2$, then we can reduce $\mathcal{K}(Q)$ to $\mathcal{K}(\mathbb{Q} \cap [0,1])$. So, we obtain

COROLLARY 2 ([1, W. Hurewicz]). $\mathcal{K}(\mathbb{Q} \cap [0,1])$ is Π_1^1 -complete set.

A complementary result is that the set $\{K \in \mathcal{K}([0,1]) : K \cap \mathbb{I} \neq \emptyset\}$ is Σ_1^1 -complete. Moreover, if X is a Polish, and $G \subseteq X$ is a G_δ set but not an F_σ set, then $\{K \in \mathcal{K}(X) : K \cap G \neq \emptyset\}$ is Σ_1^1 -complete. Thus, if $F \subseteq X$ is an F_σ set but not a G_δ set, then $\mathcal{K}(F)$ is Π_1^1 -complete.

A subset $\mathcal{I} \subseteq \mathcal{K}(X)$ is called a σ -ideal of compact sets of X if the following conditions are fulfilled

(1) if $K \in \mathcal{K}(X), K \subseteq L \in \mathcal{I}$ then $K \in \mathcal{I}$,

(2) if $K_n \in \mathcal{I}, n \in \omega$ and $\bigcup_n K_n \in \mathcal{K}(X)$ then $\bigcup_n K_n \in \mathcal{I}$.

Let \mathcal{S} be a non-empty subset of $\mathcal{K}(X)$. We denote by \mathcal{S}_{σ} the set

$$\mathcal{S}_{\sigma} = \left\{ M \in \mathcal{K}(X) : M = \bigcup_{n} M_{n}, M_{n} \in \mathcal{S}, n \in \omega \right\}.$$

Let us remark that S_{σ} is closed under countable unions which are in $\mathcal{K}(X)$, i.e., it satisfies condition (2) of the previous definition, but need not be σ -ideal of compact sets of X.

THEOREM 3. Let X be a Polish space, and S be a non-empty subset of $\mathcal{K}(X)$ such that S contains a countable perfect subset \mathcal{L} in S.¹ If \mathcal{L} is closed in S_{σ} and

$$(\forall \mathcal{M} \in \mathcal{K}(\overline{\mathcal{L}})) \left(\bigcup \mathcal{M} \in \mathcal{S}_{\sigma} \land M \in \mathcal{M} \to M \in \mathcal{S}_{\sigma} \right)$$

then \mathcal{S}_{σ} is Π_1^1 -hard.

Proof. $\overline{\mathcal{L}}$ is a closed subset of $\mathcal{K}(X)$, so we consider $\overline{\mathcal{L}}$ with a subspace topology of $\mathcal{K}(X)$. Let $h: \mathcal{K}(\overline{\mathcal{L}}) \to \mathcal{K}(X)$ be the mapping defined by

$$h(\mathcal{M}) = \bigcup \mathcal{M} = \bigcup \{M : M \in \mathcal{M}\}.$$

Then h is continuous, see, e.g., [3]. By the assumptions, we can verify that

$$\mathcal{M}\subseteq\overline{\mathcal{L}}\cap\mathcal{S}=\mathcal{L}\Leftrightarrow\bigcup\mathcal{M}\in\mathcal{S}_{\sigma}$$

¹A perfect set is a non-empty closed set without isolated points.

MICHAL STAŠ

for any $\mathcal{M} \in \mathcal{K}(\overline{\mathcal{L}})$. Thus,

$$h^{-1}(\mathcal{S}_{\sigma}) = \mathcal{K}(\mathcal{L}) = \left\{ \mathcal{M} \in \mathcal{K}(\overline{\mathcal{L}}) : \mathcal{M} \subseteq \mathcal{L} \right\}.$$

Since \mathcal{L} is an F_{σ} , but not a G_{δ} set, then $\mathcal{K}(\mathcal{L})$ is Π_1^1 -complete. Thus \mathcal{S}_{σ} is Π_1^1 -hard. \Box

COROLLARY 4. Let X be a Polish space, and S be a non-empty subset of $\mathcal{K}(X)$ such that S contains a countable perfect subset \mathcal{L} in S. If there exists a σ -ideal $\mathcal{I} \supseteq S_{\sigma}$ of compact sets of X such that \mathcal{L} is closed in \mathcal{I} , then S_{σ} is Π_1^1 -hard.

Proof. Let $\mathcal{I} \supseteq S_{\sigma}$ be a σ -ideal of compact sets of X such that $\mathcal{I} \cap \overline{\mathcal{L}} = \mathcal{L}$. Then it is easy to see that \mathcal{L} is closed in S_{σ} . Let \mathcal{M} be any non-empty set from $\mathcal{K}(\overline{\mathcal{L}})$ such that $\bigcup \mathcal{M} \in S_{\sigma}$. If $M \in \mathcal{M}$, then $M \subseteq \bigcup \mathcal{M} \in S_{\sigma} \subseteq \mathcal{I}$. Thus, $M \in \mathcal{I} \cap \overline{\mathcal{L}} = \mathcal{L} \subseteq S \subseteq S_{\sigma}$. By the previous theorem, S_{σ} is Π_1^1 -hard. \Box

If we take X = [0, 1] and $S = \mathcal{K}(\mathbb{Q} \cap [0, 1])$, then the set of all singletons on $\mathcal{K}(\mathbb{Q} \cap [0, 1])$ is a countable perfect subset of S. Therefore, by Corollary 4, the set $S = S_{\sigma} = \mathcal{K}(\mathbb{Q} \cap [0, 1])$ is Π_1^1 -hard, and hence Π_1^1 -complete.

A. S. Kechris [3] presents a proof of Corollary 5 based on game theory, in which he uses a theorem of Hurewicz [1], telling that if A is a coanalytic non- G_{δ} set in a Polish space X, then there exists a homeomorphism $f: {}^{\omega}2 \to X$ and a countable dense set $Q \subseteq {}^{\omega}2$ such that $f[Q] \subseteq A$ and $f[{}^{\omega}2 \setminus Q] \subseteq X \setminus A$. An elementary proof of a generalization of Hurewicz's theorem, using the notion of Hurewicz scheme, is presented in [5]. As its application, we suggest a simple proof of the next assertion.

COROLLARY 5. Let \mathcal{I} be a $\Pi_1^1 \sigma$ -ideal of compact sets of a Polish space X and S be a non-empty subset of \mathcal{I} . If S, \mathcal{I} cannot be separated by a G_{δ} set, then S_{σ} is Π_1^1 -hard.

Proof. Assume that there is no G_{δ} set separating \mathcal{S}, \mathcal{I} , i.e., $\mathcal{K}(X) \setminus \mathcal{I}, \mathcal{K}(X) \setminus \mathcal{S}$ cannot be separated by an F_{σ} set. According to the main theorem of [5], there exists a countable perfect subset $\mathcal{L} \subseteq \mathcal{S}$ such that $\overline{\mathcal{L}} \setminus \mathcal{L} \subseteq \mathcal{K}(X) \setminus \mathcal{I}$. Then, by Corollary 4, \mathcal{S}_{σ} is Π_1^1 -hard.

In particular, if we take S = I, we get the Kechris-Louveau-Woodin's Dichotomy Theorem [3].

THEOREM 6 ([3, Kechris, Louveau, Woodin]). Every $\Pi_1^1 \sigma$ -ideal of compact subsets of a Polish space X is either G_{δ} or else Π_1^1 -complete.

Thus, we know that any Π_1^1 -complete set is true Π_1^1 , and from the previous theorem, that every true $\Pi_1^1 \sigma$ -ideal of compact subsets is Π_1^1 -complete.

Acknowledgements. I would like to thank Prof. Lev Bukovský and the referee for valuable comments.

CLASSIFICATION OF Π_1^1 -COMPLETE SETS

REFERENCES

- HUREWICZ, W.: Relativ perfekte Teile von Punktmengen und Mengen (A), Fund. Math. 9 (1925), 78–109.
- [2] KECHRIS, A. S.: Classical Descriptive Set Theory. Springer-Verlag, Berlin, 1994.
- [3] KECHRIS, A. S.—LOUVEAU, A.: Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser. 128 (1987), 104–138.
- [4] SOUSLIN, M. J.: Sur une définition des ensembles measurables B sans nombres transfinis, C. R. Acad. Sci. 164 (1917), 88–91.
- [5] STAŠ, M.: Hurewicz scheme, Acta Univ. Carolin. Math. Phys. 49 (2008), 75–78.

Received November 30, 2009

Institute of Mathematics University of P. J. Šafárik Jesenná 5 SK-040-01 Košice SLOVAKIA E-mail: michal.stas@upjs.sk