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ON SOME CHARACTERIZATIONS OF BAIRE
CLASS ONE FUNCTIONS AND BAIRE CLASS ONE
LIKE FUNCTIONS
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ABSTRACT. The basis of our considerations is a characterization of Baire class
one functions presented by [Pen-Yee Lee — Wee-Kee Tang — Doingsheng Zhao:
An equivalent definition of functions of the first Baire class, in: Proc. Amer.
Math. Soc., Vol. 129, 2000, pp. 2273-2275]. In the first part of this paper, we
will prove an analogous characterization for functions belonging to the class B*.
In the last part, we will consider various classes of functions connected with the
characterization mentioned above, which permits to give a new characterization
of Baire class one functions.

Introduction

Despite the fact that the class of Baire one functions is well-known and has
been investigated for more than hundred years, new results permitting to dis-
cover new properties of these functions have appeared recently. New characteriza-
tions of the Baire one functions seem to be especially interesting (e.g., [1], [6], [3]).
Our investigations will be based on characterization presented in [3]. In the first
part of this paper, we will consider real functions defined on compact metric
spaces. The main result of this part is contained in Theorem [Bl which gives a
characterization of functions belonging to the family Bj* In [7], the author pre-
sented some possible directions of generalizations of Baire class one functions.
In the last part of this paper, we will continue these considerations. The main
results of this part of the paper are connected with a characterization of Baire
class one functions and a diagram, which finishes the considerations.
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Keywords: Baire one function, Bf*function, uniformly continuous function, lower semicon-
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Preliminaries

We will use standard definitions and notations (see e.g., [2]). In particular,
by N (Q, R, R, ) we denote the set of positive integers (rational numbers, real
numbers and positive real numbers, respectively).

Let (X, dx) be a metric space. We will write it simply X so that no confusion
can arise. For an arbitrary set A C X, A will denote the closure of A. We will
use the symbol B(zg,r) to denote an open ball with the centre at z¢ and the
radius . We say that A C X is an od-set, if A is an open dense set.

If f: X — Y is an arbitrary function and A C X, then by f | A we denote the
restriction of f to the set A. Let us denote by Cy (Dy) the set of all continuity
(discontinuity) points of f.

Let (X,dx), (Y,dy) be metric spaces and f: X — Y be a function.

If z € Cf and € > 0, by of(z), we will denote a positive real number such
that for each y € X

if dy(z,y) <ol(x), then dy(f(z) f(y))<e. (1)

If AC X,e>0and f | Ais uniformly continuous, by o/ (A), we will denote
a positive real number such that for each z,y € A

if dx(z,y) <ol(4), then dy(f(z) f(y) <e. (2)

A function f: X — Y is said to be of the first Baire class, if f~1(G) is F,
for every open set G C Y (cf. [3], [7]). The family of all Baire class one functions
f: X — Y will be denoted by Bj.

A function f: X — Y is said to be B}* function if Dy = 0 or f | Dy is a
continuous function (cf. [3]).

1. Baire class one functions

In the beginning, we will remind the characterisation of B; functions proved
by Peng-Yee Lee, Wee-Kee Tang and Doingsheng Zhao:

THEOREM 1 ([3]). Let (X,dx), (Y,dy) be complete separable metric spaces
and f: X =Y. The following statements are equivalent

(a‘) f € Bla
(b) for any € > 0 there ewists a function §/: X — R, such that for every
x,y € X

if  dx(z,y) <min{6{(z),0(y)}, then dy(f(x),f(y)) <e.
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Note that for a fixed function f and a fixed number € > 0, one can find more
than one function §/ satisfying condition (b). An example of such a situation
will be described in Proposition Pl First, we will introduce the notation which
will be useful throughout this part of the paper:

For a fixed function f € B; and a real number ¢ > 0, let us denote by B.(f)
the family of all functions 6/ satisfying condition (b)

if dx (z,y) < min{d{(2),6{(y)}, then dy (f(x), f(y)) <e.

PROPOSITION 2. Let (X,dx) be a complete separable (nonsingleton) metric
space. Letc e R, r € X, g: X\ {r} — R be a continuous function and f: X — R
be a function given by formula

~Jglx) difx#,
J) = {c ifx=nr.

For a fivzed number € > 0 and for arbitrary numbers p,q € R such that p > 0,
q>1, let us put

p fr=r,
5g,p,q(x) = min{w,ag(x)} if 0 < dx(z,7) <p,
ol (x) ifp < dx(z,7).
Then we have {61 , . :p > 0,q > 1} C B-(f).

The notion of the family B.(f) (for a fixed function f € Bj) is a starting
point for the characterization of the class B;* (Theorem [Bl) similar to the char-
acterization presented in Theorem [l First, we will extend results connected with
the family Bi™

LEMMA 3. A function f: X — R belongs to the class B{* if and only if either
D¢ =0 or f | Dy is a continuous function.

Proof. [] Necessity. Suppose, contrary to our claim, that there exists xo € D_f
such that the function f | Dy is discontinuous at zo. We have

X EDf. (3)

Since the function f | Dy is discontinuous at xo, there exists a number g > 0
such that for each n € N there exists z,, € Dy such that

dx (1, 20) < % and  dy (f(zn), f(z0)) > 0. (4)
Put _
A=Y\ B (f(@0), ).

Lwe will adapt the proof from [5] connected with the functions defined on metric spaces.
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Then from (@), one can infer that there exists a sequence (z,)nen C Dy,
such that
Tp X xo and f(z,) € AforneN. (5)
n—oo

Since f[Dy is continuous, the set of terms of the sequence (x,),cn belonging
to Dy is finite, so, without loss of generality, we may assume that (z,)nen C
D_f \ Df C Cf.

For any open set U,, 3 z, (n = 1,2,...), we have U, N Dy # (. The set
A is open, so for each n € N there exists an open set V,, > f(z,) such that
V., C A. Hence, from continuity of f at x,, (forn =1,2,...), we have that there
exists a point z, € {z € X : dx(z,2,) < 1} N Dy such that f(z,) € V;,, C
A. Then, (2n)nen C Dy and z, X xo. According to continuity of f [ Dy,

n—oo

from (Bl), we have f(z,) - f(x0), so f(zg) € A, which contradicts the fact that
n—oo

B (f(z0), %) N A= 0. This means that f | Dy is continuous.
Sufficiency is obvious. O

LEMMA 4 ([3]). If f € B, then Dy is a nowhere dense set.

Let (X,dx) be a metric space and f: X — R be a function for which there
exists an od-set G C Cy. For fixed numbers € > 0 and n > 0 we will denote by
6% ¢+ X — R a function given by the formula

e min {1dx(z, X\ G),0l(z)} ifzeq,
6pg(a) = .
’ n ifz ¢ G.

Until the end of this part, we will assume compactness of the domain of
considered real functions.

THEOREM 5. A function f: X — R belongs to the class BY* if and only if
there exists an od-set G C Cy such that for each € > 0 there exists n > 0 such
that 07'¢, € Be(f).

Proof. Necessity. Let f: X — R be a B}* function. Let us establish ¢ > 0.
If f is a continuous function, then we put G = X. Now, we assume that D; # ()
and we put G = X \ Dy. According to Lemma [ one can deduce that G is a
dense set. Moreover, we have G C Cy, so, for each x € G, there exists a number
o!(z) > 0 such that

if dx(z,y) < of(x), then |f(z) — f(y)| <e. (6)

Since f is a B* function, Lemma [3] permits to infer that f | (X \ G) = f | Dy
is an uniformly continuous function. So there exists o (X \ G) > 0 such that for
each z,y € X\ G

if dx (x,y) < ol (X \ G), then |f(z) — f(y)| <e. (7)
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Now, it is sufficient to show that for n = ¢/ (X \ G) the function 07 ¢; belongs to
the family B.(f).

Let ,y € X be such that dx(z,y) < min{d};%(x),074(y)}. One can consider
the following cases:

(1) z,y € G. Then dx(x,y) < min{c/(x),of(y)} and from (@) we infer that
[f(x) = f(y)| <e.
(2) z,y€X\G. Then, dx(x,y)<n, and from (1), we infer that | f(z)—f(y)| <e.

(3) z€ X\ G and y € G. Then . )
Ax(r,) >0 and dx(2,y) < 555() < 5x(5, X\ G) < 5dx(r,9),

which is impossible.

Sufficiency. Let f: X — R be a function and G C Cy be an od-set such that
for each £ > 0 we have ¢3¢, € Be(f) for some 1 > 0. We will prove that

f1 Dy
is continuous. Since G C C, we have Dy C X \ G, so it is sufficient to show that
(X\G)

is continuous. Fix ¢ > 0. Let =,y € X \ G be points such that dx(z,y) < n =
min{d34(2),074(y)}. Since 63¢, € Be(f), it follows that |f(z) — f(y)| < e.
According to the arbitrariness of the choice of z,y € X \ G we may infer that

[(X\G)
is an uniformly continuous function, which finishes the proof. O
Note that the sum of Bi* functions does not need to belong to Bi* class. For

the proof of this statement, it is sufficient to consider the functions f,g: R — R
given by the formulas

fa) x if:EE{%:nEN}, () 1 ifz=0,
x) = =

0 ifz¢{l:neN}, 0 ifz#0.
Theorem [l allows us to give a sufficient condition for the situation when the sum

of Bi* functions is also a B}* function.

THEOREM 6. If for functions f,g: X — R there ezists an od-set G C Cy N Cy,
such that 66 e B.(f) and 6;25’ € B.(g) for some ns,n, > 0, then f andg
belong to the common additive semi-group of BY* functions.

Proof. Let G be an od-set fulfilling the assumptions of our theorem. We denote
by H the family of functions h: X — R such that h | G and h [ (X \ G) are
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continuous. It is obvious that # is an additive semi-group. Let us observe that
heH if and only if

(G C Cy, and there exists 7, > 0 such that J, 7 GBE(h)> . (8)

Indeed, for h € H it is obvious that G C C}. The function h | (X \ G) is
continuous and (X \ G) is a closed set, so h | (X \ G) is a uniformly continuous
function. This means that there exists a number o(X \ G) > 0 such that for
each z,y € X\ G

if dx(z,y) <o"(X\G), then |h(z)— h(y)| <e. (9)

Put A

=0 (X\G)
and let z,y € X be such that dx(z,y) < min{d;’ 7" (z), ;% (y)}. We will show
that ’ ’

o & € Be(h). (10)
If z € G or y € G, then, from the definition of the number o’ (z) or o’ (y), we
obtain that |h(z)—h(y)| < e. If x,y € X\ G, then the inequality |h(z)—h(y)| < e
follows from the definition of 7, and from (@). Hence, we have ({I0).

Conversely, if G C C}, and there exists 1, > 0 such that 5;% € B.(h), then
obviously h [ G is continuous and h [ (X \ G) is uniformly continuous (where
o(X \ G) = n,). This finishes the proof of (§).

By applying Theorem [B] we have that # is an additive semi-group of B}*
functions. Moreover, functions f and g belong to H. 0

2. Baire class one like functions

Let S and T be families of positive real valued functions defined on R. By
Bs 7 we will denote the family of all functions f: R — R such that for each
function € € T, there exists a function 6g € S such that for each x,y € R we have

if |o—yl <min{6!(2),8{(y)}, then |f(z)— f(y)| < min{e(f(2)).e(f(y)}-
Some similar considerations and notation can be found in [4] and [7].

We will now emphasize (in the form of lemma) a very useful statement (the
simple proof will be omitted).

LEMMA 7. LetS, T,U, W be arbitrary families of positive real valued functions
defined on R. Then

(1) if S CU, then Bs 1 C Bu,7T,
(2) if T CW, then sBS,T D) sBS,W-
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In order to construct a basic interpreting dependence between some classes of
functions, we will use the following symbols:

RR : will denote the family of all real functions defined on R,

By : will denote the family of all real Baire class one functions defined on R,

C : will denote the family of all continuous real functions defined on R,

C, : will denote the family of all uniformly continuous real functions defined

on R,

bC,, : will denote the family of all bounded uniformly continuous real func-
tions defined on R,

Isc : will denote the family of all lower semicontinuous real functions defined
on R,

usc: will denote the family of all upper semicontinuous real functions defined
on R,

Const: will denote the family of all constant real functions defined on R.

X If X is a family of functions, then we will denote by X+ the subfamily
of the family X consisted of positive real valued functions.

Lemma [7] permits to establish the following diagram:

%Const+, R+ C sBConst*, lsct  C sBConst*, c+ C sBConst*, Constt

N n n n
Bo+rrrr C Botiser C Beoror  C Bo+ constt
N n N n
%lsc+, RR+ - sBlsc*, lsct - sBlsc*, c+ - sBlsc*, Constt
N n n n

Bre+ ger  C Bretser € Brrror T Bret constt

The above considerations lead us to questions connected with the relationship
between families of continuous functions, B; functions and classes of function
exposed in the above diagram. We will give answers to some of these questions.
Our main result will be a diagram placed at the end of this paper. In order to
construct it, we prove the following theorems.

Remark 8. In order to simplify the notation, we will identify the functions
e € Const™ and §! € Const™ with the positive numbers & and 47.

Directly from the denotation fixed in Remark [§] and definitions of the con-
sidered classes of functions, we obtain the new characterization of uniformly
continuous functions and B; functions.

PROPOSITION 9. Bsit const+ = Cu S C.

PROPOSITION 10. Bpe+ constt = Bi1.
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The next theorem permits us to establish some inclusion, which will be useful
in further considerations (e.g., the proof of Theorem [I8]).

THEOREM 11. B+ consi+ C C.

Proof. Suppose, contrary to our claim, that there exists a discontinuous func-
tion f € Byset, const+- Let g € R be a discontinuity point of f. Then there
exists a number &y > 0 such that for each > 0 one can find a point z,, € R
such that

|z, —xo| <n and |f(z,) — f(xo)] > &o. (11)

Since f € Bygo+ constt, there exists a function 6!0 € Isct such that for each
x,y €R

it |z -yl <min{of (2),6L,(»)}, then |f(z)— f(y)| <. (12)

On account of lower semicontinuity of 5;-;: R — RT at xg, we have that there
exists ag > 0 such that for each z € R

6! (x
if |x— x| <ap, then #

< &L (). (13)

81, (o)
2

Putting n = min{«o, }, from (II) we obtain that there exists x, € R such

. of
that |z, — x| <n < ap. According to (I3]), we have # < 5£0 (2n,)- Hence,

81, (o)

|z, — x| < < 602 < min{égo(xo),(go(xn)}.

Thus, from (I2)), we obtain |f(zo) — f(zy)| < &0, contrary to (II)). O

On account of Theorem [I1] the definition of B; function and Lemma [7 we
easily get the following corollaries:

COROLLARY 12. B+ constt & Bre+ constt -

COROLLARY 13. B+ const+ C C.

PROPOSITION 14. Biysit const+ & Bot, constt -

Proof. According to Proposition [0 and Lemma [7l(1), we have

Cu = %C’onst+, Const+ C %C+, Constt -

We will show that Bonsi+ const+ D Bo+ const+- Let f(x) =e*, x € R. Cer-
tainly, f is not uniformly continuous. It remains to prove that f € B+ constt-

Let £ > 0. Put 6?(3:) =In (%e_m + 1), x € R, obviously 5£ € Ct. Let z,y € R
be such that f f
v =yl < min {6 (), 6L (y)} . (14)
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Without loss of generality, we can assume that x > y. From (I4), we have

x < y+5§(y). Hence, according to the monotonicity of f, we have: |f(z)—f(y)| <

VOl W) _ ey = v (Sev+1-1)<e O
Now, let us note the following simple statement, which will be very useful.

PROPOSITION 15. Let S and T be arbitrary families of positive real valued
functions defined on R. Then Const C Bs 1.

PROPOSITION 16. Const C Bye+ ge+.
Proof. From Proposition [I5 we have Const C Byt ge+.

We will now show, that Const 2 Bge+ ge+. Let a,b, r be arbitrary real num-
bers such that a # b. Let us consider the function given by formula

a ifx=r,
f(x)_{b it 2 £

Certainly, f ¢ Const. Let e: R — R,. In order to finish the proof that f €
Be+ get suffices to put

% if e =r,
6 (x) = ‘T;”l ifze(r—4,r+3)\{r}
1 ifzeR\ (r—3,7+3).

O

As it was mentioned in the above theorems and propositions, some families of
Baire class one like functions are equal to some well-known classes, e.g., uniformly
continuous functions. It is interesting that the family %;,.+ ge+ is equal to the
class of constant functions. We will show it below, but first, let us note a useful
lemma.

LemMA 17. If f € C'\ Const, then there exists xg € R such that the function f
is not constant in any interval of the form [xo, xo + 1] for any n > 0.

THEOREM 18. Const = Bg.+ get .

Proof. On account of Proposition [I3 we have Const C B4.+ ge+.

Now, we will show that Const D B4+ ge+. According to Lemma [1(2) and
Theorem [II] we obtain B+ ge+ C Biger, const+ C C.

Let us suppose, contrary to our claim, that Const 2 B,.+ gr+. Then, there
exists f € B+ gr+ \ Const. From Lemma [I7, we have that there exists a point
xo € R such that f is not constant in any interval of the form [z, xo + 7], where
n > 0. Since f € B4+ ge+, for a function

o= E 0 v s (19
1 if y = f(zo),
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there exists a function 6g € Isct such that for every x1, 25 € R if
|21 — a2| < min{§{ (1), 6 (x2)},
then
|f(z1) = f(z2)] <min{e(f(z1)),e(f(x2))}. (16)

According to the lower semicontinuity of §/: R — Ry at x(, we obtain that
there exists ag > 0 such that for every x € R

f
if [r—wx0| <ao, then % (2];0) < &1 (). (17)

f
The function f is not constant in the interval [xo,xojtmin{%“),%lﬂ,

so there exists
6 (z0) «
xH € [xo,xo—f—min{ £ (o)

: 7}} such that f(zo)#f(z3).  (18)

It is easy to see that
* Qo
|xo — x5] < - < oo,
so from (7)) we obtain that

61 (o)
2

67 (o)

3

2

< 6g(x§)
Hence,

2o — a5 < < min{s! (o), 8/ (a5)}.

Using (16), we have:

(o) = f(xp)| < min{e(f(z0)),e(f(x0))}
— in {3 M0 S0} ) S
2 2
(o) = f(2g)| = 0,
which contradicts (I8]). O

Remark 19. Let yo € R. Note that a function e: R — R given by formula

{—y°2y' if y # yo,

WU -

is upper semicontinuous. Hence, directly from Theorem [I8 we obtain the fol-
lowing theorem

THEOREM 20. Const = Bset ysct -
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From Theorem [I8, Theorem 20, Lemma, [7 and Proposition [I[5] we easily get
the following corollaries:

COROLLARY 21. Const = Bronsit, uset = B+ uset -
COROLLARY 22. B .+ ger C 0C,.

COROLLARY 23. B, + pr+ C Bpre+ prt.
COROLLARY 24. Const = Bopsit re+ = Bo+ met

COROLLARY 25. Bt rir S 0Cy and By gey C 0O,

Let us now examine the class bC,, more precisely.

THEOREM 26. bC, C Beonsit, isct-

Proof. Let f€bC,. There exist numbers m, M € R such that f(R) C [m, M].
Establish ¢ € Isct. Since ¢ | [m, M] is a lower semicontinuous function and
[m, M] is compact, there exists 19 > 0 such that ny < e(t) for each ¢t € [m, M].
The function f is uniformly continuous, so there exists 6/ > 0 such that for each
z,y € Rif |z —y| <, then |f(x) — f(y)| < no. Since we have f(z), f(y) € [m, M]
for each z,y € R, it follows that 19 < e(f(x)) and 79 < &(f(y)). Consequently,
for each 2,y € R if [z—y]| < 8¢, then |f(z)— (y)| < o < min{e(f(x)), e(f (1))}
which gives f € Beonsit, isct- O

COROLLARY 27. bC, C B+ isc+ and bCy C Biget 15+ -

Now, we are able to complete the considerations connected with the family
%Const+, C+-
THEOREM 28. %Const+,0+ g %Const+, Constt -

Proof. According to Lemma 7 (2), we have Beonsi+ o+ C Bonst+ Const+-

We will show that

sBConst*, c+ ﬁ sBConst*, Constt -

Consider the function f(z) = z. Obviously, f € C,, so from Proposition [0 we
obtain f € %Const+, Constt -

Now we prove that f ¢ Beoonse+ c+. Suppose, contrary to our claim, that
f € BConst+ o+ For the function £(z) = e™* there exists 6/ > 0 such that for
each z,y e R

if |z—yl<dl, then [f(z)— f(y)|l<min{e(f(z)),e(f(y¥)}
This means that
if |z—y|<d/, then |z—y|<min{e " e ¥} (19)

Let y > 0 be such that e™¥ < Sgiand r € R be such that y—0f < 2 < y—e Y. We
have z—y < —e™¥ and y—x < /. Hence, we have min{e ", e v} = eV < [z—y|
and |z —y| = y — 2 < 8, which contradicts (%) and finishes the proof. O
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THEOREM 29. Boopet, o+ S Bo+ o+

Proof From Lemma[7(1), we have Beopsi+ o+ C Bo+ o+

Consider the function f(z) = x. In the proof of Theorem 28] we have shown
that f ¢ Beonsi+.c+. Now, we prove that f € B+ o+. Let ¢ € CF. Put
6/ = £ € C*. Then for each z,y € R such that |z — y| < min{6{(z),6!(y)}
we have

|[f(x) = fy)l = |z — y| < min{6] (x), ] (y)} < min{e(z),e(y)},
which gives that f € B+ o+ O

According to [7], we have Bger+ 5.+ = By. This leads us to a question whether
this equality remains true if we replace the lsct class some wider family of
functions. The answer is "yes"; in order to prove this statement, let us define
the class of weakly lower semicontinuous functions.

DEFINITION 30. A function f: R — R™T is said to be weakly lower semicon-

tinuous if there exists a decreasing sequence of positive real numbers (o, )nen

such that o, — 0 and for each zy € R and each n € N such that «,, < f(zg),
n—oo

there exists an open set U such that o € U and
f(x) > ay, for z € U.

The family of all weakly lower semicontinuous functions will be denoted by wisc.

Now, we will prove some basic properties of weakly lower semicontinuous
functions.

PROPOSITION 31. [sc™ C wisc.

Proof. Let f€lsc™. We obtain that for each xy € R and for each a < f(x¢)
there exists 7, > 0 such that

if |z —x0| <m4, then a< f(x). (20)
Let us denote by (o, )nen an arbitrary decreasing sequence of positive real num-
bers convergent to zero. For zp € R and n € N such that «, < f(xg) put
U= (x0— Na,To + Na, ), then from (20) we have
fl@)>ay,, fzel,
which means that f € wisc. According to the arbitrariness of the choice of f we
infer that Isc™ C wisc.

We will now show that lsc™ 2 wisc. Let us consider the function given by
formula

% ifxe(—n,—(n—1)],neN,
glz) =<7 | .
gsin +1 ifz € (0,400).
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Put o, = %, n € N. It is clear that (o, )nen is a decreasing sequence of positive
real numbers convergent to zero.

Let z¢p € R be an arbitrary point. One can consider the following cases:

(1) If 2o € (0,400), then g(zg) = %sin% +1>23-(-)+1=2>1=o01.
Put U = (0,400). Since (ay)nen is decreasing and for each z € (0, 400)

we have g(z) = isinl +1>1.(-1)4+1=2 > J = oy, then
g(x) > ay,, forxeU, neNlN.
(2) If 29 = 0, then g(xo) =1 > 1 = ay. Put U = (—1,+00). Since g(z) = 1
for x € (—1,0], from point (1) we have

g(x) > ay,, forxeU, neN.

(3) If 29 € (—00,0), then there exists ng €N such that zo€ (—ng, —(no — 1)],

s0, we have g(z9) = ;= > 5= = ayn,. Put U = (-np,0). Since g is

nondecreasing in (—oo,0), we obtain
g(z) > ay, forzeU, n>ng.

This proves that g € wisc.
Now, we will show that g ¢ lsct. Let us consider the sequence given by

_ 1

formula xp = Triohn

We have .
lim z, =0
k— o0

and

1 1 1 3 1 2
g(:z:k)—gsin—+1—§sin<§7r+2k7r)+1—§-(—1)+1—§.

Tk
Hence,
2
liminf g(z) < lim g(xg) = = < g(0) =1,
z—0 k—o0 3
which means, that g is not lower semicontinuous at 0. ]

COROLLARY 32. Const™ C wisc.
Directly from the definition of weakly lower semicontinuous function, we get

LEMMA 33. Let g € wisc and (o, )nen be a decreasing sequence of positive real
numbers convergent to zero, chosen according to the definition of weakly lower
semicontinuity. Then, for each n € N, the set g~ ((a,, +00)) is open.

LemMma 34 ([7]). IfR=U,_, E,, where E,, n € N are F,, then there exist
disjoint F, sets F,,, n € N such that F,, C E,, and R = U,io:l F,.

The above considerations and statements permit to obtain a new characteri-
zation of the first Baire class.
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THEOREM 35. Bge+ 5.+ = Bi.

Proof. A From Corollary B2, Lemma [[(2), and Proposition [0 we have
%RR+, wiset C %RR+, Constt — B.

We will show now that Bge+t 50+ D Bret, const+- Let f € Bret consi+ = B1
and € € wlsc. Then there exists a decreasing sequence of positive real numbers
(an)nen chosen according to the definition of weak lower semicontinuity. Put
U, = ((ap,+00)), n€N. From Lemma B3] we obtain that U, (n € N) are
open sets. Put E,, = f~1(U,), n € N. Certainly, E, (n € N) are F, sets.

Note that from the condition lim «, = 0, we obtain
n—oo

Hence,
oo oo
R=f""! (U Un> =|J En
n=1 n=1
From Lemma [34] we may infer that there exist pairwise disjoint F, sets F,
(n € N) such that F,, C E,, and R = |J,_; F,,. Then there exist closed sets F}, ;,
j € Nsuch that F,, = 32, F,, ;. Put F,, ; = J;_; Fy j for i € N. For each n € N,
we have Fn,i C Fn,i+1a 1 € Nand Ufil Fn,i = Ufil U;’:l Fn,j = Ujil Fn,j =F,.
Let z € R = [J;2, F,,. There exists a unique positive integer n, such that
z€F,, . Puti, =min{i e N:z e F,_,;}. Consider the family of closed sets
S={Fmn; m#ng Am+j<ng+iz}.
Since x € F;,, and F,,, N F,,, = () for m # ny, it follows that ¢ (J§, so there

exists a number J, > 0 such that

Uﬁﬂ(x—gz,x—l—gz):@,

hence,

Fm’jﬂ(:v—gm,:z;—ﬁ—gx):@ for m#ng, m+j<ng+i,. (21)

Let x € Fy,,, y € F,,,, where n, # n,,.
If n, + i, < ny + iy, then from ZI) we have F, ;. N (y — 8,y + &) = 0.
According to x € F,, ;,, we conclude that |z —y| > §, > min{d,, d, }. Similarly,
if ng + i, >ny + iy, then |z —y| > 8, > min{d,, &, }.

Let us define a function d; € R®*+ by formula §(z) = 6., = € R. For each
x,y € R we have

if v € F,,y € Fy,, and ng, # ny, then [z —y[ > min{do(x),do(y)}.  (22)
2The proof is adapted from [7].
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Since f € B+, consi+, for each n € N, there exists a function §,, € R®F such
that for each z,y € R

it |z —y| <min{o,(z),0,(y)}, then [f(z)— f(y)| < an. (23)

Put §(z) = min{dg(x), 6, (z)}, z € R.

If we consider x € I, y € F),, such that |z — y| < min{d(z),d(y)}, then we
have n, = ny. Put ng = n; = ny.

From the definition of the function §, we have

|z =yl <min{é(2),5(y)} < min{dn, (2),dn,(y)}-
Using (23), we infer that
[f(z) = fW)| < any,  for z,y € Fy,. (24)

Note that
Fno C Eno = f_l(UTbo) = f_l (5_1 ((anoa —I—OO))) .
Hence,
F(Fng) € F (£ (7" ((omg, +00)))) € ™" ((amy, +00)) -
This means that e(f(Fy,)) C (an,, +00) . So, we have

e(f(2)) > ap,, forz € F,,.
Finally, from (24]), we get

[f(2) = F()] < any <min{e(f(2)),e(f(y)}, i 2,y € F.
This proves that f € Bret jq0+- O

We obtain now an important equality contained in [7] as a corollary of
Theorem [33]

COROLLARY 36 ([7]). Bger 15+ = By.
Moreover, we have

COROLLARY 37. Bget o+ = Bi.

COROLLARY 38. By o+ 150+ S Bpret g0+

COROLLARY 39. B+ o+ S Brer o+

From the above theorems, we have

%Const+, usct :(BC’077,54‘,+7 IRR+9 bC’U«C%Const+, lsc+C (BConst+, c+ g‘BConsiﬂ‘, Const+g C

I | N e mn
Bt uset =Botrer & bC0u CBeot iset € Bo+, o+ CBo+ const+ C c

| l N N N
Biset, user =Broet ri+ & bCu CBigot 15t C Biger, o+ CBiset, constt € C

I Mn N e e
Const C Brey prt - Bpet s+ =  Bret o+ =Bpe+ const+ = D1
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