SOME REMARKS ON ρ-UPPER CONTINUOUS FUNCTIONS

Aleksandra Karasińska - Elżbieta Wagner-Bojakowska

Abstract

The notion of a ρ-upper continuous function is a generalization of the notion of an approximately continuous function. It was introduced by S. Kowalczyk and K. Nowakowska. In [Kowalczyk, S., Nowakowska, K.: A note on ρ-upper continuous functions, Tatra. Mt. Math. Publ. 44 (2009), 153-158]. the authors proved that each ρ-upper continuous function is measurable and has Denjoy property. In this note we prove that there exists a measurable function having Denjoy property which is not ρ-upper continuous function for any $\rho \in$ $[0,1)$ and there exists a function which is ρ-upper continuous for each $\rho \in[0,1)$ and is not approximately continuous. In the paper [Kowalczyk, S.-Nowakowska, K.: A note on ρ-upper continuous functions, Tatra. Mt. Math. Publ. 44 (2009), 153-158] there is also proved that for each $\rho \in\left(0, \frac{1}{2}\right)$ there exists a ρ-upper continuous function which is not in the first class of Baire. Here we show that there exists a function which is ρ-upper continuous for each $\rho \in[0,1)$ but is not Baire 1 function.

Let \mathbb{R} denote the set of all real numbers, \mathbb{N} - the set of positive integers, m - the Lebesgue measure on the real line.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$.
Definition 1. The numbers

$$
\underline{d}^{+}(E, x)=\liminf _{t \rightarrow 0^{+}} \frac{m(E \cap[x, x+t])}{t}
$$

and

$$
\bar{d}^{+}(E, x)=\limsup _{t \rightarrow 0^{+}} \frac{m(E \cap[x, x+t])}{t}
$$

are called the right lower density of E at x and right upper density of E at x, respectively.

The left lower and upper densities of E at x are defined analogously. If

$$
\underline{d}^{+}(E, x)=\bar{d}^{+}(E, x) \quad \text { and } \quad \underline{d}^{-}(E, x)=\bar{d}^{-}(E, x),
$$

[^0]
ALEKSANDRA KARASIŃSKA — ELŻBIETA WAGNER-BOJAKOWSKA

then we call these numbers the right density and left density of E at x, respectively, and denote them by $d^{+}(E, x), d^{-}(E, x)$.

Definition 2. The number

$$
\bar{d}(E, x)=\limsup _{\substack{t \rightarrow 0^{+}, h \rightarrow 0^{+} \\ t+h \neq 0}} \frac{m(E \cap[x-h, x+t])}{t+h}
$$

is called the upper density of E at x.
The lower density of E at x, denoted by $\underline{d}(E, x)$, is defined analogously.
Definition 3. If $\bar{d}(E, x)=\underline{d}(E, x)=\rho$, the density of E at x is said to exist and the number $d(E, x)=\rho$ is called the density of E at x.

Let E be a measurable subset of the real line, $x \in \mathbb{R}$ and $\rho \in[0,1)$.
Definition 4 ($[\mathrm{KN}]$). We say that x is a point of ρ-type upper density of E if $\bar{d}(E, x)>\rho$.

Definition 5 ($[\overline{\mathrm{KN}}]$). A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called ρ-upper continuous at x provided that there exists a measurable set $E \subset \mathbb{R}$ such that x is a point of ρ-type upper density of $E, x \in E$, and $f_{\mid E}$ is continuous at x.

If f is ρ-upper continuous at every point, we say that f is ρ-upper continuous. The class of all ρ-upper continuous functions defined on \mathbb{R} will be denote by $\mathcal{U C} \rho$.

Definition 6. We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has Denjoy property at x_{0} if for each $\varepsilon>0$ and $\delta>0$ the set $\left\{x \in\left(x_{0}-\delta, x_{0}+\delta\right):\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}$ contains a measurable subset of positive measure.

We say that f has Denjoy property if it has Denjoy property at each point $x \in \mathbb{R}$.

Let \mathcal{M} denote the family of all measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and let \mathcal{D} denote the family of all functions defined on \mathbb{R} having Denjoy property.

In [KN], the authors proved that $\mathcal{U C} \mathcal{C}_{\rho} \subset \mathcal{M} \cap \mathcal{D}$ for each $\rho \in(0,1)$ (Theorem 2.1 and Remark 2.1). It is easy to see that this inclusion holds also for $\rho=0$. Consequently,

$$
\bigcup_{\rho \in(0,1)} \mathcal{U C}_{\rho} \subset \mathcal{U} \mathcal{C}_{0} \subset \mathcal{M} \cap \mathcal{D} .
$$

We will prove that the latter inclusion is proper. For this purpose, we will use a function defined by J. Borsík in B.

Theorem 7. There exists a measurable function $f: \mathbb{R} \rightarrow[0,1]$ such that f has Denjoy property and $f \notin \mathcal{U C} \mathcal{C}_{\rho}$ for each $\rho \in[0,1)$.

SOME REMARKS ON ρ-UPPER CONTINUOUS FUNCTIONS

Proof. Let f be a function defined in [B, Proposition 5], for $r=0$. Then f is continuous at each point different from zero and for each $\varepsilon>0$ there is an open set U such that $\underline{d}(U, 0)>0$ and $|f(x)-f(0)|<\varepsilon$ for each $x \in U$. Hence, f is measurable and has Denjoy property. Simultaneously, for each measurable set A such that $\bar{d}(A, 0)>0$, the restiction $f_{\mid(A \cup\{0\})}$ is not continuous at 0 . Consequently, $f \notin \mathcal{U} \mathcal{C}_{\rho}$ for each $\rho \in[0,1)$.

Let \mathcal{A} denote the family of all approximately continuous functions. Obviously, each approximately continuous function is ρ-upper continuous for each $\rho \in[0,1)$, so

$$
\mathcal{A} \subset \bigcap_{\rho \in[0,1)} \mathcal{U C}_{\rho} .
$$

We will prove that this inclusion is also proper.
Theorem 8. There exists a function $f: \mathbb{R} \rightarrow[0,1]$ such that $f \in \mathcal{U C} \mathcal{C}_{\rho}$ for each $\rho \in[0,1)$ and f is not approximately continuous.

Proof. Let f be a function defined in [B, Proposition 1]. Then f is continuous at each point different from zero and ρ-upper continuous at zero for each $\rho \in$ $[0,1)$. Simultaneously, f is not approximately continuous at zero.

The next theorem is an improvement of the result obtained by Kowalczyk and Nowakowska for $\rho \in\left(0, \frac{1}{2}\right)$.
Theorem 9. There exists a function $f: \mathbb{R} \rightarrow[0,1]$ such that $f \in \mathcal{U C} \mathcal{C}_{\rho}$ for each $\rho \in[0,1)$ and f is not in the first class of Baire.

Proof. We will construct a Cantor-like set in the following way:
In the first step, we remove a concentric open interval $I_{1,1}$ of the length $\frac{1}{3}$ from the interval $J_{0,1}=[0,1]$. Let us denote the components of the set $J_{0,1} \backslash I_{1,1}$ by $J_{1,1}, J_{1,2}$, respectively. Next, from each of the intervals $J_{1,1}, J_{1,2}$, we remove concentric open intervals $I_{2,1}, I_{2,2}$ of the length $\frac{2}{2+2} \cdot m\left(J_{1,1}\right)$. Denote the components of the set $[0,1] \backslash\left(I_{1,1} \cup I_{2,1} \cup I_{2,2}\right)$ by $J_{2,1}, J_{2,2}, J_{2,3}, J_{2,4}$, respectively. Assume that we have already removed concentric open intervals $I_{i, k}$ for $i \in\{1, \ldots, n\}, k \in\left\{1, \ldots, 2^{i-1}\right\}$, each of the length $\frac{i}{i+2} \cdot m\left(J_{i-1,1}\right)$, where $J_{i-1,1}$ is the first component from the left of the set $[0,1] \backslash \bigcup_{l=1}^{n} \bigcup_{p=1}^{2^{l-1}} I_{l, p}$. Denote the components of the set $[0,1] \backslash \bigcup_{l=1}^{n} \bigcup_{p=1}^{2^{l-1}} I_{l, p}$ by $J_{n, k}$, for $k \in\left\{1, \ldots, 2^{n}\right\}$. From each of the intervals $J_{n, k}$, for $k \in\left\{1, \ldots, 2^{n}\right\}$, we remove a concentric open interval $I_{n+1, k}$ of the length $\frac{n+1}{(n+1)+2} \cdot m\left(J_{n, 1}\right)$.

Let us put

$$
C=[0,1] \backslash \bigcup_{l=1}^{\infty} \bigcup_{p=1}^{2^{l-1}} I_{l, p}
$$

and let H be the set of the endpoints of all intervals $I_{l, p}$, where $l \in \mathbb{N}, p \in$ $\left\{1, \ldots, 2^{l-1}\right\}$. Put

$$
A=\bigcup_{s=1}^{\infty} \bigcup_{p=1}^{2^{(2 s-1)-1}} I_{2 s-1, p} \cup H
$$

and

$$
B=\bigcup_{s=1}^{\infty} \bigcup_{p=1}^{2^{2 s-1}} I_{2 s, p} \cup(C \backslash H) \cup(\mathbb{R} \backslash[0,1])
$$

For $x \in \mathbb{R}$, put

$$
f(x)=\chi_{A}(x)
$$

We will prove that $f \in \mathcal{U} \mathcal{C}_{\rho}$ for each $\rho \in[0,1)$. It is sufficient to show that $\bar{d}(A, x)=1$ for each $x \in A$ and $\bar{d}(B, x)=1$ for each $x \in B$. Let $x \in C$. Then, for each $l \in \mathbb{N}$, there exists a number $p(l) \in\left\{1, \ldots, 2^{l}\right\}$ such that $x \in J_{l, p(l)}$. Define two sequences $\left\{k_{i}\right\}_{i \in \mathbb{N}},\left\{t_{i}\right\}_{i \in \mathbb{N}}$ in the following way. For each $i \in \mathbb{N}$, we have $x \in J_{i, p(i)}$. In the case when the interval $I_{i+1, p(i)}=\left(a_{i+1, p(i)}, b_{i+1, p(i)}\right)$ removed from $J_{i, p(i)}$ is on the right side of the point x, put $k_{i}=b_{i+1, p(i)}-x$ and $t_{i}=0$. In another case, let us put $k_{i}=0$ and $t_{i}=x-a_{i+1, p(i)}$. Then, $\left[x-t_{i}, x+k_{i}\right] \subset J_{i, p(i)}$.

Consider subsequences $\left\{k_{2 s-1}\right\}_{s \in \mathbb{N}}$ and $\left\{t_{2 s-1}\right\}_{s \in \mathbb{N}}$ of the sequences $\left\{k_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{t_{i}\right\}_{i \in \mathbb{N}}$, respectively. Then,

$$
I_{2 s, p(2 s-1)} \subset\left[x-t_{2 s-1}, x+k_{2 s-1}\right]
$$

so

$$
\begin{aligned}
\frac{m\left(B \cap\left[x-t_{2 s-1}, x+k_{2 s-1}\right]\right)}{t_{2 s-1}+k_{2 s-1}} & \geq \frac{m\left(I_{2 s, p(2 s-1)}\right)}{m\left(J_{2 s-1, p(2 s-1)}\right)} \\
& =\frac{\frac{2 s}{2 s+2} \cdot m\left(J_{2 s-1, p(2 s-1)}\right)}{m\left(J_{2 s-1, p(2 s-1)}\right)} \\
& =\frac{2 s}{2 s+2}
\end{aligned}
$$

Hence,

$$
\lim _{s \rightarrow \infty} \frac{m\left(B \cap\left[x-t_{2 s-1}, x+k_{2 s-1}\right]\right)}{t_{2 s-1}+k_{2 s-1}}=1
$$

Since $\lim _{s \rightarrow \infty} t_{2 s-1}=0$ and $\lim _{s \rightarrow \infty} k_{2 s-1}=0$, we obtain $\bar{d}(B, x)=1$. Considering similarly subsequences $\left\{k_{2 s}\right\}_{s \in \mathbb{N}}$ and $\left\{t_{2 s}\right\}_{s \in \mathbb{N}}$ of the sequences $\left\{k_{i}\right\}_{i \in \mathbb{N}}$ and $\left\{t_{i}\right\}_{i \in \mathbb{N}}$, respectively, we obtain

$$
\frac{m\left(A \cap\left[x-t_{2 s}, x+k_{2 s}\right]\right)}{t_{2 s}+k_{2 s}} \geq \frac{m\left(I_{2 s+1, p(2 s)}\right)}{m\left(J_{2 s, p(2 s)}\right)}=\frac{\frac{2 s+1}{(2 s+1)+2} \cdot m\left(J_{2 s, p(2 s)}\right)}{m\left(J_{2 s, p(2 s)}\right)}=\frac{2 s+1}{2 s+3}
$$

Hence, $\bar{d}(A, x)=1$.

SOME REMARKS ON ρ-UPPER CONTINUOUS FUNCTIONS

If $x \in A \backslash C$, then obviously $\bar{d}(A, x)=1$. Analogously, if $x \in B \backslash C$, then $\bar{d}(B, x)=1$. Hence, $f \in \mathcal{U C}_{\rho}$ for each $\rho \in[0,1)$.

Let us note that $f_{\mid C}$ has no point of continuity. In fact, for each $x \in C$, there exist two sequences $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset A \cap C$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}} \subset B \cap C$ such that $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=x$. So, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=1$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=0$. Thus f is not in the first class of Baire.

REFERENCES

[B] BORSÍK, J.: Some classes of strongly quasicontinuous functions, Real Anal. Exchange 30 (2004/05), 689-702.
[KN] KOWALCZYK, S.-NOWAKOWSKA, K.: A note on ρ-upper continuous functions, Tatra. Mt. Math. Publ. 44 (2009), 153-158.

Received December 6, 2009

University of Łódź
Faculty of Mathematics and Computer Science ul. Banacha 22 PL-90-238 Łódź POLAND
E-mail: karasia@math.uni.lodz.pl wagner@uni.lodz.pl

[^0]: 2010 Mathematics Subject Classification: 26A15, 26A30.
 Keywords: density of a set at a point, ρ-upper continuous functions, approximately continuous functions, Baire 1 functions, Denjoy property.

