Tatra Mt. Math. Publ. **44** (2009), 81–96 DOI: 10.2478/v10127-009-0049-y

GENERALIZED EGOROFF'S THEOREM

Miroslav Repický

ABSTRACT. This note is closely related to the paper [R. Pinciroli: On the independence of a generalized statement of Egoroff's theorem from ZFC after T. Weiss, Real Anal. Exchange 32 (2006–2007), 225–232] and it presents slight improvements of its results. Theorem 1.13 shows a connection with Galois-Tukey embeddings; Corollary 1.14 presents another inequality which is dual to the previously known one; Corollary 3.5 shows that there is no distinction between positive outer measure and full outer measure in the given context; and Corollary 4.3 unifies the known counterexamples.

NOTATION. For $x, y \in {}^{\omega}\mathbb{R}$, $x \leq y$ means that $x(n) \leq y(n)$ for all $n \in \omega$ and $x \leq^* y$ means that $x(n) \leq y(n)$ for all but finitely many $n \in \omega$ (shortly written by $\forall^{\infty} n$). The set of all sequences of real numbers converging to 0 is denoted by c_0 ; c_0^+ is the set of all positive sequences from c_0 . Clearly, $c_0 \subseteq {}^{\omega}\mathbb{R}$ and ${}^{\omega}\omega \subseteq {}^{\omega}\mathbb{R}$; the restriction of \leq^* to c_0 and ${}^{\omega}\omega$ will be denoted by the same symbol. The σ -ideal on ${}^{\omega}\omega$ generated by compact subsets of ${}^{\omega}\omega$ is denoted by \mathcal{K}_{σ} . It is known that a set $A \subseteq {}^{\omega}\omega$ is in \mathcal{K}_{σ} if and only if there is $y \in {}^{\omega}\omega$ such that $x \leq^* y$ for all $x \in A$. The values of the composition of functions $f \circ g$ are computed by $f \circ g(x) = f(g(x))$.

If
$$\mathcal{I} \subseteq \mathcal{P}(X)$$
, then
$$\operatorname{add}(\mathcal{I}) = \min \big\{ \mathcal{F} \subseteq \mathcal{I} : \bigcup \mathcal{F} \notin \mathcal{I} \big\},$$

$$\operatorname{non}(\mathcal{I}) = \min \big\{ |Y| : Y \in \mathcal{P}(X) \setminus \mathcal{I} \big\},$$

$$\operatorname{cov}(\mathcal{I}) = \min \big\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{F} = X \big\},$$

$$\operatorname{cof}(\mathcal{I}) = \min \big\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{I} \text{ and } (\forall Y \in \mathcal{I}) (\exists Z \in \mathcal{F}) Y \subseteq Z \big\}.$$

Let us recall that

$$\mathfrak{b} = \operatorname{add}(\mathcal{K}_\sigma) = \operatorname{non}(\mathcal{K}_\sigma) \quad \text{and} \quad \mathfrak{d} = \operatorname{cov}(\mathcal{K}_\sigma) = \operatorname{cof}(\mathcal{K}_\sigma)$$

is the unbounding number and the dominating number, respectively.

 $^{2000~\}mathrm{Mathematics}$ Subject Classification: Primary 03E17; Secondary 03E35, 28A20, 40A30.

 $^{{\}tt Keywords}: {\tt Egoroff's theorem}, {\tt measure}, {\tt category}, {\tt cardinal invariants}, {\tt Galois-Tukey embeddings}.$

Supported by grant of Slovak Grant Agency VEGA 1/3002/26.

1. Generalized Egoroff's theorem

Let us recall that a sequence of real-valued functions $\langle f_n : n \in \omega \rangle$ quasinormally converges to f on X (shortly written by $f_n \xrightarrow{\mathrm{QN}} f$), if $(\exists \varepsilon \in c_0)(\forall x \in X)$ $(\forall^{\infty} n \in \omega) |f_n(x) - f(x)| < \varepsilon(n)$. The uniform convergence is denoted as usual by \rightrightarrows . Let us recall that the convergence on X is quasinormal if and only if X can be partitioned into countably many sets on which the convergence is uniform. Conversely, if X can be partitioned to $< \mathfrak{b}$ sets on which the convergence is uniform, then the convergence is quasinormal on X (see [4]).

Definition 1.1. Let $\mathcal{F} \subseteq \mathcal{P}(X)$. Let us consider the following statements:

- $E(\mathcal{F})$ Given a sequence $\langle f_n \colon n \in \omega \rangle$ of functions $f_n \colon X \to \mathbb{R}$ converging pointwise to 0, there exists a set $A \in \mathcal{F}$ such that $f_n \xrightarrow{\mathrm{QN}} 0$ on A.
- $E^*(\mathcal{F})$ Given a sequence $\langle f_n \colon n \in \omega \rangle$ of functions $f_n \colon X \to \mathbb{R}$ converging pointwise to 0, there exists a set $A \in \mathcal{F}$ such that $f_n \rightrightarrows 0$ on A.

Remark 1.2.

- (a) The sequence of functions $f_n \colon X \to \mathbb{R}$, $n \in \omega$ that pointwise converges to 0 on X can be identified with a single function $F \colon X \to c_0$ by setting $F(x)(n) = f_n(x)$ (see [8]). Sometimes when we speak about F, we will mean the sequence $\langle f_n : n \in \omega \rangle$. This convention will be applied mainly in the context of uniform and quasinormal convergence. In particular, $E(\mathcal{F})$ can be rephrased as follows: For every $F \colon X \to c_0$ there exists $A \in \mathcal{F}$ such that $F \xrightarrow{\mathbb{Q}\mathbb{N}} 0$ on A.
- (b) The definition of $E(\mathcal{F})$ can be equivalently restricted to monotone systems of functions because $f_n \xrightarrow{Q\mathbb{N}} 0$ if and only if $f'_n \xrightarrow{Q\mathbb{N}} 0$, where $f'_n(x) = \sup\{|f_k(x)| : k \geq n\}$.
- (c) If $\overline{\mathcal{F}}$ is the closure of \mathcal{F} under supersets, then $E(\overline{\mathcal{F}})$ is equivalent to $E(\mathcal{F})$, and $E^*(\overline{\mathcal{F}})$ is equivalent to $E^*(\mathcal{F})$.

DEFINITION 1.3 ([8]). We define $\alpha: c_0 \to {}^{\omega}\omega, \ \beta: {}^{\omega}\omega \to c_0, \ \theta: {}^{\omega}\omega \to {}^{\omega}\omega, \ and {}^{\sigma}: {}^{\omega}\omega \to {}^{\omega}\omega \ by$

$$\begin{split} &\alpha(x)(n) \, = \, \min \big\{ m \in \omega : (\forall \, k \geq m) \, \, x(k) \leq 2^{-n} \big\}, \\ &\theta(y)(n) \, = \, \max \Big(\big\{ n \big\} \cup \big\{ y(k) : k < n \big\} \Big), \\ &\beta(y)(k) \, = \, \min \big\{ 2^{-n} : \theta(y)(n) \leq k \big\}, \\ &y^{\to}(n) \, = \, \max \big\{ y(0), \, y(n+1) \big\} \end{split}$$

for $x \in c_0$, $y \in {}^{\omega}\omega$, and $n, k \in \omega$.

LEMMA 1.4. $\alpha \circ \beta = \theta$.

Proof.
$$\alpha(\beta(y))(n) = \min\{m : (\forall k \ge m) \beta(y)(k) \le 2^{-n}\}$$

 $= \min\{m : \beta(y)(m) \le 2^{-n}\}$
 $= \min\{m : \theta(y)(n) \le m\}$
 $= \theta(y)(n).$

Lemma 1.5. If $Y \subseteq {}^{\omega}\omega$, then $Y \in \mathcal{K}_{\sigma}$ if and only if $\theta(Y) \in \mathcal{K}_{\sigma}$.

Proof. If $Y \in \mathcal{K}_{\sigma}$, then $\theta(Y) \in \mathcal{K}_{\sigma}$ because θ is continuous. Conversely, let us assume that $\theta(Y) \in \mathcal{K}_{\sigma}$, i.e., there is $z \in {}^{\omega}\omega$ such that $\theta(y) \leq^* z$ for all $y \in Y$. Then, $y \leq^* z^{\to}$ for all $y \in Y$ and hence, $Y \in \mathcal{K}_{\sigma}$.

LEMMA 1.6.

- (1) $(\forall x \in c_0)(\exists y \in {}^{\omega}\omega) \ x \leq^* \beta(y); \text{ in fact } x \leq \beta(\alpha(2x)).$
- (2) $(\forall x \in c_0)(\forall z \in c_0^+ \text{ monotone}) \ x \leq^* z \Rightarrow \alpha(x) \leq^* \alpha(z) \Rightarrow x \leq^* 2z.$
- (3) $y \le \theta(y^{\rightarrow})$ for $y \in {}^{\omega}\omega$.
- (4) $(\forall y \in {}^{\omega}\omega)(\forall z \in {}^{\omega}\omega \text{ monotone unbounded}) \ y \leq^* z \Leftrightarrow \beta(y) \leq^* \beta(z).$

Proof.

- (1) $\beta(\alpha(2x))(k) = \min\{2^{-n}: \theta(\alpha(2x))(n) \le k\} = \min\{2^{-n}: n \le k \text{ and } \alpha(2x)(n-1) \le k\} \ge \min\{2^{-n}: (\forall i \ge k) \ 2x(i) \le 2^{-(n-1)}\} \ge x(k).$
- (2) As $z \in c_0^+$, then $x \leq^* z$ if and only if there is n_0 such that $z(k) \leq 2^{-n_0}$ implies $x(k) \leq z(k)$ and then $\alpha(x)(n) \leq \alpha(z)(n)$ for $n \geq n_0$. If $\alpha(x)(n) \leq \alpha(z)(n)$ for $n \geq n_0$, then as z is monotone, for every $k \in \omega$ and every $n \geq n_0$, $z(k) \leq 2^{-n}$ implies $x(k) \leq 2^{-n}$. Hence, $2^{-n-1} < z(k) \leq 2^{-n}$ implies $x(k) \leq 2^{-n} < 2z(k)$. Consequently, $x \leq^* 2z$.
- (4) $y \leq^* z$ implies $\theta(y) \leq^* \theta(z)$. Let n_0 be such that $\theta(y)(n) \leq \theta(z)(n)$ for all $n \geq n_0$. Then for $k \geq \theta(z)(n_0)$, $\{n : \theta(y)(n) \leq k\} \supseteq \{n : \theta(z)(n) \leq k\}$ and so $\beta(y)(k) \leq \beta(z)(k)$. Conversely, if $\beta(y) \leq^* \beta(z)$, then there is k_0 such that $\theta(z)(n) = k$ implies $\theta(y)(n) \leq k$ for $k \geq k_0$ and so, $\theta(y) \leq^* \theta(z)$ (notice that $\theta(z)$ is monotone unbounded). Now, as z is monotone unbounded, we can easily see that $y \leq^* z$.

Lemma 1.7. Let $F: X \to c_0$ and $G: X \to {}^{\omega}\omega$.

- (a) $F \xrightarrow{QN} 0$ on X if and only if $(\alpha \circ F)(X) \in \mathcal{K}_{\sigma}$.
- (b) $G(X) \in \mathcal{K}_{\sigma}$ if and only if $\beta \circ G \xrightarrow{QN} 0$ on X.

Proof. In the following equivalences, the assertions of Lemma 1.6 are applied:

$$F \xrightarrow{\mathrm{QN}} 0 \text{ on } X \Leftrightarrow (\exists \varepsilon \in c_0)(\forall x \in X) F(x) \leq^* \varepsilon$$

$$\Leftrightarrow (\exists y \in {}^\omega\omega)(\forall x \in X) F(x) \leq^* \beta(y) \qquad \text{by (1)},$$

$$\Leftrightarrow (\exists y \in {}^\omega\omega)(\forall x \in X) \alpha \circ F(x) \leq^* \theta(y) \qquad \text{by (2) and Lemma 1.4,}$$

$$\Leftrightarrow (\exists y \in {}^\omega\omega)(\forall x \in X) \alpha \circ F(x) \leq^* y \qquad \text{backward use (3)}.$$

$$\beta \circ G \xrightarrow{\mathrm{QN}} 0 \text{ on } X \Leftrightarrow (\exists y \in {}^\omega\omega)(\forall x \in X) \beta \circ G(x) \leq^* \beta(y) \quad \text{by (1)},$$

$$\Leftrightarrow (\exists y \in {}^\omega\omega)(\forall x \in X) G(x) \leq^* y \qquad \text{by (4)}.$$

THEOREM 1.8 ([8]). Let $\mathcal{F} \subseteq \mathcal{P}(X)$. The following conditions are equivalent:

- (1) $E(\mathcal{F})$ holds.
- (2) $(\forall F: X \to c_0)(\exists Y \in \mathcal{F}) \ \alpha \circ F(Y) \in \mathcal{K}_{\sigma}$.
- (3) $(\forall \varphi \colon X \to {}^{\omega}\omega)(\exists Y \in \mathcal{F}) \varphi(Y) \in \mathcal{K}_{\sigma}$.

Proof.

- $(1) \Leftrightarrow (2)$ holds by Lemma 1.7 (a).
- $(2) \Rightarrow (3)$: If $\varphi \colon X \to {}^{\omega}\omega$, then $\beta \circ \varphi \colon X \to c_0$ and so, by (2), there is $Y \in \mathcal{F}$ such that $\theta \circ \varphi(Y) = \alpha \circ \beta \circ \varphi(Y) \in \mathcal{K}_{\sigma}$. Hence, $\varphi(Y) \in \mathcal{K}_{\sigma}$ by Lemma 1.5.

The implication (3) \Rightarrow (2) is trivial because $\alpha \circ F \colon X \to {}^{\omega}\omega$ in (2).

We denote $\mathcal{I}^+ = \mathcal{P}(X) \setminus \mathcal{I}$ for an ideal $\mathcal{I} \subseteq \mathcal{P}(X)$.

COROLLARY 1.9. Let $\mathcal{F} \subseteq \mathcal{P}(X)$. Then $E(\mathcal{F})$ holds if and only if $E(\mathcal{I}^+)$ holds for every σ -ideal $\mathcal{I} \subseteq \mathcal{P}(X) \setminus \mathcal{F}$.

Proof. If $E(\mathcal{F})$ does not hold, then by (3) in Theorem 1.8 there exists $\varphi: X \to {}^{\omega}\omega$ such that $\varphi(Y) \notin \mathcal{K}_{\sigma}$ for all $Y \in \mathcal{F}$. This means that $\varphi^{-1}(\mathcal{K}_{\sigma}) \subseteq \mathcal{P}(X) \setminus \mathcal{F}$ is a σ -ideal on X, where $\varphi^{-1}(\mathcal{K}_{\sigma}) = \{Y \subseteq X : \varphi(Y) \in \mathcal{K}_{\sigma}\}$. Then φ witnesses that $E((\varphi^{-1}(\mathcal{K}_{\sigma}))^+)$ does not hold. Conversely, if there exists an ideal $\mathcal{I} \subseteq \mathcal{P}(X) \setminus \mathcal{F}$ such that $E(\mathcal{I}^+)$ does not hold, then $E(\mathcal{F})$ does not hold because $\mathcal{F} \subseteq \mathcal{I}^+$.

COROLLARY 1.10. If $|X| \leq \mathfrak{c}$ and $\mathcal{F} \subseteq \mathcal{P}(X)$, then $E(\mathcal{F})$ is equivalent to each of the following conditions:

- $(4) \left(\forall \varphi \colon X \xrightarrow{1-1} {}^{\omega} \omega \right) (\exists Y \in \mathcal{F}) \varphi(Y) \in \mathcal{K}_{\sigma}.$
- (5) $(\forall \varphi \colon X \xrightarrow{1-1} {}^{\omega}\omega)(\exists Z \in \mathcal{K}_{\sigma}) \varphi^{-1}(Z) \in \mathcal{F}.$

Proof. Let us fix a one-to-one enumeration $\{x_{\alpha} : \alpha < |X|\}$ of the set X and let us assume that (4) holds. We verify (3) in Theorem 1.8. Let $\varphi \colon X \to {}^{\omega}\omega$ be arbitrary. By induction on $\alpha < |X|$, we define $\varphi'(x_{\alpha}) = \varphi(x_{\alpha}) + y_{\alpha}$, where

 $y_{\alpha} \in {}^{\omega}2$ is such that $\varphi'(x_{\alpha}) \neq \varphi'(x_{\beta})$ for all $\beta < \alpha$. So, $\varphi' : X \to {}^{\omega}\omega$ is one-to-one and $\varphi(x) \leq \varphi'(x) \leq \varphi(x) + 1$. By (4) there is $Y \in \mathcal{F}$ such that $\varphi'(Y) \in \mathcal{K}_{\sigma}$ and then also $\varphi(Y) \in \mathcal{K}_{\sigma}$.

Let $\varphi \colon X \xrightarrow{1-1} {}^{\omega}\omega$. If (4) holds and $Y \in \mathcal{F}$ such that $Z = \varphi(Y) \in \mathcal{K}_{\sigma}$, then $\varphi^{-1}(Z) = Y \in \mathcal{F}$ and so, (5) holds. If (5) holds and $Z \in \mathcal{K}_{\sigma}$ is such that $Y = \varphi^{-1}(Z) \in \mathcal{F}$, then $\varphi(Y) = Z \in \mathcal{K}_{\sigma}$ and so, (4) holds.

COROLLARY 1.11. If $|X| = \mathfrak{c}$, $\mathcal{F} \subseteq \mathcal{P}(X)$, and there is $A \subseteq X$ of size \mathfrak{c} such that $Y \setminus A \in \mathcal{F}$ for all $Y \in \mathcal{F}$, then $E(\mathcal{F})$ is equivalent to each of the following conditions:

- (6) $(\forall \varphi : X \to {}^{\omega}\omega \ bijective)(\exists Y \in \mathcal{F}) \ \varphi(Y) \in \mathcal{K}_{\sigma}.$
- (7) $(\forall \varphi : {}^{\omega}\omega \to X \ bijective)(\exists Y \in \mathcal{F}) \ \varphi^{-1}(Y) \in \mathcal{K}_{\sigma}.$
- (8) $(\forall \chi : {}^{\omega}\omega \to X \text{ surjective})(\exists Z \in \mathcal{K}_{\sigma}) \ \chi(Z) \in \mathcal{F}.$

Proof. (6) and (7) are equivalent. Obviously condition (4) from Corollary 1.10 implies (6). We prove that (6) implies (4). Let $\varphi \colon X \xrightarrow{1-1} {}^{\omega} \omega$ be arbitrary. As $|A| = \mathfrak{c}$, we can find $\psi \colon A \to {}^{\omega} \omega$ such that the mapping $\varphi' = \varphi \upharpoonright (X \setminus A) \cup \psi$ is a bijection from X onto ${}^{\omega} \omega$. Applying (6) to φ' , we find $Y \in \mathcal{F}$ such that $\varphi'(Y) \in \mathcal{K}_{\sigma}$. Then $Y \setminus A \in \mathcal{F}$ and $\varphi(Y \setminus A) = \varphi'(Y \setminus A) \subseteq \varphi'(Y) \in \mathcal{K}_{\sigma}$. Therefore, $E(\mathcal{F})$ is equivalent to (4).

Clearly, (8) implies (6); we prove that (4) from Corollary 1.10 implies (8). If $\chi \colon {}^{\omega}\omega \to X$ is an arbitrary surjective function, then let φ be its arbitrary right inverse function, i.e., $\chi \circ \varphi = \mathrm{id}_X$. As φ is injective, there is $Y \in \mathcal{F}$ such that $Z = \varphi(Y)$ is in \mathcal{K}_{σ} . Then $\chi(Z) = Y \in \mathcal{F}$.

Let us note that we cannot remove "surjective" from (8) because it would be equivalent to the assertion $(\forall A \subseteq X) \ E(\mathcal{F} \upharpoonright A)$ (where $\mathcal{F} \upharpoonright A = \{Y \in \mathcal{F} : Y \subseteq A\}$).

COROLLARY 1.12. Let $\mathcal{F} \subseteq \mathcal{P}(X)$. If \mathcal{F} is closed under supersets, then $E(\mathcal{F})$ is equivalent to the assertion:

$$(9) \ (\forall \varphi : X \to {}^{\omega}\omega)(\exists Z \in \mathcal{K}_{\sigma}) \ \varphi^{-1}(Z) \in \mathcal{F}.$$

Proof. The implication from (9) to (3) does not require any assumptions because, if $Z \in \mathcal{K}_{\sigma}$ and $Y = \varphi^{-1}(Z) \in \mathcal{F}$, then $\varphi(Y) = Z \in \mathcal{K}_{\sigma}$. Conversely, if $Y \in \mathcal{F}$ and $Z = \varphi(Y) \in \mathcal{K}_{\sigma}$, like in (3), then $Y \subseteq \varphi^{-1}(Z)$. Hence, if \mathcal{F} is closed under supersets, then $\varphi^{-1}(Z) \in \mathcal{F}$.

Binary relations can be treated as triples $\mathbf{A}=(A_-,A_+,A)$, where A is a binary relation between sets A_- and A_+ . A morphism between binary relations \mathbf{A} and \mathbf{B} is a pair of functions $\varphi_-:A_-\to B_-$ and $\varphi_+:B_+\to A_+$ such that

$$B(\varphi_{-}(a), b)$$
 implies $A(a, \varphi_{+}(b))$

for all $a \in A_{-}$ and $b \in B_{+}$. The morphism $(\varphi_{-}, \varphi_{+})$ is called a *Tukey embedding* or a *Galois-Tukey embedding* (connection) (see [1] and [10]). We write $\mathbf{A} \leq \mathbf{B}$, if there exists a Galois-Tukey embedding between \mathbf{A} and \mathbf{B} ; we write $\mathbf{A} \simeq \mathbf{B}$, if $\mathbf{A} \leq \mathbf{B}$ and $\mathbf{B} \leq \mathbf{A}$.

Let $\mathcal{F} \subseteq \mathcal{P}(X)$ and let $\mathcal{I} = \mathcal{P}(X) \setminus \mathcal{F}$. If $\varphi \colon X \to {}^{\omega}\omega$ violates (9), then the pair of functions $\varphi \colon X \to {}^{\omega}\omega$ and $\psi = \varphi^{-1} \colon \mathcal{K}_{\sigma} \to \mathcal{I}$ form a Galois-Tukey embedding $(X,\mathcal{I},\in) \preceq ({}^{\omega}\omega,\mathcal{K}_{\sigma},\in)$ in the notation of [1], because $\varphi(x) \in Z$ implies $x \in \psi(Z)$ for $x \in X$ and $Z \in \mathcal{K}_{\sigma}$. Conversely, if a pair of functions (φ,ψ) is such an embedding, then φ violates (3) provided that \mathcal{F} is closed under supersets because, if $\varphi(Y) = Z \in \mathcal{K}_{\sigma}$, then $Y \subseteq \psi(Z) \in \mathcal{I}$. A little modification of this proof gives an embedding $(X,\mathcal{I},\in) \preceq ({}^{\omega}\omega,{}^{\omega}\omega,\leq^*)$ because $({}^{\omega}\omega,{}^{\omega}\omega,\leq^*) \simeq ({}^{\omega}\omega,\mathcal{K}_{\sigma},\in)$. This proves the following theorem.

THEOREM 1.13. Let $\mathcal{F} \subseteq \mathcal{P}(X)$ be closed under supersets and let $\mathcal{I} = \mathcal{P}(X) \setminus \mathcal{F}$. Then the following conditions are equivalent:

- (1) $\neg E(\mathcal{F})$ holds.
- (2) $(X, \mathcal{I}, \in) \leq ({}^{\omega}\omega, \mathcal{K}_{\sigma}, \in).$
- (3) $(X, \mathcal{I}, \in) \leq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$

Let us note that for the implications $(1) \to (2) \to (3) \to (2)$ we do not need the assumption that \mathcal{F} is closed under supersets and the following cardinal inequalities are consequences of the embedding $(X, \mathcal{I}, \in) \preceq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*)$.

COROLLARY 1.14. Let $\mathcal{F} \subseteq \mathcal{P}(X)$ and let $\mathcal{I} = \mathcal{P}(X) \setminus \mathcal{F}$. Then $\neg E(\mathcal{F})$ implies $\mathfrak{b} \leq \operatorname{non}(\mathcal{I})$ and $\operatorname{cov}(\mathcal{I}) \leq \mathfrak{d}$.

COROLLARY 1.15. Let $\mathcal{I} = \mathcal{P}(X) \setminus \mathcal{F}$ and let $L(\mathcal{F})$ denote the statement:

$$(\exists Z \subseteq {}^{\omega}\omega, |Z| \ge |X|)(\forall Y \subseteq Z) Y \in \mathcal{K}_{\sigma} implies |Y| < non(\mathcal{I}).$$

If $|X| \leq \mathfrak{c}$, then $L(\mathcal{F})$ implies $\neg E(\mathcal{F})$.

P roof. An easy application of condition (4) from Corollary 1.10.

Condition (3) of Theorem 1.8 has these easy consequences: \mathfrak{b} is the least cardinal κ such that there is a uniform ultrafilter \mathcal{F} on κ so that $\neg E(\mathcal{F})$ holds; \mathfrak{b} is the least cardinal κ such that $\neg E(\mathcal{F})$ holds for each uniform ultrafilter \mathcal{F} on κ .

We say that κ is an E-cardinal, if there exists a uniform ultrafilter \mathcal{F} on κ such that $E(\mathcal{F})$ holds. By Corollary 1.14 each $\kappa < \mathfrak{b}$ is an E-cardinal and every measurable cardinal κ is an E-cardinal because, if \mathcal{F} is a κ -complete ultrafilter on κ , then $\operatorname{cov}(\mathcal{P}(\kappa) \setminus \mathcal{F}) = \kappa > \mathfrak{d}$.

Question 1.16. When is a cardinal an E-cardinal?

2. Quasinormal versus uniform

Now, we try to compare the assertions $E(\mathcal{F})$ and $E^*(\mathcal{F})$.

Shortly, we will say that $\mathcal{F} \subseteq \mathcal{P}(X)$ is *closed*, if \mathcal{F} is closed under supersets, i.e., if $A \subseteq B \subseteq \mathcal{F}$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$. Let us consider some properties for \mathcal{F} . All next properties ensure that \mathcal{F} is closed. Without the closedness assumptions, these properties would be more complex.

- (F0) \mathcal{F} is closed and if $\bigcup_{m \in \omega} A_{n,m} \in \mathcal{F}$ for all $n \in \omega$, then there is $f \in {}^{\omega}\omega$ such that $\bigcup_{n \in \omega} \bigcup_{m \leq f(n)} A_{n,m} \in \mathcal{F}$.
- (F1) $\mathcal{F} = \bigcap_{n \in \omega} \mathcal{F}_n$ with $\mathcal{F}_n \subseteq \mathcal{P}(X)$ closed such that whenever $m \in \omega$ and $A_n \notin \mathcal{F}_m$ for $n \in \omega$, then there is k such that $\bigcup_{n \in \omega} A_n \notin \mathcal{F}_k$.
- (F2) $\mathcal{F} = \bigcap_{x \in [0,1)} \mathcal{F}_x$ with $\mathcal{F}_x \subseteq \mathcal{P}(X)$ closed such that whenever $A_n \subseteq X$ and $A_n \notin \mathcal{F}_{x_n}$ for $n \in \omega$, then for every x with $1 \ge x > \sup_n x_n$ there is y < x such that $\bigcup_{n \in \omega} A_n \notin \mathcal{F}_y$.
- (F3) $\mathcal{F} = \bigcap_{p \in P} \mathcal{F}_p$ where (P, \leq) is a partially ordered set and $\langle \mathcal{F}_p : p \in P \rangle$ is a system of closed subsets of $\mathcal{P}(X)$ such that
 - (1) For all $p, q \in P$, $p \leq q$ implies $\mathcal{F}_p \supseteq \mathcal{F}_q$.
 - (2) If $\bigcup_{n\in\omega}Y_n\in\mathcal{F}_p$ for all $p\in P$, then for every $p\in P$ there is $n\in\omega$ such that $Y_n\in\mathcal{F}_p$.

Example 2.1.

- (a) In [8], the case when $\mathcal{F} = \{Y \subseteq X : \mu^*(Y) = \mu^*(X)\}$ for some finite upward continuous monotone outer measure μ^* on X is considered. Then \mathcal{F} satisfies (F2) with $\mathcal{F}_x = \{Y \subseteq X : \mu^*(Y)/\mu^*(X) \geq x\}$. The corresponding system \mathcal{I} for Theorem 1.13 is the family of all sets $A \subseteq X$ such that $\mu^*(A) < \mu^*(X)$. Vice versa, if \mathcal{F}_x for $x \in [0,1]$ are as in (F2), then $\mu^*(Y) = \max\{x \in [0,1] : Y \in \bigcap_{y < x} \mathcal{F}_y\}$ is an outer measure with the stated properties. Notice that for condition (F1), the formula $\mu^*(Y) = \sup\{1 2^{-n} : Y \in \bigcap_{m < n} \mathcal{F}_m\}$ defines a finite monotone outer measure which is upward continuous (only) at the value 1.
- (b) Let X be a topological space and let P be a π -base of open sets in X. Let \mathcal{F}_p for $p \in P$ be the system of all sets $A \subseteq X$ such that $A \cap p$ is not meager. Then $\mathcal{F} = \bigcap_{p \in P} \mathcal{F}_p$ has property (F3) and \mathcal{I} is the system of all sets $A \subseteq X$ which are somewhere meager, i.e., there is $p \in P$ such that $p \cap A$ is meager.
- (c) The previous example is connected with Baire category. The measurability is involved in a similar way. Let P be the system of all perfect subsets of \mathbb{R} with positive measure and let \mathcal{F}_p be the system of all sets $A \subseteq \mathbb{R}$ such that $A \cap q \neq \emptyset$ for every $q \in P$ with $q \subseteq p$. Then $\mathcal{F} = \bigcap_{p \in P} \mathcal{F}_p$ has the property (F3) and \mathcal{I} is the system of all sets in \mathbb{R} which are disjoint from a set of positive measure.

It is easy to see that the implications $(F2) \Rightarrow (F1) \Rightarrow (F0)$ hold. Clearly, (F3) generalizes (F2) and (F1).

Lemma 2.2. Let $\mathcal{F} = \bigcap_{p \in P} \mathcal{F}_p$ where (P, \leq) is a partially ordered set with a cofinal subset of size $< \mathfrak{b}$ and $\langle \mathcal{F}_p : p \in P \rangle$ is a system of closed subsets of $\mathcal{P}(X)$ with property (F3). Then $E(\mathcal{F})$ holds if and only if $E^*(\mathcal{F}_p)$ holds for all $p \in P$.

Proof. Let $D \subseteq P$ be a cofinal subset of P of size $< \mathfrak{b}$ and let $F: X \to c_0$. If for every $p \in D$ there is $A_p \in \mathcal{F}_p$ such that $F \rightrightarrows 0$ on A_p , then $Y = \bigcup_{p \in D} A_p$ belongs to $\bigcap_{p \in D} \mathcal{F}_p = \bigcap_{p \in P} \mathcal{F}_p = \mathcal{F}$. Then $F \xrightarrow{\mathrm{QN}} 0$ on Y, since $|D| < \mathfrak{b}$. It follows that $E(\mathcal{F})$ holds.

Conversely, if $F: X \to c_0$, then as we assume $E(\mathcal{F})$, there is $Y \in \mathcal{F}$ such that $F \xrightarrow{\mathbb{Q}^{\mathbb{N}}} 0$ on Y. Let $Y_n \subseteq X$ for $n \in \omega$ be such that $Y = \bigcup_{n \in \omega} Y_n$ and $F \rightrightarrows 0$ on Y_n for all $n \in \omega$. By condition (2), for every $p \in P$, there is $n \in \omega$ such that $Y_n \in \mathcal{F}_p$. Consequently, $E^*(\mathcal{F}_p)$ holds for all $p \in P$.

LEMMA 2.3. Let $\langle \mathcal{F}_p : p \in P \rangle$ be a system of closed subsets of $\mathcal{P}(X)$ such that $\mathcal{F} = \bigcap_{p \in P} \mathcal{F}_p = \bigcap_{p \in D} \mathcal{F}_p$ for some set $D \subseteq P$ of size $\langle \mathfrak{b} | \text{ If } E^*(\mathcal{F}_p)$ holds for all $p \in D$, then $E(\mathcal{F})$ holds.

3. The case of measure and category

DEFINITION 3.1. Let $\mathcal{I} \subseteq \mathcal{P}(X)$ be an ideal and let $\mathcal{B} \subseteq \mathcal{P}(X)$ be a set algebra.

- (1) We say that \mathcal{B} is a *covering* of $\mathcal{P}(X)$ modulo \mathcal{I} , if for every $Y \subseteq X$ there exists $B \in \mathcal{B}$ such that $Y \subseteq B$ and $(\forall B' \in \mathcal{B})(Y \subseteq B' \text{ implies } B \setminus B' \in \mathcal{I})$. B is said to be a *cover* of Y.
- (2) We say that an ideal \mathcal{I} is \mathcal{B} -homogeneous, if for every set $B \in \mathcal{B}$ such that $B \notin \mathcal{I}$ there exists a function $f: X \to X$ such that $f(X \setminus B) \subseteq B$ and $Y \in \mathcal{I}$ if and only if $f(Y) \in \mathcal{I}$ for all $Y \subseteq X$. (If we define $f': X \to B$ by f'(x) = x for $x \in B$ and f'(x) = f(x) for $x \in X \setminus B$, then f' works, too.)
- $(3) \ \text{Let} \ \mathcal{I}^+ = \mathcal{P}(X) \setminus \mathcal{I} \ \text{and} \ \mathcal{I}^{++} = \{A \subseteq X : (\forall B \in \mathcal{B} \setminus \mathcal{I}) \ B \cap A \notin \mathcal{I}\}.$

Let us note that the condition in the definition of a \mathcal{B} -homogeneous ideal \mathcal{I} is enough to verify only for $B \in \mathcal{B}$ such that $B \notin \mathcal{I}$ and $X \setminus B \notin \mathcal{I}$ (because, if $x_0 \in B \in \mathcal{B}$ and $X \setminus B \in \mathcal{I}$, then the condition is trivially fulfilled for the function f defined by f(x) = x for $x \in B$ and $f(x) = x_0$ for $x \in X \setminus B$).

It is well-known that the σ -algebra of Borel sets is a covering of $\mathcal{P}(\mathbb{R})$ modulo the σ -ideal of meager sets \mathcal{M} as well as modulo the σ -ideal of null sets \mathcal{N} . The factor algebras Borel/ \mathcal{M} and Borel/ \mathcal{N} have both c.c.c.

Lemma 3.2. Let \mathcal{I}_1 and \mathcal{I}_2 be ideals on X and let $\mathcal{B} \subseteq \mathcal{P}(X)$ be a set algebra.

- (1) If \mathcal{B} is a covering of $\mathcal{P}(X)$ modulo \mathcal{I}_1 as well as modulo SI_2 , then \mathcal{B} is a covering of $\mathcal{P}(X)$ modulo $\mathcal{I}_1 \cap \mathcal{I}_2$.
- (2) If \mathcal{I}_1 and \mathcal{I}_2 are \mathcal{B} -homogeneous and \mathcal{B} -orthogonal (i.e., there exists $A \in \mathcal{B}$ such that $A \in \mathcal{I}_1$ and $X \setminus A \in \mathcal{I}_2$), then $\mathcal{I}_1 \cap \mathcal{I}_2$ is \mathcal{B} -homogeneous.

Proof. (1) is trivial. We prove (2). Let us fix $A \in \mathcal{B}$ such that $A \in \mathcal{I}_1$ and $X \setminus A \in \mathcal{I}_2$. Let $B \in \mathcal{B}$ be arbitrary such that $B \notin \mathcal{I}_1 \cap \mathcal{I}_2$. Then $B \cap A \notin \mathcal{I}_2$ and $B \setminus A \notin I$, and so there are functions $f_1 \colon X \to B \setminus A$ and $f_2 \colon X \to B \cap A$ such that for every $Y \subseteq X$,

$$Y \in \mathcal{I}_i$$
 if and only if $f_i(Y) \in \mathcal{I}_i$, $i = 1, 2$.

Let us define $f: X \to B$ by $f = (f_1 \upharpoonright (X \setminus A)) \cup (f_2 \upharpoonright A)$.

If $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$, then $f(Y) = f_1(Y \setminus A) \cup f_2(Y \cap A)$. Now, $f_1(Y \setminus A) \subseteq X \setminus A \in \mathcal{I}_2$ and $f_2(Y \cap A) \subseteq A \in \mathcal{I}_1$. Also, $f_1(Y \setminus A) \in \mathcal{I}_1$ and $f_2(Y \cap A) \in \mathcal{I}_2$ because $Y \setminus A \in \mathcal{I}_1$ and $Y \cap A \in \mathcal{I}_2$. Therefore, $f(Y) \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Conversely, if $f(Y) \in \mathcal{I}_1 \cap \mathcal{I}_2$, then $f_1(Y \setminus A) \in \mathcal{I}_1$ and $f_2(Y \cap A) \in \mathcal{I}_2$. It follows that $Y \setminus A \in \mathcal{I}_1$ and $Y \cap A \in \mathcal{I}_2$, and consequently, $Y = (Y \cap A) \cup (Y \setminus A) \in \mathcal{I}_1 \cap \mathcal{I}_2$.

From now on, if μ denotes a measure, then it denotes the Lebesgue measure.

Lemma 3.3. The ideals \mathcal{M} , \mathcal{N} , and $\mathcal{M} \cap \mathcal{N}$ are Borel-homogeneous ideals.

Proof.

- (a) The case of \mathcal{M} . Let B be a nonmeager Borel set such that $B' = \mathbb{R} \setminus B$ is nonmeager. There are meager sets $M \subseteq B$ and $M' \subseteq B'$ of size \mathfrak{c} such that $B \setminus M$ and $B' \setminus M'$ are homeomorphic to the Baire space ${}^{\omega}\omega$. Let $g \colon B \to B'$ be any bijection such that the restriction $g \upharpoonright (B \setminus M) \colon B \setminus M \to B' \setminus M'$ is a homeomorphism. Then $f = g \cup g^{-1}$ is a bijective mapping on \mathbb{R} preserving the Baire category and $f(\mathbb{R} \setminus B) = B$.
- (b) The case of \mathcal{N} . We say that a set $A \subseteq \mathbb{R}$ is nowhere null, if $\mu(P \cap I) > 0$ for every interval I with $A \cap I \neq \emptyset$.
- If $P,Q \subseteq \mathbb{R}$ are perfect nowhere null nowhere dense sets of finite measure, then there is a homeomorphism $f \colon P \to Q$ such that $\mu(f(U))/\mu(Q) = \mu(U)/\mu(P)$ for every relatively open set $U \subseteq P$. To see this, let us define f(x) = y if and only if $\mu(P \cap (-\infty, x))/\mu(P) = \mu(Q \cap (-\infty, y))/\mu(Q)$.

Now, let $B \subseteq \mathbb{R}$ be a Borel set of positive measure such that $A = \mathbb{R} \setminus B$ has positive measure. We can find infinite systems of disjoint perfect nowhere null nowhere dense sets of finite measure $\{A_n : n \in \omega\}$ and $\{B_n : n \in \omega\}$ such that $A_n \subseteq A$, $B_n \subseteq B$ for $n \in \omega$, and $A' = A \setminus \bigcup_{n \in \omega} A_n$ and $B' = B \setminus \bigcup_{n \in \omega} B_n$ are null sets of size \mathfrak{c} . For $n \in \omega$, let $f_n : A_n \to B_n$ be the measure preserving homeomorphisms defined in the previous paragraph and $g : A' \to B'$

be any bijection. Then the function $f = g \cup g^{-1} \cup \bigcup_{n \in \omega} f_n \cup f_n^{-1}$ is a bijective mapping preserving null sets and $f(\mathbb{R} \setminus B) = B$.

(c) The homogeneity of $\mathcal{M} \cap \mathcal{N}$ follows by Lemma 3.2.

For $X \subseteq \mathbb{R}$, let $\mathcal{N}(X)$ and $\mathcal{M}(X)$ denote the ideal of measure zero subsets of X and the ideal of meager subsets X, respectively. We can ask about those X for which $\mathcal{N}(X)$ or $\mathcal{M}(X)$ is homogeneous with respect to relatively Borel subsets of X. Obviously, the proof of Theorem 3.4 works also if X is measurable or has the Baire property, respectively. On the other hand, there may be (at least consistently with ZFC) also other such sets because, if \mathcal{I} is an ideal on X such that $\mathrm{add}(\mathcal{I}) = \mathrm{cof}(\mathcal{I})$, then \mathcal{I} is $\mathcal{P}(X)$ -homogeneous.

THEOREM 3.4. Let us assume that $\mathcal{I} \subseteq \mathcal{P}(X)$ is a σ -ideal and $\mathcal{B} \subseteq \mathcal{P}(X)$ is a σ -algebra which is a covering of $\mathcal{P}(X)$ modulo \mathcal{I} such that \mathcal{B}/\mathcal{I} has c.c.c. If \mathcal{I} is a \mathcal{B} -homogeneous ideal, then $E(\mathcal{I}^+)$ implies $E(\mathcal{I}^{++})$, i.e., the following two conditions are equivalent:

- (1) $(\forall \varphi \colon X \to {}^{\omega}\omega)(\exists Y \in \mathcal{I}^+) \varphi(Y) \in \mathcal{K}_{\sigma}$.
- (2) $(\forall \varphi \colon X \to {}^{\omega}\omega)(\exists Y \in \mathcal{I}^{++}) \varphi(Y) \in \mathcal{K}_{\sigma}.$

Proof. Let us assume that (1) holds, and we prove (2). Let $\varphi \colon X \to {}^{\omega}\omega$.

We claim that for every $B \in \mathcal{B} \setminus \mathcal{I}$ there exists $Y \subseteq B$ such that $Y \in \mathcal{I}^+$ and $\varphi(Y) \in \mathcal{K}_{\sigma}$. To see this, let us fix $B \in \mathcal{B} \setminus \mathcal{I}$. Let $f : X \to X$ be such that $f(X \setminus B) \subseteq B$ and $Y \in \mathcal{I}$ if and only if $f(Y) \in \mathcal{I}$ for all $Y \subseteq X$. Let us define $\varphi'(x) = \varphi(x)$ for $x \in B$ and $\varphi'(x) = \varphi(f(x))$ for $x \in X \setminus B$. By (1) there is $Z \in \mathcal{I}^+$ such that $\varphi'(Z) \in \mathcal{K}_{\sigma}$. If $Z \cap B \in \mathcal{I}^+$, then we set $Y = Z \cap B$. Otherwise, $Z \setminus B \in \mathcal{I}^+$ and then we set $Y = f(Z \setminus B)$. In both cases, $Y \subseteq B$, $Y \in \mathcal{I}^+$, and $\varphi(Y) \in \mathcal{K}_{\sigma}$.

Now, let F be a maximal system of pairs (Z,B), where $Z \in \mathcal{I}^+$, $\varphi(Z) \in \mathcal{K}_{\sigma}$, B is a cover of Z in \mathcal{B} modulo \mathcal{I} , and $B \cap B' \in \mathcal{I}$ for distinct $(Z,B),(Z',B') \in F$. Let $Y = \bigcup_{(Z,B) \in F} Z$. Then $Y \in \mathcal{I}^{++}$ and, as \mathcal{B}/\mathcal{I} has c.c.c., F is countable and so, $\varphi(Y) \in \mathcal{K}_{\sigma}$.

Obviously, the ideals \mathcal{M} , \mathcal{N} , and $\mathcal{M} \cap \mathcal{N}$ satisfy the assumptions of Theorem 3.4. Now, we can say a bit more than Theorem 1.13 says for the assertion $E(\mathcal{N}^{++})$.

COROLLARY 3.5.

- (a) The following conditions are equivalent:
 - (1) $\neg E(\mathcal{N}^+)$.
 - (2) $\neg E(\mathcal{N}^{++})$.
 - (3) $([0,1], \mathcal{N}, \in) \leq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$
 - (4) $([0,1], \{A \subseteq [0,1] : \mu^*(A) < 1\}, \in) \preceq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$

- (b) The following conditions hold:
 - (1) $\neg E(\mathcal{M}^+)$.
 - (2) $\neg E(\mathcal{M}^{++})$.
 - (3) $([0,1], \mathcal{M}, \in) \leq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$
 - (4) $([0,1], \{A \subseteq [0,1] : A \cap U \in \mathcal{M} \text{ for some open } U \neq \emptyset\}, \in) \preceq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$
- (c) The following conditions are equivalent:
 - (1) $\neg E((\mathcal{M} \cap \mathcal{N})^+)$.
 - (2) $\neg E((\mathcal{M} \cap \mathcal{N})^{++}).$
 - (3) $([0,1], \mathcal{M} \cap \mathcal{N}, \in) \leq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$
 - (4) $([0,1], \{A \subseteq [0,1] : A \cap U \in \mathcal{M} \cap \mathcal{N} \text{ for some open } U \neq \emptyset\}, \in) \preceq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*).$

Proof. The equivalences hold by Theorem 3.4 and by Theorem 1.13 in all three cases. It is well-known that there exists a Galois-Tukey morphism ([0,1], \mathcal{M} , \in) \leq ($\omega \omega$, $\omega \omega$, \leq *) (see [1], [6]).

COROLLARY 3.6. $E(\mathcal{N}^+)$ holds if and only if $E((\mathcal{M} \cap \mathcal{N})^+)$ holds.

Proof. Let us assume that $E((\mathcal{M} \cap \mathcal{N})^+)$ holds and let $F : \mathbb{R} \to c_0$ be given. As $\neg E(\mathcal{M}^+)$ holds, there is $H : \mathbb{R} \to c_0$ such that for every $Y \subseteq \mathbb{R}$, if $H \xrightarrow{Q\mathbb{N}} 0$ on Y, then $Y \in \mathcal{M}$. Let $G = \max\{F, H\}$. Then there is $Y \in (\mathcal{M} \cap \mathcal{N})^+$ such that $G \xrightarrow{Q\mathbb{N}} 0$ on Y. As $F \leq G$ also $F \xrightarrow{Q\mathbb{N}} 0$ on Y. Then $Y \in \mathcal{M}$ by the choice of H, and so $Y \in \mathcal{N}^+$. It follows that $E(\mathcal{N}^+)$ holds. The inverse implication is a consequence of the inclusion $\mathcal{N}^+ \subseteq (\mathcal{M} \cap \mathcal{N})^+$.

QUESTION 3.7. If $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \mathcal{P}(X)$, then $E(\mathcal{F}_1)$ implies $E(\mathcal{F}_2)$. This fact can be expressed by a Galois-Tukey embedding $(X, \mathcal{P}(X) \setminus \mathcal{F}_1, \in) \preceq (X, \mathcal{P}(X) \setminus \mathcal{F}_2, \in)$ given by the pair of identity functions. Under what conditions does an inverse embedding exist?

QUESTION 3.8. Which implications of the form $E(\mathcal{F}_1) \Rightarrow E(\mathcal{F}_2)$ with $\mathcal{F}_1, \mathcal{F}_2 \subseteq \mathcal{P}(X)$ do imply a Galois-Tukey embedding

$$(X, \mathcal{P}(X) \setminus \mathcal{F}_2, \in) \preceq (X, \mathcal{P}(X) \setminus \mathcal{F}_1, \in)$$
?

The assertion $E(\mathcal{N}^{++})$ is denoted by (GES) in [8]. By Corollary 3.5, \neg (GES) is equivalent to $\neg E(\mathcal{N}^{+})$ which by Corollary 1.11 is equivalent to the condition

$$(\exists \varphi \colon [0,1] \to {}^{\omega}\omega \text{ bijective})(\forall Y \in \mathcal{N}^+) \varphi(Y) \notin \mathcal{K}_{\sigma}.$$

Condition $L(\mathcal{N}^+)$ from Corollary 1.15 states the existence of a non (\mathcal{N}) - \mathcal{K}_{σ} -Luzin set of cardinality \mathfrak{c} (see Definition 4.1 below). Let us consider another condition:

(M) There exists a non-atomic real-valued σ -additive measure ν on a σ -algebra of subsets of ${}^{\omega}\omega$ such that $\nu({}^{\omega}\omega)=1$ and $\nu(K)=0$ for all $K\in\mathcal{K}_{\sigma}$.

Now, it is obvious that $L(\mathcal{N}^+)$ implies $\neg(GES)$ and $\neg(GES)$ implies (M).

4. Other questions related to $E(\mathcal{F})$

DEFINITION 4.1.

- (1) A sequence $\langle f_{\xi} : \xi < \kappa \rangle$ in ${}^{\omega}\omega$ is a *B-sequence*, if for every $f \in {}^{\omega}\omega$ there is $\eta < \kappa$ such that $f_{\xi} \not\leq^* f$ for all $\xi > \eta$. A cardinal κ is a *B-cardinal* (i.e., \mathfrak{b} like cardinal number), if there exists a *B*-sequence of the length κ .
- (2) Let $\mathcal{I} \subseteq \mathcal{P}(X)$. A set $Y \subseteq X$ is a κ - \mathcal{I} -Luzin set, if $|Y| \ge \kappa$ and $|Y \cap A| < \kappa$ for all $A \in \mathcal{I}$.
- (3) Let $F \subseteq \mathcal{P}(\omega)$ be a filter. For $f, g \in {}^{\omega}\omega$ we define

$$f \leq_F g \equiv (\exists A \in F)(\forall n \in A) \ f(n) \leq g(n).$$

Let \mathfrak{b}_F and \mathfrak{d}_F denote, respectively, the unbounding number and the dominating number for this quasi-ordering of ${}^{\omega}\omega$.

Let us note that $\mathfrak{b} = \mathfrak{b}_F$ and $\mathfrak{d} = \mathfrak{d}_F$ for Fréchet filter F. If $F \subseteq F'$ are filters that extend Fréchet filter, then $\mathfrak{b}_F \leq \mathfrak{b}_{F'} \leq \mathfrak{d}_{F'} \leq \mathfrak{d}_F$. The reader can find more information on cardinals \mathfrak{b}_F and \mathfrak{d}_F in [3].

Here, we list several facts on B-cardinals and \mathcal{K}_{σ} -Luzin sets:

THEOREM 4.2.

- (1) \mathfrak{b} is the least B-cardinal and if a filter F contains Fréchet filter, then \mathfrak{b}_F and \mathfrak{d}_F are B-cardinals.
- (2) κ is a B-cardinal if and only if cf κ is a B-cardinal.
- (3) If κ is a regular B-cardinal, then $\mathfrak{b} \leq \kappa \leq \mathfrak{d}$.
- (4) If $\kappa \leq \mathfrak{c}$ is a B-cardinal, then there exists a κ - \mathcal{K}_{σ} -Luzin set $X \subseteq {}^{\omega}\omega$ such that κ is the least cardinal such that X is a κ - \mathcal{K}_{σ} -Luzin set.
- (5) If there exists a κ - \mathcal{K}_{σ} -Luzin set $X \subseteq {}^{\omega}\omega$ of size λ , then $\mathfrak{b} \leq \kappa$ and every regular cardinal μ with $\kappa \leq \mu \leq \lambda$ is a B-cardinal. If, moreover, $\kappa < \lambda$, then $\lambda \leq \mathfrak{d}$.
- (6) A cardinal κ is a B-cardinal if and only if there exists a $cf(\kappa)$ - \mathcal{K}_{σ} -Luzin set in ${}^{\omega}\omega$.
- (7) If there exists a κ -Luzin set X of size λ , then $\operatorname{non}(\mathcal{M}) \leq \kappa$ and $\mu \leq \operatorname{cov}(\mathcal{M})$ for every regular cardinal μ with $\kappa \leq \mu \leq \lambda$. If, moreover, $\kappa < \lambda$, then $\mathfrak{b} = \operatorname{add}(\mathcal{M}) \leq \operatorname{non}(\mathcal{M}) \leq \kappa < \lambda \leq \operatorname{cov}(\mathcal{M}) \leq \operatorname{cof}(\mathcal{M}) = \mathfrak{d}$.
- (8) If $cov(\mathcal{M}) = cof(\mathcal{M}) = \kappa$, then there exists a κ -Luzin set of size κ .

- Proof. (1) Let $\langle f_{\xi} : \xi < \mathfrak{b} \rangle$ be an \leq_F -unbounded system of functions such that $f_{\xi} \leq_F f_{\eta}$ for $\xi < \eta < \mathfrak{b}$ and let $\langle g_{\xi} : \xi < \mathfrak{d} \rangle$ be a \leq_F -dominating system of functions such that $g_{\xi} \ngeq_F g_{\eta}$ for $\xi < \eta < \mathfrak{d}$. Both these sequences are B-sequences.
- For (2) it is enough to realize that elements in a B-sequence can repeat (not cofinally many times) and every cofinal subsequence of a B-sequence is a B-sequence.
- (3) If κ is a regular *B*-cardinal, then $\mathfrak{b} \leq \kappa$ by (1). We prove that also $\kappa \leq \mathfrak{d}$; by (2), cf \mathfrak{d} is a regular *B*-cardinal. Let $\langle f_{\xi} : \xi < \kappa \rangle$ be any *B*-sequence and let $D \subseteq {}^{\omega}\omega$ be a dominating family of size \mathfrak{d} . For $f \in D$ let $X_f = \{\xi < \kappa : f_{\xi} \leq^* f\}$. Clearly, $|X_f| < \kappa$ and $\kappa = \bigcup_{f \in D} X_f$. It follows that $|D| \geq \kappa$ because κ is regular.
- (4) Let $\langle f_{\xi} : \xi < \operatorname{cf} \kappa \rangle$ be a *B*-sequence and let $D_{\xi} \subseteq {}^{\omega}2$ for $\xi < \operatorname{cf} \kappa$ be such that $|D_{\xi}| < \kappa$ and $|\bigcup_{\xi < \operatorname{cf} \kappa} D_{\xi}| = \kappa$. Define $X = \{f + g : (\exists \xi < \operatorname{cf} \kappa) \ f = f_{\xi}$ and $g \in D_{\xi}\}$. Clearly $|X| = \kappa$ and X is a κ - \mathcal{K}_{σ} -Luzin set with κ minimal.
- (5) If $\sigma = \langle f_{\xi} : \xi < \mu \rangle$ is a sequence of distinct elements of X, then σ is a B-sequence whenever of $\mu \geq \kappa$. The inequality $\mathfrak{b} \leq \kappa$ holds because every subset of X of size $< \mathfrak{b}$ is bounded, and hence has size $< \kappa$. By an argument similar to the proof of (3), we can see that if $\kappa < \lambda$ then $\lambda \leq \kappa \mathfrak{d} = \mathfrak{d}$.
- (6) By (2), we can restrict to regular cardinals. For regular cardinals, the assertion follows by (4) and (5).
- (7) $\operatorname{non}(\mathcal{M}) \leq \kappa$ because every subset of X of size $< \operatorname{non}(\mathcal{M})$ is meager and hence has size $< \kappa$. Let us assume that $\kappa \leq \mu \leq \lambda$ and μ is regular. If C is a system of meager subsets of X covering X, then $|\bigcup C| \geq \mu$ and, as each set in C has size $< \mu$ and μ is regular, it follows that $|C| \geq \mu$. Therefore, $\operatorname{cov}(\mathcal{M}) \geq \mu$. So, if $\kappa < \lambda$, then $\operatorname{cov}(\mathcal{M}) \geq \lambda$, and the rest is a consequence of the equalities $\operatorname{add}(\mathcal{M}) = \min\{\operatorname{cov}(\mathcal{M}), \mathfrak{b}\}$ and $\operatorname{cof}(\mathcal{M}) = \max\{\operatorname{non}(\mathcal{M}), \mathfrak{d}\}$ (see [6], [2]).
- (8) Let $\langle M_{\alpha} : \alpha < \kappa \rangle$ be an enumeration of a base of \mathcal{M} . By induction, choose $x_{\alpha} \in \mathbb{R} \setminus \bigcup_{\beta < \alpha} M_{\beta}$. Then $X = \{x_{\alpha} : \alpha < \kappa\}$ is a κ -Luzin set.

Let us note that κ is a B-cardinal if and only if there exists a Galois-Tukey morphism $(\kappa, \kappa, \leq) \leq ({}^{\omega}\omega, {}^{\omega}\omega, \leq^*)$. For example, if $\langle f_{\xi} : \xi < \kappa \rangle$ is a B-sequence, then the pair of functions $\varphi \colon \kappa \to {}^{\omega}\omega$ and $\psi \colon {}^{\omega}\omega \to \kappa$ defined by $\varphi(\xi) = f_{\xi}$ and $\psi(f) = \sup\{\xi : f_{\xi} \leq^* f\}$ is a morphism because $\varphi(\xi) \leq^* f$ implies $\xi \leq \psi(f)$. This fact gives another argument for conditions (2) and (3). We do not know whether supremum of regular B-cardinals can be strictly smaller than \mathfrak{d} (in this case, by (1), \mathfrak{d} must be singular).

By adding Cohen reals, we obtain a model in which $\mathfrak{b} = \omega_1 < \mathfrak{c}$ and there is an ω_1 - \mathcal{K}_{σ} -Luzin set of cardinality \mathfrak{c} . In this model every regular cardinal with $\omega_1 \leq \kappa \leq \mathfrak{c}$ is the cofinality \mathfrak{d}_U of an ultraproduct ${}^{\omega}\omega/U$ for some ultrafilter U on ω (see [5]).

Using B-cardinals, we can rewrite Corollary 1.15 as follows (compare with [8, Proposition 8]):

COROLLARY 4.3. Let $|X| \leq \mathfrak{c}$, let $\mathcal{F} \subseteq \mathcal{P}(X)$, and let $\mathcal{I} = \mathcal{P}(X) \setminus \mathcal{F}$.

- (1) If there exists a non(\mathcal{I})- \mathcal{K}_{σ} -Luzin set of size |X|, then $\neg E(\mathcal{F})$ holds.
- (2) If |X| is a B-cardinal and $non(\mathcal{I}) = |X|$, then $\neg E(\mathcal{F})$ holds.

Notice that (2) is a special case of (1).

In the case of measure, Corollary 4.3 states:

COROLLARY 4.4 ([8, Proposition 8]).

- (1) If there exists a non(\mathcal{N})- \mathcal{K}_{σ} -Luzin set of size \mathfrak{c} , then \neg (GES) holds.
- (2) If \mathfrak{c} is a B-cardinal and $\operatorname{non}(\mathcal{N}) = \mathfrak{c}$, then $\neg(\operatorname{GES})$ holds.

Let us recall a theorem of W. Sierpiński ([9, Proposition P_3]): CH holds if and only if there are functions $f_n \colon \mathbb{R} \to \mathbb{R}$ for $n \in \omega$ such that $(\forall A \in [\mathbb{R}]^{\geq \omega_1})$ $(\forall^{\infty} n \in \omega) f_n(A) = \mathbb{R}$. This theorem was a motivation for the next characterization of κ - \mathcal{K}_{σ} -Luzin sets.

Theorem 4.5. The following conditions are equivalent for any $\kappa \leq \lambda \leq \mathfrak{c}$ with cf $\kappa \geq \omega_1$:

- (1) There is a κ - \mathcal{K}_{σ} -Luzin set of size λ .
- (2) There are functions $f_n : \lambda \to \omega$ for $n \in \omega$ such that $(\forall A \in [\lambda]^{\kappa})(\forall^{\infty} n \in \omega)$ $|f_n(A)| = \omega$.
- (3) There are functions $f_n : \lambda \to \omega$ for $n \in \omega$ such that $(\forall A \in [\lambda]^{\kappa})(\exists n \in \omega)$ $|f_n(A)| = \omega$.

Proof. (1) \Rightarrow (3): Let $L \subseteq {}^{\omega}\omega$ be a κ - \mathcal{K}_{σ} -Luzin set of size λ and let $\{g_{\xi} : \xi < \lambda\}$ be a one-to-one enumeration of L. Let us define $f_n : \lambda \to \omega$ by $f_n(\xi) = g_{\xi}(n)$. To obtain a contradiction, let us assume that there is $A \in [\lambda]^{\kappa}$ such that $|f_n(A)| < \omega$ for all $n \in \omega$. Hence, there is $h \in {}^{\omega}\omega$ such that $f_n(\xi) \leq h(n)$ for all n. Then $\{g_{\xi} : \xi \in A\} \in \mathcal{K}_{\sigma}$ which is a contradiction.

- $(3) \Rightarrow (1)$: Let $f_n \colon \lambda \to \omega$ for $n \in \omega$ satisfy (3). Let us define $g_{\xi} \in {}^{\omega}\omega$ by $g_{\xi}(n) = f_n(\xi)$. By induction on $\xi < \lambda$, let us define $h_{\xi} = g_{\xi} + y_{\xi}$ where $y_{\xi} \in {}^{\omega}2$ is such that $h_{\xi} \neq h_{\eta}$ for all $\eta < \xi$. Then the set $L = \{h_{\xi} : \xi < \lambda\}$ has size λ and we prove that it is a κ - \mathcal{K}_{σ} -Luzin set. To obtain a contradiction let us assume that we have $A \in [\lambda]^{\kappa}$ such that $\{h_{\xi} : \xi \in A\} \in \mathcal{K}_{\sigma}$. As cf $\kappa > \omega$, there is $B \in [A]^{\kappa}$ and $h \in {}^{\omega}\omega$ such that $h_{\xi} \leq h$ for all $\xi \in B$. Then $f_n(\xi) \leq h_{\xi}(n) \leq h(n)$ for all $\xi \in B$ and $n \in \omega$ which contradicts condition (3).
- $(3) \Rightarrow (2)$: If $f_n : \lambda \to \omega$ for $n \in \omega$ satisfy (3), then $f'_n(\xi) = \max\{f_i(\xi) : i \leq n\}$ for $n \in \omega$ satisfy (2). The implication (2) \Rightarrow (3) is trivial.

For a while, let us consider a special case of Corollary 4.3:

Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{R})$ and $\mathcal{I} = \mathcal{P}(\mathbb{R}) \setminus \mathcal{F}$ be such that $\mathcal{F} \cap [\mathbb{R}]^{\leq \omega} = \emptyset$. Then CH implies $\neg E(\mathcal{F})$. (Because non(\mathcal{I}) = \mathfrak{c} and there exists a \mathfrak{c} - \mathcal{K}_{σ} -Luzin set of size \mathfrak{c} .)

This special case has this application: If $\mathcal{F} \subseteq \mathcal{P}(X)$ does not contain countable sets and the definition of \mathcal{F} does not contradict either CH or $|X| = \omega_1$, then $E(\mathcal{F})$ is not provable in ZFC, i.e., $E(\mathcal{F})$ is independent from ZFC if and only if $E(\mathcal{F})$ is consistent with ZFC.

EXAMPLES.

- 1. Let $\mathcal{E} \subseteq \mathcal{P}(\mathbb{R})$ be the σ -ideal generated by closed sets of measure 0. Then $\mathcal{E} \subseteq \mathcal{M} \cap \mathcal{N}$ and $E((\mathcal{M} \cap \mathcal{N})^+)$ is consistent with ZFC by Corollary 3.6 (because $E(\mathcal{N}^{++})$ is consistent, see [8] or [11]). As $(\mathcal{M} \cap \mathcal{N})^+ \subseteq \mathcal{E}^+$, $E(\mathcal{E}^+)$ is consistent with ZFC and hence independent from ZFC.
- 2. Let s^0 be the Marczewski ideal. It is well-known that $\mathfrak{d} < \cos(s^0)$ holds in the forcing extension of a model of ZFC + CH via a countable support iteration of Sacks forcing of length ω_2 (see [1] and [7]). Therefore, $E((s^0)^+)$ is consistent by Corollary 1.14 and consequently, $E((s^0)^+)$ is independent from ZFC.
- 3. Let $(s^0)^{++}$ be the family of all sets $Y \subseteq \mathbb{R}$ such that $Y \cap P \neq \emptyset$ for all perfect subsets $P \subseteq \mathbb{R}$. We prove $\neg E((s^0)^{++})$: Let $\varphi \colon \mathbb{R} \to {}^\omega \omega$ be such that the restriction $\varphi \upharpoonright \mathbb{Ir} \colon \mathbb{Ir} \to {}^\omega \omega$ is a homeomorphism from the set of irrational numbers onto the Baire space. Now, if there is $f \in {}^\omega \omega$ such that $\varphi(y) \leq^* f$ for all $y \in Y$, i.e., $\varphi(Y) \in \mathcal{K}_\sigma$, then the set $Z = \{x \in {}^\omega \omega : (\forall n \in \omega)(x(n) = f(n) + 1 \text{ or } x(n) = f(n) + 2)\}$ is compact perfect subset of ${}^\omega \omega$ and $\varphi^{-1}(Z) \cap \mathbb{Ir}$ is a perfect set disjoint from Y. Therefore, $Y \notin (s^0)^{++}$. It follows that $\neg E((s^0)^{++})$ holds.

REFERENCES

- BARTOSZYŃSKI, T.: Invariants of measure and category, in: Handbook of Set Theory (M. Foreman, A. Kanamori, eds.), Springer-Verlag, Berlin, 2009, pp. 491–555.
- [2] BARTOSZYŃSKI, T.—JUDAH, H.: Set Theory. On the Structure of the Real Line. A. K. Peters, Ltd., Wellesley, MA, 1995.
- [3] BLASS, A.—MILDENBERGER, H.: On the cofinality of ultrapowers, J. Symbolic Logic **64** (1999), 727–736.
- [4] BUKOVSKÝ, L.—RECLAW, I.—REPICKÝ, M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25–40.
- [5] CANJAR, R. M.: Countable ultraproducts without CH, Ann. Pure Appl. Logic 37 (1988), 1–79.
- [6] FREMLIN, D. H.: Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Semin. Initiation Anal. 23ème Année–1983/84, Exp. No. 5, (1984), 13 p.
- [7] JUDAH, H.—MILLER, A. W.—SHELAH, S.: Sacks forcing, Laver forcing, and Martin's axiom, Arch. Math. Logic 31 (1992), 145–161.
- [8] PINCIROLI, R.: On the independence of a generalized statement of Egoroff's theorem from ZFC after T. Weiss, Real Anal. Exchange 32 (2006–2007), 225–232.

- [9] SIERPIŃSKI, W.: Hypothèse du Continu, Monografje Matematyczne, Vol. 4, Subwencji Funduszu Kultur. Narodowej. V, Warszawa-Lwow, 1934.
- [10] VOJTÁŠ, P.: Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis, in: Set Theory of the Reals (J. Judah, ed.), Israel Math. Conf. Proc., Vol. 6, Ramat Gan, 1991, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619–643.
- [11] WEISS, T.: A note on generalized Egorov's theorem (preprint 2004).

Received December 1, 2008

Mathematical Institute Slovak Academy of Sciences Jesenná 5 SK-041-54 Košice SLOVAKIA

Department of Computer Science
Faculty of Science
P. J. Šafárik University
Jesenná 5
SK-041-54 Košice
SLOVAKIA

 $E\text{-}mail: repicky@kosice.upjs.sk\\ URL: kosice.upjs.sk/~repicky$