TATRA
MOUNTOINS
Mathematical Publications

Tatra Mt. Math. Publ. **44** (2009), 15–25 DOI: 10.2478/v10127-009-0044-3

SOME CONTINUOUS OPERATIONS ON PAIRS OF CLIQUISH FUNCTIONS

Zbigniew Grande — Ewa Strońska

ABSTRACT. The algebraic or lattice operations in the classes of cliquish or quasicontinuous functions are well known [Z. Grande: On the maximal multiplicative family for the class of quasicontinuous functions, Real Anal. Exchange 15 (1989–1990), 437–441, Z. Grande, L. Soltysik: Some remarks on quasicontinuous real functions, Problemy Mat. 10 (1990), 79–86]. This also pertains to the symmetrical quasicontinuity or symmetrical cliquishness [Z. Grande: On the maximal additive and multiplicative families for the quasicontinuities of Piotrowski and Vallin, Real Anal. Exchange 32 (2007), 511–518]. In this article, we examine the superpositions F(f,g), where F is a continuous operation and f,g are cliquish (symmetrically cliquish) or f is continuous (f is symmetrically quasicontinuous with continuous sections) and g is quasicontinuous (symmetrically quasicontinuous).

Let (X, T_X) and (Y, T_Y) be topological spaces, let (Z, ρ) and (Z_i, ρ_i) , (i = 1, 2) be metric spaces.

Definition ([10, 11]). A function $f: X \to Z$ is said to be

• quasicontinuous (cliquish) at a point $x \in X$ if for every set $U \in T_X$ containing x and for each positive real ε there is a nonempty set $U' \in T_X$ contained in U such that $f(U') \subset K(f(x), \varepsilon) = \{t \in Z; \rho(t, f(x)) < \varepsilon\}$ (diam $(f(U')) = \sup\{\rho(f(t), f(u)); t, u \in U'\} < \varepsilon$).

DEFINITION. A function $f: X \times Y \to Z$ is said to be:

• quasicontinuous at (x,y) with respect to x (alternatively y) if for every set $U \times V \in T_X \times T_Y$ containing (x,y) and for each positive real ε there are nonempty sets $U' \in T_X$ contained in U and $V' \in T_Y$ contained in V such that $x \in U'$ (alternatively $y \in V'$) and $f(U' \times V') \subset K(f(x,y),\varepsilon)$ ([10]-[12]);

²⁰⁰⁰ Mathematics Subject Classification: 26A15, 26A21, 54C05.

 $K\,eywords$: quasicontinuity, symmetrical quasicontinuity, cliquishness, symmetrical cliquishness, strong quasicontinuity, strong cliquishness, continuous operations, maximal family for operation.

ZBIGNIEW GRANDE — EWA STROŃSKA

- cliquish at (x, y) with respect to x (alternatively y) if for every set $U \times V \in T_X \times T_Y$ containing (x, y) and for each positive real ε there are nonempty sets $U' \in T_X$ contained in U and $V' \in T_Y$ contained in V such that $x \in U'$ (alternatively $y \in V'$) and diam $(f(U' \times V')) < \varepsilon$) ([3]);
- symmetrically quasicontinuous (symmetrically cliquish) at (x, y) if it is quasicontinuous (cliquish) at (x, y) with respect to x and with respect to y.

Evidently the cliquishness (the quasicontinuity) with respect to x (or to y) of a function $f: X \times Y \to Z$ implies its cliquishness (its quasicontinuity) and the respective quasicontinuities imply the respective cliquishness.

I. The superposition $x \to F(f(x), g(x))$ on pairs of cliquish functions (f, g)

We start from the well-known examples. Let (a_n) be an enumeration of all rationals such that $a_n \neq a_m$ for $n \neq m$.

1. Let $f_1(a_n) = \frac{1}{n}$ for $n \geq 1$. Then $f_1: \mathbb{Q} \to (0, \infty)$ is a cliquish function (we consider the spaces \mathbb{Q} and $(0, \infty)$ with the natural metric), but its inversion

$$\frac{1}{f_1(a_n)} = n \qquad \text{for} \quad n \ge 1$$

is not cliquish at any point.

2. Observe that the given $F_1:(0,\infty)^2\to(0,\infty)$ defined by the formula

$$F_1(u,v) = \frac{1}{u+v}$$

is continuous, but the superposition

$$F_1(f_1(a_n), f_1(a_n)) = \frac{n}{2}, \qquad n \ge 1,$$

is not cliquish.

3. Analogously, the given $g_1 \colon \mathbb{Q}^2 \to (0, \infty)$ defined by the formula

$$g_1(a_n, a_m) = \frac{1}{nm}$$
 for $n, m \ge 1$,

is symmetrically cliquish, but the superposition

$$F_1(g_1, g_1) = \frac{1}{2g_1}$$

is not cliquish at any point.

So, there are cliquish functions $f,g:\mathbb{Q}\to(0,\infty)$ (symmetrically cliquish functions $f,g:\mathbb{Q}^2\to(0,1)$) and a continuous function $F\colon(0,\infty)^2\to(0,\infty)$ such that the superposition F(f,g) is not cliquish. Moreover the following theorems are true.

THEOREM 1. Let $F: Z_1 \times Z_2 \to Z$ be a uniformly continuous function. If the functions $f: X \to Z_1$ and $g: X \to Z_2$ are cliquish at each point $x \in X$ then the function h(x) = F(f(x), g(x)) for $x \in X$ is also cliquish at each point x.

Proof. Fix a real $\varepsilon > 0$, a point $x \in X$ and an open set $U \in T_X$ with $x \in U$. From the uniform continuity of F there is a real $\delta > 0$ such that for $z_1, z_2 \in Z_1$ and $z_3, z_4 \in Z_2$ if $\rho_1(z_1, z_2) < \delta$ and $\rho_2(z_3, z_4) < \delta$ then $\rho(F(z_1, z_3), F(z_2, z_4)) < \frac{\varepsilon}{2}$. Since f is cliquish at x, there is a nonempty open set $U' \in T_X$ such that

$$U' \subset U$$
 and $\operatorname{diam}(f(U')) < \delta$.

Fix a point $v \in U'$. Since g is cliquish at v, there is a nonempty open set $U'' \in T_X$ such that

$$U'' \subset U'$$
 and $\operatorname{diam}(g(U'')) < \delta$.

Observe that for x_1, x_2 belonging to U'' we have

$$\rho_1(f(x_1), f(x_2)) < \delta$$
 and $\rho_2(g(x_1), g(x_2)) < \delta$,

thus the inequality

$$\rho\Big(F(f(x_1), g(x_1), F(f(x_2), g(x_2))\Big) < \frac{\varepsilon}{2}$$

is true. So, diam $(h(U'')) \le \frac{\varepsilon}{2} < \varepsilon$ and the proof is finished.

THEOREM 2. Let $F: Z_1 \times Z_2 \to Z$ be a uniformly continuous function. If the functions $f: X \times Y \to Z_1$ and $g: X \times Y \to Z_2$ are cliquish at each point $(x,y) \in X \times Y$ with respect to x (alternatively to y), then the function h(x,y) = F(f(x,y),g(x,y)) for $(x,y) \in X \times Y$ is also cliquish at each point (x,y) with respect to x (alternatively to y).

Proof. Fix a real $\varepsilon > 0$, a point $(x,y) \in X \times Y$ and open sets $U \in T_X$ and $V \in T_Y$ with $(x,y) \in U \times Y$. From the uniform continuity of F there is a real $\delta > 0$ such that for $z_1, z_2 \in Z_1$ and $z_3, z_4 \in Z_2$ if

$$\rho_1(z_1, z_2) < \delta$$
 and $\rho_2(z_3, z_4) < \delta$ then $\rho(F(z_1, z_3), F(z_2, z_4)) < \frac{\varepsilon}{2}$.

Since f is cliquish at (x, y) with respect to x, there are nonempty open sets $U' \in T_X$ and $V' \in T_Y$ such that

$$x \in U' \subset U, V' \subset V$$
 and $\operatorname{diam}(f(U' \times V')) < \delta$.

ZBIGNIEW GRANDE — EWA STROŃSKA

Fix a point $v \in V'$. Since g is cliquish at (x, v) with respect to x, there are nonempty open sets $U'' \in T_X$ and $V'' \in T_Y$ such that

$$x \in U'' \subset U', V'' \subset V'$$
 and $\operatorname{diam}(g(U'' \times V'')) < \delta$.

Observe that for (x_1, y_1) and (x_2, y_2) belonging to $U'' \times V''$ we have

$$\rho_1(f(x_1, y_1), f(x_2, y_2)) < \delta$$
 and $\rho_2(g(x_1, y_1), g(x_2, y_2)) < \delta$,

thus the inequality

$$\rho\Big(F\big(f(x_1,y_1),\,g(x_1,y_1)\big),\,F\big(f(x_2,y_2),\,g(x_2,y_2)\big)\Big)<\frac{\varepsilon}{2}$$

is true. So, diam $(h(U'' \times V'')) \le \frac{\varepsilon}{2} < \varepsilon$ and in the case where f and g are cliquish at (x, y) with respect to x the proof is finished. In the alternative case where f and g are cliquish at (x, y) with respect to y the proof is analogous.

Corollaries and remarks

From Theorem 1 we obtain

COROLLARY 1. Let $F: Z_1 \times Z_1 \to Z$ be a continuous function. If the functions $f, g: X \times Y \to Z_1$ are cliquish at each point $(x, y) \in X \times Y$ with respect to x (alternatively to y) and if the closures $\operatorname{cl}(f(X \times Y))$ and $\operatorname{cl}(g(X \times Y))$ are compact, then the functions $h_1(x, y) = F(f(x, y), g(x, y))$ and $h_2(x, y) = F(g(x, y), f(x, y))$ for $(x, y) \in X \times Y$ are also cliquish at each point (x, y) with respect to x (alternatively to y).

From Theorem 2 we have

COROLLARY 2. Let $F: Z_1 \times Z_1 \to Z$ be a uniformly continuous function. If the functions $f,g: X \times Y \to Z_1$ are symmetrically cliquish at each point $(x,y) \in X \times Y$, then the functions $h_1(x,y) = F(f(x,y), g(x,y))$ and $h_2(x,y) = F(g(x,y), f(x,y))$ for $(x,y) \in X \times Y$ are also symmetrically cliquish at each point (x,y).

In the case $Z=Z_1=\mathbb{R}$ and $\rho(z_1,z_2)=\rho_1(z_1,z_2)=|z_1-z_2|$, the functions $F_1(z_1,z_2)=\max(z_1,z_2)$ and $F_2(z_1,z_2)=\min(z_1,z_2)$ are uniformly continuous. So, from Theorem 2 we obtain

COROLLARY 3. If the functions $f, g: X \times Y \to \mathbb{R}$ are cliquish at each point $(x, y) \in X \times Y$ with respect to x (alternatively to y), then the functions $\max(f, g)$ and $\min(f, g)$ are also cliquish at each point (x, y) with respect to x (alternatively with respect to y).

In the case where $(Z, \|\cdot\|) = (Z_1, \|\cdot\|)$ is a normed space, for all reals r_1, r_2 the function $F(z_1, z_2) = r_1 z_1 + r_2 z_2$ is uniformly continuous. So, from Theorem 2, we obtain

COROLLARY 4. If $(Z, \|\cdot\|)$ is a normed space and the functions $f, g: X \times Y \to Z$ are cliquish at each point $(x, y) \in X \times Y$ with respect to x (alternatively with respect to y), then for all real r_1, r_2 the function $r_1f + r_2g$ is also cliquish at each point $(x, y) \in X \times Y$ with respect to x (alternatively with respect to y).

From Corollary 1 for the case $Z=Z_1=\mathbb{R}$ and $\rho(z_1,z_2)=\rho_1(z_1,z_2)=|z_1-z_2|$ it follows the following

COROLLARY 5. If the bounded functions $f, g: X \times Y \to \mathbb{R}$ are cliquish at each point $(x, y) \in X \times Y$ with respect to x (alternatively with respect to y), then the product fg is also cliquish at each point (x, y) with respect to x (alternatively with respect to y).

The product F(x,y) = xy for $x,y \in \mathbb{R}$ is not uniformly continuous in \mathbb{R}^2 with the natural metric. Similarly, the scalar product F(x,y) = (x|y) for $x,y \in \mathbb{R}^n$ is not uniformly continuous in \mathbb{R}^{2n} with natural metric. So, for the proof of the cliquishness (or of the symmetrical cliquishness) of the product or the scalar product of two cliquish (or symmetrically cliquish) functions Theorem 2 is not sufficient, however, we can use the following remarks.

Remark 1. Suppose that (X, T_X) is a Baire space. If the functions $f, g: X \to Z_1$ are cliquish and $F: Z_1 \times Z_1 \to Z$ is a continuous function then the superposition h(x) = F(f(x), g(x)) for $x \in X$ is cliquish.

Proof. Denote by C(f) (C(g)) the set of all continuity points of f (of g). Since (X, T_X) is a Baire space, the sets C(f) and C(g) are residual in X (see [2], [11]). Consequently, the intersection $C(f) \cap C(g)$ is residual in X and $C(f) \cap C(g) \subset C(F(f,g))$, so the superposition F(f,g) is cliquish.

Remark 2. Suppose (X, T_X) (alternatively (Y, T_Y)) is a Baire space and functions $f, g: X \times Y \to Z_1$ are cliquish with respect to y (alternatively to x). If a function $F: Z_1 \times Z_1 \to Z$ is continuous then the superpositions $h_1(x) = F(f(x, y), g(x, y))$ and $h_2(x) = F(g(x, y), f(x, y))$ for $x \in X$ are cliquish with respect to y (alternatively to x).

Proof. Similarly as in the proof of the previous remark, we observe that the sections $(C(f))^y$ and $(C(g))^y$, $y \in Y$, are residual in X (see [6]). Consequently, the sections $(C(F(f,g)))^y \supset (C(f) \cap C(g))^y$, $y \in Y$, are residual in X and the superposition h_1 is cliquish with respect to y. Similarly, we can prove the cliquishness of h_1 with respect to x and the cliquishness of h_2 with respect to x and to y.

COROLLARY 6. Suppose (X, T_X) and (Y, T_Y) are Baire spaces and the functions $f, g: X \times Y \to Z_1$ are symmetrically cliquish. If a function $F: Z_1 \times Z_1 \to Z$ is continuous then the superposition h(x) = F(f(x, y), g(x, y)) is symmetrically cliquish.

II. The superposition F(f,g), where one of the functions f and g is quasicontinuous and the second is continuous

Recall that there are quasicontinuous real-valued functions whose sum is not quasicontinuous (see [8]). We start from the following easy observation:

Remark 3. Let $F: Z_1 \times Z_1 \to Z$ be a continuous function. If a function $f: X \to Z_1$ is quasicontinuous at a point $x_0 \in X$ and a function $g: X \to Z_1$ is continuous at x_0 then the functions $h_1(x) = F(f(x), g(x))$ and $h_2(x) = F(g(x), f(x)), x \in X$, are also quasicontinuous at the point x_0 .

Proof. Both functions $k_1(x) = (f(x), g(x))$ and $k_2(x) = (g(x), f(x)), x \in X$, are quasicontinuous at x_0 , so their superpositions $F(k_1)$ and $F(k_2)$ with a continuous function F are quasicontinuous at x_0 .

THEOREM 3. Let $F: Z_1 \times Z_1 \to Z$ be a continuous function. If the functions $f, g: X \times Y \to Z_1$ are quasicontinuous at each point $(x, y) \in X \times Y$ with respect to x (alternatively with respect to y) and at each point $(x, y) \in X \times Y$ at least one of them has continuous vertical section (horizontal section) then the functions $h_1(x, y) = F(f(x, y), g(x, y))$ and $h_2(x, y) = F(g(x, y), f(x, y))$ for $(x, y) \in X \times Y$ are also quasicontinuous at each point (x, y) with respect to x (alternatively with respect to y).

Proof. Fix a real $\varepsilon > 0$, a point $(x,y) \in X \times Y$ and open sets $U \in T_X$ and $V \in T_Y$ with $(x,y) \in U \times V$. We can assume that the vertical section g_x is continuous at y. From the continuity of F at the point (f(x,y), g(x,y)), there is a real $\delta > 0$ such that for $z_1, z_2 \in Z_1$ if $\rho_1(z_1, f(x,y)) < \delta$ and $\rho_1(z_2, g(x,y)) < \delta$, then

 $\rho(F(z_1, z_2), F(f(x, y), g(x, y))) < \frac{\varepsilon}{3}.$

From the continuity of the section g_x at y, it follows that there is a set $V_1 \in T_Y$ containing y such that $V_1 \subset V$ and $\rho_1(g(x,w), g(x,y)) < \delta$ for $w \in V_1$. Since f is quasicontinuous at (x,y) with respect to x, there are nonempty open sets $U' \in T_X$ and $V' \in T_Y$ such that

$$x \in U' \subset U, V' \subset V_1$$
 and $f(U' \times V') \subset K(f(x, y), \delta)$.

Fix a point $v \in V'$. By the continuity of F at (f(x, v), g(x, v)), there is a real $\delta_1 \in (0, \delta)$ such that for $z_3, z_4 \in Z_1$ if $\rho_1(z_3, f(x, v)) < \delta_1$ and $\rho_1(z_4, g(x, v)) < \delta_1$, then

 $\rho\big(F(z_3, z_4), F(f(x, v), g(x, v))\big) < \frac{\varepsilon}{3}.$

Since g is quasicontinuous at (x, v) with respect x, there are open sets $U'' \in T_X$ and $V'' \in T_Y$ such that

$$x \in U'' \subset U', V'' \subset V'$$
 and $g(U'' \times V'')) \subset K(g(x, v), \delta_1)$.

Observe that for (x_1, y_1) belonging to $U'' \times V''$ we have

$$\rho_1(f(x_1, y_1), f(x, y)) < \delta$$
 and $\rho_1(g(x_1, y_1), g(x, v)) < \delta_1$,

thus the inequalities

$$\rho\Big(F\big(f(x_1, y_1), g(x_1, y_1)\big), F\big(f(x, y), g(x, y)\big)\Big)$$

$$\leq \rho\Big(F\big(f(x_1, y_1), g(x_1, y_1)\big), F\big(f(x, v), g(x, v)\big)\Big)$$

$$+ \rho\Big(F\big(f(x, v), g(x, v)\big), F\big(f(x, y), g(x, y)\big)\Big)$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} < \varepsilon$$

are true. So, $h_1(U'' \times V'') \subset K(h_1(x,y),\varepsilon)$, and the proof for h_1 is completed. Proofs of the quasicontinuity of h_2 at each point (x,y) with respect to x and of the quasicontinuity with respect to y are analogous.

COROLLARY 7. Let $F: Z_1 \times Z_1 \to Z$ be a continuous function. If the functions $f, g: X \times Y \to Z_1$ are symmetrically quasicontinuous at each point $(x, y) \in X \times Y$ and the sections g_x and g^y are continuous, then the function h(x, y) = F(f(x, y), g(x, y)) for $(x, y) \in X \times Y$ is also symmetrically quasicontinuous at each point (x, y).

In the case $Z=Z_1=\mathbb{R}$ and $\rho(z_1,z_2)=\rho_1(z_1,z_2)=|z_1-z_2|$, the functions $F_1(z_1,z_2)=\max(z_1,z_2)$ and $F_2(z_1,z_2)=\min(z_1,z_2)$ are uniformly continuous. So, from Theorem 3, we obtain

COROLLARY 8. If the functions $f, g: X \times Y \to \mathbb{R}$ are quasicontinuous at each point $(x, y) \in X \times Y$ with respect to x (alternatively to y) and if the function $g: X \times Y \to \mathbb{R}$ has continuous vertical (horizontal) sections then the functions $\max(f, g)$, $\min(f, g)$ and fg are also quasicontinuous at each point (x, y) with respect to x (alternatively with respect to y).

In the case where $(Z, \|\cdot\|) = (Z_1, \|\cdot\|)$ is a normed space then for all reals r_1, r_2 the function $F(z_1, z_2) = r_1 z_1 + r_2 z_2$ is uniformly continuous. So, from Theorem 3, we obtain

COROLLARY 9. If $(Z, ||\cdot||)$ is a normed space, the functions $f, g: X \times Y \to Z$ are quasicontinuous at each point $(x, y) \in X \times Y$ with respect to x (alternatively with respect to y) and the function $f: X \times Y \to Z$ has continuous vertical (horizontal) sections, then for all real r_1, r_2 , the function $r_1 f + r_2 g$ is also quasicontinuous at each point $(x, y) \in X \times Y$ with respect to x (alternatively with respect to y).

III. Continuous operations and kinds of the cliquishness and quasicontinuity

Consider the real line \mathbb{R} with the natural metric and denote by T_d the density topology in \mathbb{R} ([1], [13]). A special kind of the cliquishness (the quasicontinuity) of the functions from \mathbb{R} to \mathbb{R} is a strong cliquishness (strong quasicontinuity).

DEFINITION ([7]). A function $f: \mathbb{R} \to \mathbb{R}$ is said to be *strongly quasicontinuous* (resp. *strongly cliquish*) at a point x if for each positive real η and for each set $A \in T_d$ containing x, there is an open interval I such that $I \cap A \neq \emptyset$ and $f(A \cap I) \subset (f(x) - \eta, f(x) + \eta)$ (diam $(f(A \cap I)) < \eta$).

THEOREM 4. Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a uniformly continuous function. If the functions $f, g: \mathbb{R} \to \mathbb{R}$ are strongly cliquish at each point $x \in \mathbb{R}$, then the function h(x) = F(f(x), g(x)) for $x \in \mathbb{R}$ is also strongly cliquish at each point x.

Proof. Fix a real $\varepsilon > 0$, a point $x \in X$ and a set $U \in T_d$ with $x \in U$. From the uniform continuity of F there is a real $\delta > 0$ such that for $z_1, z_2, z_3, z_4 \in \mathbb{R}$ if

$$\max(|z_1 - z_2|, |z_3 - z_4|) < \delta$$
, then $|F(z_1, z_3) - F(z_2, z_4)| < \frac{\varepsilon}{2}$.

Since f is strongly cliquish at x, there is an open interval I such that

$$I \cap U \neq \emptyset$$
 and $\operatorname{diam}(f(I \cap U)) < \delta$.

Fix a point $v \in U \cap I$. Since g is strongly cliquish at v, there is an open interval $I' \subset I$ such that

$$I'\cap U\neq\emptyset\quad\text{and}\quad \mathrm{diam}\big(\mathbf{g}(\mathbf{U}\cap\mathbf{I}')\big)<\delta.$$

Observe that for any points x_1, x_2 belonging to $U \cap I'$, we have

$$|f(x_2) - f(x_1)| < \delta$$
 and $|g(x_1) - g(x_2)| < \delta$,

thus the inequality

$$\left| F(f(x_1), g(x_1)) - F(f(x_2), g(x_2)) \right| < \frac{\varepsilon}{2}$$

is true. So, diam $(h(U'\cap I)) \le \frac{\varepsilon}{2} < \varepsilon$. Thus, the function h is strongly cliquish and the proof is finished.

THEOREM 5. Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function, let $f: \mathbb{R} \to \mathbb{R}$ be a strongly quasicontinuous function and let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then the functions $h_1(x) = F(f(x), g(x))$ and $h_2(x) = F(g(x), f(x))$ are strongly quasicontinuous.

Proof. Fix a point $x \in \mathbb{R}$, a set $A \in T_d$ containing x and a positive real ε . From the continuity of F, there is a real $\delta > 0$ such that for $u, v \in \mathbb{R}$ if

$$\max(|u - f(x)|, |v - g(x)|) < \delta$$
, then $|F(u, v) - F(f(x), g(x))| < \varepsilon$.

Since g is continuous there is an open interval

$$I \ni x$$
 with $g(I) \subset (g(x) - \delta, g(x) + \delta)$.

From the strong quasicontinuity of f, it follows that there is an open interval $I_1 \subset I$ such that

$$I_1 \cap A \neq \emptyset$$
 and $f(I_1 \cap A) \subset (f(x) - \delta, f(x) + \delta)$.

Consequently, for $y \in I_1 \cap A$ we have

$$|f(y) - f(x)| < \delta$$
, $|g(y) - g(x)| < \delta$ and $|F(f(y), g(y)) - F(f(x), g(x))| < \varepsilon$.
Thus, h_1 (and similarly h_2) is strongly quasicontinuous.

The paper pertains to continuous operations on pairs of functions. However, answering to a question of the referee, we show that quasicontinuity of F in Theorem 3, 4 and 5 and Remark 3 is not sufficient.

Indeed, the function

$$F(u,v) = \begin{cases} 0 & \text{if} & v = u \text{ and } u \in \mathbb{Q}, \\ 0 & \text{if} & v < u, \\ 1, & \text{othervise on} & \mathbb{R}^2 \end{cases}$$

is quasicontinuous and the superposition $(x,y) \to F(x,x)$ is not cliquish.

IV. Maximal F-families

Analogously as in the cases of maximal families for the addition and the multiplication of functions, we can define maximal F-families. Limit our consideration to continuous operations $F \colon \mathbb{R}^2 \to \mathbb{R}$. If Φ is a family of functions from \mathbb{R} to \mathbb{R} , then put

$$\begin{aligned} \operatorname{Max}_{\operatorname{lF}}(\Phi) &= \big\{ f \in \Phi; \, F(f,g) \in \Phi & \quad \text{for each} \quad g \in \Phi \big\}, \\ \operatorname{Max}_{\operatorname{rF}}(\Phi) &= \big\{ f \in \Phi; \, F(g,f) \in \Phi & \quad \text{for each} \quad g \in \Phi \big\}. \end{aligned}$$

Observe that there are families Φ for which $\operatorname{Max}_{\mathbb{I}\Phi} \neq \operatorname{Max}_{\mathbb{I}\Phi}$. For example,

1. If $F_3(u,v) = u^2$ and $\Phi = b\Delta'$ is the family of all bounded derivatives then $\operatorname{Max}_{\operatorname{IF}_3}(b\Delta')$ is the family of all bounded approximately continuous functions ([1], [9]) and $\operatorname{Max}_{\operatorname{rF}_3}(b\Delta') = \emptyset$.

ZBIGNIEW GRANDE — EWA STROŃSKA

2. Let \mathcal{Q} denotes the family of all quasicontinuous functions from \mathbb{R} to \mathbb{R} . Observe that for the operation $F_4(u,v)=u+v^2$ and the family \mathcal{Q} we have also $\operatorname{Max}_{\operatorname{IF}_4}(\mathcal{Q}) \neq \operatorname{Max}_{\operatorname{rF}_4}(\mathcal{Q})$. Indeed, let

$$f(x) = 1$$
 for $x \ge 0$ and $f(x) = -1$ for $x < 0$.

Since f^2 is constant and for the quasicontinuous function

$$g(x) = 2$$
 for $x > 0$ and $g(x) = 1$ for $x \le 0$,

the sum $f + g^2 \notin \mathcal{Q}$, the function $f \in \operatorname{Max}_{rF_4}(\mathcal{Q}) \setminus \operatorname{Max}_{lF_4}(\mathcal{Q})$.

Let \mathcal{C} denote the family of all continuous functions from \mathbb{R} to \mathbb{R} . From Remark 3 it follows that for each continuous operation $F: \mathbb{R}^2 \to \mathbb{R}$ we have

$$\mathcal{C} \subset \operatorname{Max}_{\operatorname{lF}}(\mathcal{Q}) \cap \operatorname{Max}_{\operatorname{rF}}(\mathcal{Q}).$$

Remark 4. Let F(u,v) = au + bv, where $a, b \neq 0$. Then

$$\operatorname{Max}_{\operatorname{lF}}(\mathcal{Q}) = \operatorname{Max}_{\operatorname{rF}}(\mathcal{Q}) = \mathcal{C}.$$

Proof. It is sufficient to prove $\operatorname{Max}_{\operatorname{IF}}(\mathcal{Q}) = \operatorname{Max}_{\operatorname{rF}}(\mathcal{Q}) \subset \mathcal{C}$. Fix a function $f \in \mathcal{Q} \setminus \mathcal{C}$. If there is a point $x \in \mathbb{R}$ at which f has at least one limit number $y_1 \in \mathbb{R}$ different from f(x), then we put

$$g(t) = \frac{-ay_1}{b}$$
 for $t = x$ and $g(t) = \frac{-af(t)}{b}$ for $t \neq x$.

Then $g \in \mathcal{Q}$, F(f(t), g(t)) = af(t) - af(t) = 0 for $t \neq x$ and $F(f(x), g(x)) = af(x) - ay_1 \neq 0$. So, the superposition $t \to F(f(t), g(t))$, $t \in \mathbb{R}$, is not quasicontinuous.

In the opposite case there are a point x and a sequence of points $x_n \neq x$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} |f(x_n)| = \infty$. Since f is quasicontinuous at the points x_n , $n \geq 1$, there are pairwise disjoint open intervals $I_n = (a_n, b_n)$ such that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = x$, $\lim_{n\to\infty} |f(a_n)| = \infty$ and $\operatorname{diam}(f(I_n)) < \frac{1}{n}$ for $n \geq 1$. For each integer $n \geq 1$ we find a closed interval $J_n \subset I_n$. Let $c \in \mathbb{R}$ be a real such that $af(x) - bc \neq 0$. Put

$$g(t) = -c$$
 for $t \in J_n, n \ge 1,$ $g(x) = -c,$

and

$$g(t) = \frac{-af(t)}{b}$$
, otherwise on \mathbb{R} .

Then $g \in \mathcal{Q}$ and the superposition $t \to F(f(t), g(t))$ is not quasicontinuous at the point x. This proves that $\operatorname{Max}_{\operatorname{IF}}(\mathcal{Q}) = \mathcal{C}$. The proof of the equality $\operatorname{Max}_{\operatorname{rF}}(\mathcal{Q}) = \mathcal{C}$ is similar.

In [5], it is proved that for the operation F(u, v) = uv we have

$$\operatorname{Max}_{\operatorname{lF}}(\mathcal{Q}) = \operatorname{Max}_{\operatorname{rF}}(\mathcal{Q}) \neq \mathcal{C}.$$

REFERENCES

- BRUCKNER, A.: Differentiation of Real Functions. Lectures Notes in Math., Vol. 659, Springer-Verlag, Berlin, 1978.
- [2] EWERT, J.—LIPIŃSKI, J.: On points of continuity, quasicontinuity and cliquishnees of real functions, Real Anal. Exchange 8 (1983), 473–478.
- [3] GRANDE, Z.: Some observations on the symmetrical quasicontinuity of Piotrowski and Vallin, Real Anal. Exchange **31** (2005–2006), 309–314.
- [4] GRANDE, Z.: On the continuity of symmetrically cliquish or symmetrically quasicontinuous functions, Real Anal. Exchange 32 (2006–2007), 195–204.
- [5] GRANDE, Z.: On the maximal multiplicative family for the class of quasicontinuous functions, Real Anal. Exchange 15 (1989–1990), 437–441.
- [6] GRANDE, Z.: On the maximal additive and multiplicative families for the quasicontinuities of Piotrowski and Vallin, Real Anal. Exchange 32 (2007), 511–518.
- [7] GRANDE, Z.: On some special notions of approximate continuity, Real Anal. Exchange 24 (1998–1999), 171–183.
- [8] GRANDE, Z.—SOLTYSIK, L.: Some remarks on quasicontinuous real functions, Problemy Mat. 10 (1990), 79–86.
- [9] IOSIFESCU, M.: Conditions that the product of two derivatives be a derivative, Rev. Roum. Math. Pures Appl. 4 (1959), 641–649. (In Russian)
- [10] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
- [11] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1989), 259–306.
- [12] PIOTROWSKI, Z.—VALLIN, R. W.: Conditions which imply continuity, Real Anal. Exch. 29 (2003–2004), 211–217.
- [13] TALL, F. D.: The density topology, Pacific J. Math. 62 (1976), 275-284.

Received November 13, 2008

Zbigniew Grande
The University of Computer Science and
Economics TWP Olsztyn
ul. Barczewskiego 11
PL-10-061 Olsztyn
POLAND
E-mail: grande@ukw.edu.pl

Ewa Strońska Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 PL-85-072 Bydgoszcz POLAND

E-mail: stronska@neostrada.pl