

SOME REMARKS ON ρ -UPPER CONTINUOUS FUNCTIONS

Aleksandra Karasińska — Elżbieta Wagner-Bojakowska

ABSTRACT. The notion of a ρ -upper continuous function is a generalization of the notion of an approximately continuous function. It was introduced by S. Kowalczyk and K. Nowakowska. In [Kowalczyk, S., Nowakowska, K.: A note on ρ -upper continuous functions, Tatra. Mt. Math. Publ. **44** (2009), 153–158]. the authors proved that each ρ -upper continuous function is measurable and has Denjoy property. In this note we prove that there exists a measurable function having Denjoy property which is not ρ -upper continuous function for any $\rho \in$ [0, 1) and there exists a function which is ρ -upper continuous for each $\rho \in$ [0, 1) and is not approximately continuous. In the paper [Kowalczyk, S.—Nowakowska, K.: A note on ρ -upper continuous functions, Tatra. Mt. Math. Publ. **44** (2009), 153–158] there is also proved that for each $\rho \in (0, \frac{1}{2})$ there exists a ρ -upper continuous function which is not in the first class of Baire. Here we show that there exists a function which is ρ -upper continuous for each $\rho \in [0, 1)$ but is not Baire 1 function.

Let \mathbb{R} denote the set of all real numbers, \mathbb{N} — the set of positive integers, m — the Lebesgue measure on the real line.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$.

DEFINITION 1. The numbers

$$\underline{d}^+(E,x) = \liminf_{t \to 0^+} \frac{m(E \cap [x, x+t])}{t}$$

and

$$\bar{d}^+(E,x) = \limsup_{t \to 0^+} \frac{m(E \cap [x,x+t])}{t}$$

are called the right lower density of E at x and right upper density of E at x, respectively.

The left lower and upper densities of E at x are defined analogously. If

$$\underline{d}^{+}(E, x) = \bar{d}^{+}(E, x)$$
 and $\underline{d}^{-}(E, x) = \bar{d}^{-}(E, x),$

²⁰¹⁰ Mathematics Subject Classification: 26A15, 26A30.

Keywords: density of a set at a point, ρ -upper continuous functions, approximately continuous functions, Baire 1 functions, Denjoy property.

ALEKSANDRA KARASIŃSKA — ELŻBIETA WAGNER-BOJAKOWSKA

then we call these numbers the right density and left density of E at x, respectively, and denote them by $d^+(E, x)$, $d^-(E, x)$.

DEFINITION 2. The number

$$\bar{d}(E,x) = \limsup_{\substack{t \to 0^+, \ h \to 0^+ \\ t+h \neq 0}} \frac{m(E \cap [x-h, x+t])}{t+h}$$

is called the upper density of E at x.

The lower density of E at x, denoted by $\underline{d}(E, x)$, is defined analogously.

DEFINITION 3. If $d(E, x) = \underline{d}(E, x) = \rho$, the density of *E* at *x* is said to exist and the number $d(E, x) = \rho$ is called the density of *E* at *x*.

Let E be a measurable subset of the real line, $x \in \mathbb{R}$ and $\rho \in [0, 1)$.

DEFINITION 4 ([KN]). We say that x is a point of ρ -type upper density of E if $\bar{d}(E, x) > \rho$.

DEFINITION 5 ([KN]). A function $f: \mathbb{R} \to \mathbb{R}$ is called ρ -upper continuous at x provided that there exists a measurable set $E \subset \mathbb{R}$ such that x is a point of ρ -type upper density of $E, x \in E$, and $f_{|E}$ is continuous at x.

If f is ρ -upper continuous at every point, we say that f is ρ -upper continuous. The class of all ρ -upper continuous functions defined on \mathbb{R} will be denote by \mathcal{UC}_{ρ} .

DEFINITION 6. We say that a function $f : \mathbb{R} \to \mathbb{R}$ has Denjoy property at x_0 if for each $\varepsilon > 0$ and $\delta > 0$ the set $\{x \in (x_0 - \delta, x_0 + \delta) : |f(x) - f(x_0)| < \varepsilon\}$ contains a measurable subset of positive measure.

We say that f has Denjoy property if it has Denjoy property at each point $x \in \mathbb{R}$.

Let \mathcal{M} denote the family of all measurable functions $f \colon \mathbb{R} \to \mathbb{R}$ and let \mathcal{D} denote the family of all functions defined on \mathbb{R} having Denjoy property.

In [KN], the authors proved that $\mathcal{UC}_{\rho} \subset \mathcal{M} \cap \mathcal{D}$ for each $\rho \in (0, 1)$ (Theorem 2.1 and Remark 2.1). It is easy to see that this inclusion holds also for $\rho = 0$. Consequently,

$$\bigcup_{\rho \in (0,1)} \mathcal{UC}_{\rho} \subset \mathcal{UC}_{0} \subset \mathcal{M} \cap \mathcal{D}.$$

We will prove that the latter inclusion is proper. For this purpose, we will use a function defined by J. Borsík in [B].

THEOREM 7. There exists a measurable function $f : \mathbb{R} \to [0, 1]$ such that f has Denjoy property and $f \notin UC_{\rho}$ for each $\rho \in [0, 1)$.

SOME REMARKS ON ρ -UPPER CONTINUOUS FUNCTIONS

Proof. Let f be a function defined in [B, Proposition 5], for r = 0. Then f is continuous at each point different from zero and for each $\varepsilon > 0$ there is an open set U such that $\underline{d}(U,0) > 0$ and $|f(x) - f(0)| < \varepsilon$ for each $x \in U$. Hence, f is measurable and has Denjoy property. Simultaneously, for each measurable set A such that $\overline{d}(A,0) > 0$, the restiction $f_{|(A \cup \{0\})}$ is not continuous at 0. Consequently, $f \notin \mathcal{UC}_{\rho}$ for each $\rho \in [0, 1)$.

Let \mathcal{A} denote the family of all approximately continuous functions. Obviously, each approximately continuous function is ρ -upper continuous for each $\rho \in [0, 1)$, so

$$\mathcal{A} \subset \bigcap_{\rho \in [0,1)} \mathcal{UC}_{\rho}$$

We will prove that this inclusion is also proper.

THEOREM 8. There exists a function $f : \mathbb{R} \to [0, 1]$ such that $f \in \mathcal{UC}_{\rho}$ for each $\rho \in [0, 1)$ and f is not approximately continuous.

Proof. Let f be a function defined in [B, Proposition 1]. Then f is continuous at each point different from zero and ρ -upper continuous at zero for each $\rho \in [0, 1)$. Simultaneously, f is not approximately continuous at zero.

The next theorem is an improvement of the result obtained by K o w a l c z y k and N o w a k o w s k a for $\rho \in (0, \frac{1}{2})$.

THEOREM 9. There exists a function $f : \mathbb{R} \to [0, 1]$ such that $f \in \mathcal{UC}_{\rho}$ for each $\rho \in [0, 1)$ and f is not in the first class of Baire.

Proof. We will construct a Cantor-like set in the following way:

In the first step, we remove a concentric open interval $I_{1,1}$ of the length $\frac{1}{3}$ from the interval $J_{0,1} = [0, 1]$. Let us denote the components of the set $J_{0,1} \setminus I_{1,1}$ by $J_{1,1}$, $J_{1,2}$, respectively. Next, from each of the intervals $J_{1,1}$, $J_{1,2}$, we remove concentric open intervals $I_{2,1}$, $I_{2,2}$ of the length $\frac{2}{2+2} \cdot m(J_{1,1})$. Denote the components of the set $[0,1] \setminus (I_{1,1} \cup I_{2,1} \cup I_{2,2})$ by $J_{2,1}$, $J_{2,2}$, $J_{2,3}$, $J_{2,4}$, respectively. Assume that we have already removed concentric open intervals $I_{i,k}$ for $i \in \{1,\ldots,n\}, k \in \{1,\ldots,2^{i-1}\}$, each of the length $\frac{i}{i+2} \cdot m(J_{i-1,1})$, where $J_{i-1,1}$ is the first component from the left of the set $[0,1] \setminus \bigcup_{l=1}^{n} \bigcup_{p=1}^{2^{l-1}} I_{l,p}$. Denote the components of the set $[0,1] \setminus \bigcup_{l=1}^{n} \bigcup_{p=1}^{2^{l-1}} I_{l,p}$ by $J_{n,k}$, for $k \in \{1,\ldots,2^n\}$. From each of the length $\frac{n+1}{(n+1)+2} \cdot m(J_{n,1})$.

Let us put

$$C = [0,1] \setminus \bigcup_{l=1}^{\infty} \bigcup_{p=1}^{2^{l-1}} I_{l,p}$$

and let H be the set of the endpoints of all intervals $I_{l,p}$, where $l \in \mathbb{N}$, $p \in$ $\{1,\ldots,2^{l-1}\}$. Put $2^{(2s-1)-1}$

$$A = \bigcup_{s=1}^{\infty} \bigcup_{p=1}^{2^s} I_{2s-1,p} \cup H$$
$$B = \bigcup_{s=1}^{\infty} \bigcup_{p=1}^{2^{2s-1}} I_{2s,p} \cup (C \setminus H) \cup (\mathbb{R} \setminus [0, 1])$$

and

$$B = \bigcup_{s=1}^{\infty} \bigcup_{p=1}^{2^{2s-1}} I_{2s,p} \cup (C \setminus H) \cup (\mathbb{R} \setminus [0,1]).$$

For $x \in \mathbb{R}$, put

$$f(x) = \chi_A(x).$$

We will prove that $f \in \mathcal{UC}_{\rho}$ for each $\rho \in [0,1)$. It is sufficient to show that $\overline{d}(A, x) = 1$ for each $x \in A$ and $\overline{d}(B, x) = 1$ for each $x \in B$. Let $x \in C$. Then, for each $l \in \mathbb{N}$, there exists a number $p(l) \in \{1, \ldots, 2^l\}$ such that $x \in J_{l,p(l)}$. Define two sequences $\{k_i\}_{i\in\mathbb{N}}, \{t_i\}_{i\in\mathbb{N}}$ in the following way. For each $i\in\mathbb{N}$, we have $x \in J_{i,p(i)}$. In the case when the interval $I_{i+1,p(i)} = (a_{i+1,p(i)}, b_{i+1,p(i)})$ removed from $J_{i,p(i)}$ is on the right side of the point x, put $k_i = b_{i+1,p(i)} - x$ and $t_i = 0$. In another case, let us put $k_i = 0$ and $t_i = x - a_{i+1,p(i)}$. Then, $[x - t_i, x + k_i] \subset J_{i,p(i)}.$

Consider subsequences $\{k_{2s-1}\}_{s\in\mathbb{N}}$ and $\{t_{2s-1}\}_{s\in\mathbb{N}}$ of the sequences $\{k_i\}_{i\in\mathbb{N}}$ and $\{t_i\}_{i\in\mathbb{N}}$, respectively. Then,

$$I_{2s,p(2s-1)} \subset [x - t_{2s-1}, x + k_{2s-1}],$$

SO

$$\frac{m(B \cap [x - t_{2s-1}, x + k_{2s-1}])}{t_{2s-1} + k_{2s-1}} \ge \frac{m(I_{2s,p(2s-1)})}{m(J_{2s-1,p(2s-1)})}$$
$$= \frac{\frac{2s}{2s+2} \cdot m(J_{2s-1,p(2s-1)})}{m(J_{2s-1,p(2s-1)})}$$
$$= \frac{2s}{2s+2}.$$

Hence,

$$\lim_{s \to \infty} \frac{m(B \cap [x - t_{2s-1}, x + k_{2s-1}])}{t_{2s-1} + k_{2s-1}} = 1.$$

Since $\lim_{s\to\infty} t_{2s-1} = 0$ and $\lim_{s\to\infty} k_{2s-1} = 0$, we obtain $\overline{d}(B, x) = 1$. Considering similarly subsequences $\{k_{2s}\}_{s\in\mathbb{N}}$ and $\{t_{2s}\}_{s\in\mathbb{N}}$ of the sequences $\{k_i\}_{i\in\mathbb{N}}$ and $\{t_i\}_{i\in\mathbb{N}}$, respectively, we obtain

$$\frac{m(A \cap [x - t_{2s}, x + k_{2s}])}{t_{2s} + k_{2s}} \ge \frac{m(I_{2s+1, p(2s)})}{m(J_{2s, p(2s)})} = \frac{\frac{2s+1}{(2s+1)+2} \cdot m(J_{2s, p(2s)})}{m(J_{2s, p(2s)})} = \frac{2s+1}{2s+3}$$

Hence, $\overline{d}(A, x) = 1$.

SOME REMARKS ON ρ -UPPER CONTINUOUS FUNCTIONS

If $x \in A \setminus C$, then obviously $\bar{d}(A, x) = 1$. Analogously, if $x \in B \setminus C$, then $\bar{d}(B, x) = 1$. Hence, $f \in \mathcal{UC}_{\rho}$ for each $\rho \in [0, 1)$.

Let us note that $f_{|C}$ has no point of continuity. In fact, for each $x \in C$, there exist two sequences $\{x_n\}_{n\in\mathbb{N}} \subset A \cap C$ and $\{y_n\}_{n\in\mathbb{N}} \subset B \cap C$ such that $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = x$. So, $\lim_{n\to\infty} f(x_n) = 1$ and $\lim_{n\to\infty} f(y_n) = 0$. Thus f is not in the first class of Baire.

REFERENCES

- BORSÍK, J.: Some classes of strongly quasicontinuous functions, Real Anal. Exchange 30 (2004/05), 689–702.
- [KN] KOWALCZYK, S.—NOWAKOWSKA, K.: A note on ρ-upper continuous functions, Tatra. Mt. Math. Publ. 44 (2009), 153–158.

Received December 6, 2009

University of Lódź Faculty of Mathematics and Computer Science ul. Banacha 22 PL-90-238 Lódź POLAND E-mail: karasia@math.uni.lodz.pl wagner@uni.lodz.pl