
Tatra Mt. Math. Publ. 45 (2010), 137–149

DOI: 10.2478/v10127-010-0010-0

�

�
�����������	
��	�����
��

CRYPTANALYSIS OF A HASH FUNCTION BASED

ON ISOTOPY OF QUASIGROUPS

Ivana Slaminková — Milan Vojvoda

ABSTRACT. This paper deals with cryptanalysis of one hash function based
on isotopy of quasigroups [J. Dvorský, E. Ochodková, V. Snášel: Hash func-
tion based on quasigroups, in: Proc. of Mikulášska kryptobeśıdka, Praha, 2001,
pp. 27–36. (In Czech)], [J. Dvorský, E. Ochodková, V. Snášel: Hash functions
based on large quasigroups, in: Proc. of Velikonočńı kryptologie, Brno, 2002,

pp. 1–8. (In Czech)]. Our work enhances the paper [M. Vojvoda: Cryptanaly-
sis of one hash function based on quasigroup, Tatra Mt. Math. Publ. 29 (2004),
173–181], where the simplified studied hash function, based only on the quasi-
group of modular subtraction, was successfully cryptanalysed. In this paper we
show how to construct collisions, 2nd preimages, and also preimages for the full
hash function based on isotopy of quasigroups.

1. Introduction

Hash functions are well known in computer science and play an important
role in modern cryptography. They transform an input string of arbitrary length
onto the fixed length output string, called also the hash.

���������� 1 ([8])� Let {0, 1}∗ be the set of all finite words over the alphabet
{0, 1}. A one-way hash function (OWHF) is a function h : {0, 1}∗ → {0, 1}m
satisfying the following conditions:

(1) The argument x can be of arbitrary length and the result h(x) has a fixed
length of m bits. Nowadays m ≥ 160, . . . , 512.

(2) The hash function must be one way in the sense that given y in the image of
h, it is “hard” to find a message x such that h(x) = y (preimage resistant)
and given x in the domain of h it is “hard” to find a message x′ �= x such
that h(x′) = h(x) (second preimage resistant).

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60.
Keywords: hash function, quasigroup, isotopy, cryptanalysis.
This material is based upon the work supported under the grant NIL-I-004 from Iceland,

Lichtenstein and Norway through the EEA Financial Mechanism and the Norwegian Financial
Mechanism and also under the grant VEGA 1/0244/09.

137

IVANA SLAMINKOVÁ — MILAN VOJVODA

According to the number of inputs one can subdivide the hash functions into
the two classes: keyed, and unkeyed, respectively. Hash functions that use a single
input, a message to be hashed, are called unkeyed, or Manipulation Detection
Codes (MDCs), sometimes also cryptographic hash functions or just only hash
functions. On the other hand, hash functions with a message to be hashed and
a key being their inputs are called Message Authentication Codes (MACs).

���������� 2 ([8])� A collision resistant hash function (CRHF) is a OWHF
h : {0, 1}∗→ {0, 1}m, for which it is “hard” to find two distinct messages x, x′,
such that h(x) = h(x′).

The usage of quasigroups (resp. latin squares) in cryptography is not very
common. In spite of that various cryptosystems based on quasigroups appeared
in past few years, e.g., see [6], where it is shown that the usage of quasigroups
in the design of S-boxes might open new ways in the design of block ciphers.
Quasigruops were also used in the design of hash functions [2], [3] and the crypt-
analysis of these designs is the main focus of this paper. Some recent designs
using quasigroups are, e.g., the stream cipher Edon80 [4] and the hash function
Edon-R [5].

���������� 3 ([1])� The structure (Q, ∗), Q = {q1, q2, . . . , qn}, ‖Q‖ = n is
called a finite quasigroup of order n if any two elements a, b ∈ Q are given, the
equations a ∗ x = b and y ∗ a = b have exactly one solution. Thus the Caley
table of a finite quasigroup of order n is a latin square, i.e., an n× n array with
the property that each row and each column contains a permutation of symbols
from Q.

���������� 4 ([1])� Let (G1, ·) and (G2, ∗) be two finite quasigroups. An ordered
triple (θ, ϕ, ψ) of one-to-one mappings of the set G1 onto the set G2 is called an
isotopism of (G1, ·) upon (G2, ∗) if θ(x) ∗ϕ(y) = ψ(x · y) for all x, y in G1. Then
the quasigroups (G1, ·) and (G2, ∗) are said to be isotopic.

2. Description of the studied hash function

���������� 5 ([2], [3])� Let (Q, �) be a finite quasigroup. Let (m1,m2, . . . ,mk),
mi ∈ Q, 1 ≤ i ≤ k, be the message to be hashed. Further let Q∗ be a set of all
finite strings over Q. The hash function Ha : Q ×Q∗ → Q, a ∈ Q is defined by
the following relation:

Ha(m1,m2, . . . ,mk) =
(
(. . . (a�m1)�m2)� . . .

)�mk−1)�mk,

where mi ∈ Q, 1 ≤ i ≤ k and a is a given element from Q, that plays the role of
an initialization vector.

138

CRYPTANALYSIS OF A HASH FUNCTION BASED ON ISOTOPY OF QUASIGROUPS

Example. Let Q = {0, 1, 2, 3} and the operation �, defined on Q, be given by
Table 1. Let a = 1 and the message to be hashed be (1, 0, 3, 1). Then the hash
is calculated as follows:

H1(1, 0, 3, 1) =
(
((1� 1)� 0)� 3

)� 1 = 2.

Table 1. Caleyho table of the operation � defined on Q.

� 0 1 2 3

0 0 2 1 3

1 2 3 0 1

2 1 0 3 2

3 3 1 2 0

The usage of a general quasigroup would result in the necessity to store the
whole Caley table of the quasigroup operation. If we assume a hash length to
be 18 bits, then the quasigroup would contain 218 elements and the storage
requirements for the Caley table would exceed 1 TB (18.218.218). Recall that
the nowadays used hash length is about 160–512 bits. To overcome this prob-
lem, a special quasigroup, namely the quasigroup of modular subtraction, was
proposed in [2], [3] to be used. The operation ⊗, defined on Q, is then given as

a⊗ b = a+ (n− b) mod n, n = ‖Q‖.
The usage of the “easy to evaluate” expression for the definition of the opera-

tion ⊗ allows us to use quasigroups with a very large number of elements without
the necessity to store the Caley tables. However, the usage of the quasigroup of
modular subtraction as the only operation for the hash function is insecure, as
was shown in [9]. That is why the authors in [2], [3] suggest to use quasigroups
isotopic with the quasigroup of modular subtraction.

���������� 6� Let (Q,⊗), ‖Q‖ = n, be the quasigroup of modular subtraction.
Let θ, ϕ a ψ−1 be given permutations that define isotopy of (Q, ·) with (Q,⊗).
The quasigroup operation in (Q, ·) can be written as

a · b = ψ−1(θ(a) + (n− ϕ(b)) mod n), n = ‖Q‖.
In the following we present the algorithms P1(), P2(), and P3() for the map-

pings θ, ϕ, and ψ−1, respectively. Note that there was only the algorithm P1()
specified in [2], [3], the remaining algorithms P2(), and P3() were obtained
from [7]. The algorithms are given in C++ language with NTL (Number The-
ory Library) data types.

139

IVANA SLAMINKOVÁ — MILAN VOJVODA

Algorithm for the mapping θ

ZZ Quasigroup::P1(ZZ x)

{

ZZ Dim2 = m_Dim / 2;

if(x < Dim2*2)

{

if (x & 1)

{

x = 2*((x/2 + 1) % Dim2) + 1;

}

else

{

x = 2*((x/2 + Dim2 - 1) % Dim2);

}

}

return x;

}

Algorithm for the mapping ϕ

ZZ Quasigroup::P2(ZZ x)

{

ZZ Dim3 = m_Dim / 3;

bool Shift = m_Dim % 2 >= 1;

if (x < Dim3*3)

{

switch (x % 3)

{

case 0:

x = 3 * ((x/3 + Dim3/3) % Dim3);

break;

case 1:

x = (3 * (Dim3 - x/3)) + 1;

break;

case 2:

x = (3 * ((x/3 + Dim3 - 1)% Dim3))+ 2;

break;

}

}

else

{

if (x % 3 == 2)

140

CRYPTANALYSIS OF A HASH FUNCTION BASED ON ISOTOPY OF QUASIGROUPS

{

if (x == (Dim3 * 3 + 1))

{

x = (Dim3 * 3) + 2;

}

else

{

x = (Dim3 * 3) + 1;

}

}

}

if (Shift)

{

x = (x + Dim3) % Dim3;

}

return x;

}

Algorithm for the mapping ψ−1

ZZ QuasiGroup::P3(ZZ x)

{

ZZ Dim2 = m_Dim / 2;

x = (x + Dim2 - 1) % m_Dim;

return x;

}

Example. Let (Q,⊗), ‖Q‖ = 4 be the quasigroup of modular subtraction (its
Caley table is given in Table 2). Further let θ = [1, 3, 2, 0], ϕ = [3, 0, 1, 2], and
ψ−1 = [3, 2, 0, 1]. The Caley table of the quasigroup (Q, ·), that is isotopic with
(Q,⊗), is given in Table 3.

Let a = 1 and (1, 0, 3, 1) be the message to be hashed. The hash value is then
calculated as follows:

H1(1, 0, 3, 1) =
(
((1 · 1) · 0) · 3) · 1 = 2.

1 · 1 = ψ−1
(
θ(1) + (4− ϕ(1)) mod 4

)
= ψ−1

(
3 + (4− 0) mod 4

)
= ψ−1(3) = 1,

1 · 0 = ψ−1
(
θ(1) + (4− ϕ(0)) mod 4

)
= ψ−1

(
3 + (4− 3) mod 4

)
= ψ−1(0) = 3,

3 · 3 = ψ−1
(
θ(3) + (4− ϕ(3)) mod 4

)
= ψ−1

(
0 + (4− 2) mod 4

)
= ψ−1(2) = 0,

0 · 1 = ψ−1
(
θ(0) + (4− ϕ(1)) mod 4

)
= ψ−1

(
1 + (4− 0) mod 4

)
= ψ−1(1) = 2.

141

IVANA SLAMINKOVÁ — MILAN VOJVODA

Table 2. Caley table of the quasigroup of modular subtraction, n = 4.

⊗ 0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

Table 3. The Caley table of the quasigroup (Q, ·).

· 0 1 2 3

0 0 2 3 1

1 3 1 0 2

2 1 0 2 3

3 2 3 1 0

3. Attack on the hash function

Second preimage resistance is one of the crucial requirements a cryptographic
hash function must meet. In the following, we show how to find a message that
has the same hash value as another given message.

Let a ∈ Q be a given known parameter of the hash function and (m1,m2, . . .
. . . ,mk), mi ∈ Q, 1 ≤ i ≤ k be a given message with the hash value d =
Ha(m1,m2, . . . ,mk) =

(
. . . ((a ·m1) ·m2) · . . .

) ·mk. The false message can be
created by adding a prefix or suffix to the given message, or moreover, one can
create a totally new message, that is independent on the given one [9].

3.1. Creating a false message by adding a prefix/suffix to the given
message

The false message created from the original one by adding a prefix can be
written as (p1, p2, . . . , pl, m1,m2, . . . ,mk), pi ∈ Q, 1 ≤ i ≤ l. Hence, it must
hold that

(
. . . ((a · p1) · p2) · . . .

) · pl = a. A false message can be created by
adding a suffix to the original message as well. In this case the false message
can be written as (m1,m2, . . . ,mk, s1, s2, . . . , st), si ∈ Q, 1 ≤ i ≤ t. Hence, it
must hold that

(
. . . ((d · s1) · s2) · . . .

) · st = d. Note that only the last element
of the last added/changed part of the message has to be chosen in a proper
way. All the other elements can be chosen arbitrarily, i.e., they can represent

142

CRYPTANALYSIS OF A HASH FUNCTION BASED ON ISOTOPY OF QUASIGROUPS

meaningful data. (In general, the element that should be chosen in proper way
could be at any position in the message and not only be the last one. However,
the non-associativity of a quasigroup would make difficult to find this element.)
Let a′ =

(
. . . ((a · p1) · p2) · . . .

)
and d′ =

(
. . . ((d · s1) · s2) · . . .

)
. Then one has to

find such pl and st, so that it would hold a′ · pl = a, and d′ · st = d, respectively.

3.2. Creating a new (false) message

Let us create a message (x1, x2, . . . , xv), xi ∈ Q, 1 ≤ i ≤ v, that has the
same hash value d. The elements (x1, x2, . . . , xv−1) can be chosen arbitrarily.
Let d′ =

(
. . . ((a · x1) · x2) · . . .

) · xv−1. The task of the attacker is to find such
xv, that d

′ · xv = d,

d = ψ−1
(
θ(d′) + (n− ϕ(xv)) mod n

)
,

ψ(d) = θ(d′) +
(
n− ϕ(xv)

)
mod n,

ϕ(xv) = θ(d′) +
(
n− ψ(d)

)
mod n,

xv = ϕ−1
(
θ(d′) + (n− ψ(d)) mod n

)
.

Moreover, we can find the last element of the prefix/suffix added to the original
message (see Section 3.1) in a similar way:

pl = ϕ−1
(
θ(a′) + (n− ψ(a)) mod n

)
,

st = ϕ−1
(
θ(d′) + (n− ψ(d)) mod n

)
.

As we can see, the problem of finding the proper element is in finding the
permutations ϕ−1, and ψ, respectively. The permutation θ need not be inverted.
It can be also seen that the complexity of creating a false message by adding
a prefix/suffix to a given message or creating a new false message is the same.
The parameter a has no influence on the difficulty of creating a false message.

3.3. Inverting the mappings θ, ϕ, and ψ−1

In general, inverting a permutation could be a difficult problem. After an
initial inspection of the ϕ mapping we observed that it is not a permutation!
Some examples confirming this statement are shown in the Table 4. Concerning
the Definition 4, it is a significant problem, because the mappings θ, ϕ, and ψ−1

should be permutations.

Example. Let ‖Q‖ = 4 and θ, ϕ, and ψ−1 be generated by the methods P1,
P2, and P3, respectively, stated in Section 2. Then θ = [2, 3, 0, 1], ϕ = [0, 4, 2, 3],
and ψ−1 = [1, 2, 3, 0]. The Caley table of the operation ·, defined on Q, is given
in Table 5.

143

IVANA SLAMINKOVÁ — MILAN VOJVODA

Table 4. Some examples of the values of the mapping ϕ.

‖Q‖ Values of the mapping ϕ

4 [0, 4, 2, 3]

7 [2, 2, 0, 5, 6, 4, 1]

8 [0, 7, 5, 3, 4, 2, 6, 7]

12 [3, 13, 11, 6, 10, 2, 9, 7, 5, 0, 4, 8]

Table 5. The Caley table of the operation · defined on Q.

· 0 1 2 3

0 3 3 1 0

1 0 0 2 1

2 1 1 3 2

3 2 2 0 3

According the Definitions 3 and 4 the equations a · x = b and y · a = b,
have exactly one solution, when any two elements a, b ∈ Q are given. Let

a = 0 and b = 3.

Substituting these values into the previously mentioned equations we obtain

0 · x = 3,

y · 0 = 3.

Then the solutions are x = 0, or x = 1, and y = 0 (see Table 5), that is in
contradiction with the Definition 3.

	�
����

 1� (Q, ·) is not a finite quasigroup and the Caley table of (Q, ·) is
not a latin square.

Although the mapping ϕ is not a permutation, computing a hash value is
possible. We demonstrate it on the following example.

Example. Let ‖Q‖ = 4 and θ = [2, 3, 0, 1], ϕ = [0, 4, 2, 3], and ψ−1= [1, 2, 3, 0]
be generated by the methods P1, P2, and P3, respectively, stated in Section 2.
The Caley table of (Q, ·) is given in Table 5. Let a = 0 and (2, 1, 1, 3) be the
message to be hashed. The hash value can be computed as follows:

H0(2, 1, 1, 3) =
(
((0 · 2) · 1) · 1) · 3 = 3.

144

CRYPTANALYSIS OF A HASH FUNCTION BASED ON ISOTOPY OF QUASIGROUPS

Let us create a new (false) message with the same hash value d = 3. Let this
message be

(0, 2, 3, xv) and d′ =
(
(0 · 0) · 2) · 3 = 0.

Hence, it must hold d′ · xv = d, i.e., 0 · xv = 3. xv can be calculated as follows:

xv = ϕ−1
(
θ(d′) + (n− ψ(d)) mod n

)
= ϕ−1

(
θ(0) + (4− ψ(3)) mod 4

)
.

However, in this case, one has to invert the mappings ϕ and ψ−1 to obtain xv.
The algorithms for the inverse mappings to θ, ϕ, and ψ−1 are stated below in
C++ language with NTL data types.

Algorithm for the mapping ψ

The algorithm for the mapping ψ−1 is very simple (see Section 2) and finding
the inverse mapping was easy.

ZZ Quasigroup::invP3(ZZ x)

{

ZZ Dim2 = m_Dim / 2;

x = (x + 1 - Dim2) % m_Dim;

return x;

}

Algorithm for the mapping ϕ−1

The main problem concerning the ϕ mapping is that it is not a permutation.
We will deal only with ‖Q‖ = 2k, k ∈ N. Recall that the number of elements
in the quasigroup is calculated from the bit length of the hash value, thus the
number of elements in Q is, in fact, a power of 2. Some specific features of the
ϕ mapping are shown in the Table 6.

Table 6. Some specific features of the ϕ mapping.

‖Q‖ Specific feature

4, 10, 16, 22, . . . 1 is mapped to n

6, 12, 18, 24, . . . 1 is mapped to n+ 1

8, 14, 20, 26, . . . 1 and n− 1 are mapped to n− 1

Some examples of the ϕ mapping values can be found in Table 4. Except
the elements 1 and n − 1, it is possible to invert the mapping ϕ uniquely. The
algorithm for calculating ϕ−1 is stated below in the C++ language using the
NTL library.

145

IVANA SLAMINKOVÁ — MILAN VOJVODA

ZZ* Quasigroup::invP2(ZZ x)

{

ZZ * arr = new ZZ[2];

arr[0] = x;

arr[1] = to_ZZ(-1);

ZZ Dim3 = m_Dim / 3;

if(m_Dim % 2 == 0)

{

if(x < Dim3 * 3)

{

switch(x % 3)

{

case 0:

arr[0]=3*((x/3 - Dim3/3)% Dim3);

break;

case 1:

arr[0]=3*(Dim3 - (x-1)/3) + 1;

break;

case 2:

arr[0]=3*(((x-2)/3 + 1 - Dim3)% Dim3)+ 2;

break;

}

}

else

{

if(x == m_Dim || x == m_Dim + 1)

{

arr[0] = 1;

return arr;

}

}

if(x == (Dim3 * 3) + 1)

{

arr[0] = 1;

arr[1] = (Dim3 * 3) + 1;

}

}

return arr;

}

146

CRYPTANALYSIS OF A HASH FUNCTION BASED ON ISOTOPY OF QUASIGROUPS

Algorithm for the mapping θ−1

Although it is not necessary to invert the mapping θ in our construction of
false messages, we give also the algorithm for calculating θ−1 for completeness
(again in the C++ language using the NTL library).

ZZ Quasigroup::invP1(ZZ x)

{

if (m_Dim % 2 == 0)

{

if(x % 2 == 0)

{

x = 2 * ((x / 2 + 1 - Dim2) % Dim2);

}

else

{

x = 2 * (((x - 1) / 2 - 1) % Dim2) + 1;

}

}

else

{

if(x == m_Dim)

{

x = m_Dim;

}

else

{

if(x % 2 == 0)

{

x = 2 * ((x / 2 + 1 - Dim2) % Dim2);

}

else

{

x = 2 * (((x - 1) / 2 - 1) % Dim2) + 1;

}

}

}

return x;

}

We can finish our construction of a false message from the example above.
Now,

xv = ϕ−1
(
θ(0) + (4− ψ(3)) mod 4

)
.

Using the algorithms for calculating ϕ−1 and ψ we obtain

xv = ϕ−1
(
2 + (4− 2) mod 4

)
= ϕ−1(0) = 0.

147

IVANA SLAMINKOVÁ — MILAN VOJVODA

Thus we have found the 2nd preimage to the message (2, 1, 1, 3):

H0(2, 1, 1, 3) =
(
((0 · 2) · 1) · 1) · 3 = 3,

H0(0, 2, 3, 0) =
(
((0 · 0) · 2) · 3) · 0 = 3.

Remark 1� Note that the previously described construction of false messages
(2nd preimages) can be used to construct collisions and preimages in a similar
way as well.

	�
����

 2� The hash function Ha is neither collision resistant, nor 2nd
preimage resistant, and preimage resistant. Thus the hash function Ha is totally
broken and is insecure for cryptographic use.

4. Conclusions

We described the cryptanalysed hash function, that was proposed in [2], [3].
The studied hash function uses a quasigroup isotopic to the quasigroup of mod-
ular subtraction. This paper enhances the paper [9], where the simplified studied
hash function, based only on the quasigruop of modular subtraction, was suc-
cessfully cryptanalysed. We have found a significant problem concerning the
mapping ϕ that is one of the mappings defining the isotopy. It is not a per-
mutation what contradicts the design ideas. Moreover, we have presented the
construction of false messages (collisions, 2nd preimages, and also preimages)
for the hash function Ha. The attack is based on inverting the mappings defin-
ing the isotopy.

It still remains an open question whether such a construction of a hash func-
tion is secure if “hard-to-invert” mappings are used for the isotopy. The structure
of the underlying quasigroup of modular subtraction could be useful in the at-
tack.

REFERENCES

[1] DÉNES, J. — KEEDWELL, A. D.: Latin Squares and their Applications, Acad. Press,
New York, 1974.

[2] DVORSKÝ, J. — OCHODKOVÁ, E. — SNÁŠEL, V.: Hash function based on quasi-

groups, in: Proc. of Mikulášska kryptobeśıdka, Praha, 2001, pp. 27–36. (In Czech)

[3] DVORSKÝ, J. — OCHODKOVÁ, E. — SNÁŠEL, V.: Hash functions based on large
quasigroups, in: Proc. of Velikonočńı kryptologie, Brno, 2002, pp. 1–8. (In Czech)

[4] GLIGOROSKI, D. — MARKOVSKI, S. — KNAPSKOG, S. J.: The stream cipher
Edon80, in: New Stream Cipher Designs: The eSTREAM Finalists, Lecture Notes in

Comput. Sci., Vol. 4986, Springer-Verlag, New York, 2008, pp. 152–169.

148

CRYPTANALYSIS OF A HASH FUNCTION BASED ON ISOTOPY OF QUASIGROUPS

[5] GLIGOROSKI, D. — MARKOVSKI, S. — KOCAREV, L.: Edon-R: An infinite family of

cryptographic hash functions, Internat. J. of Network Security, 8(3) (2009), pp. 293–300.
[6] GROŠEK, O. — SATKO, L. — NEMOGA, K.: Ideal difference tables from an algebraic

point of view, in: Proc. of VI RECSI, Cryptology and Information Security (P. C. Gil,

C. H. Goya, eds.) Teneriffe, Spain, 2000, RA-MA, Madrid, 2000, pp. 453–454.

[7] OCHODKOVÁ, E.: e-mail communication.
[8] PRENEEL, B.: The state of hash functions, in: Proc. of VI RECSI, Cryptology and

Information Security (P. C. Gil, C. H. Goya, eds.) Teneriffe, Spain, 2000, RA-MA, Madrid,
2000, pp. 3–27.

[9] VOJVODA,M.: Cryptanalysis of one hash function based on quasigroup, Tatra Mt. Math.

Publ. 29 (2004), 173–181.

Received May 21, 2010 Department of Applied Informatics and
Information Technology
Faculty of Electrical Engineering
and Information Technology

Slovak University of Technology
Ilkovičova 3
SK–812-19 Bratislava
SLOVAKIA

E-mail : milan.vojvoda@stuba.sk
ivana.slaminkova@gmail.com

149

	1. Introduction
	2. Description of the studied hash function
	Algorithm for the mapping
	Algorithm for the mapping
	Algorithm for the mapping -1

	3. Attack on the hash function
	3.1. Creating a false message by adding a prefix/suffix to the given message
	3.2. Creating a new (false) message
	3.3. Inverting the mappings , , and -1
	Algorithm for the mapping
	Algorithm for the mapping -1
	Algorithm for the mapping -1

	4. Conclusions
	REFERENCES

