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SOME REMARKS ON ρ-UPPER CONTINUOUS

FUNCTIONS

Aleksandra Karasińska — Elżbieta Wagner-Bojakowska

ABSTRACT. The notion of a ρ-upper continuous function is a generalization
of the notion of an approximately continuous function. It was introduced by
S. Kowalczyk and K. Nowakowska. In [Kowalczyk, S., Nowakowska, K.: A note
on ρ-upper continuous functions, Tatra. Mt. Math. Publ. 44 (2009), 153–158].

the authors proved that each ρ-upper continuous function is measurable and has
Denjoy property. In this note we prove that there exists a measurable function
having Denjoy property which is not ρ-upper continuous function for any ρ ∈
[0, 1) and there exists a function which is ρ-upper continuous for each ρ ∈ [0, 1)
and is not approximately continuous. In the paper [Kowalczyk, S.—Nowakowska,
K.: A note on ρ-upper continuous functions, Tatra. Mt. Math. Publ. 44 (2009),

153–158] there is also proved that for each ρ ∈ (
0, 1

2

)
there exists a ρ-upper

continuous function which is not in the first class of Baire. Here we show that
there exists a function which is ρ-upper continuous for each ρ ∈ [0, 1) but is not
Baire 1 function.

Let R denote the set of all real numbers, N — the set of positive integers,
m — the Lebesgue measure on the real line.

Let E be a measurable subset of R and let x ∈ R.

���������� 1� The numbers

d+(E, x) = lim inf
t→0+

m(E ∩ [x, x+ t])

t
and

d̄+(E, x) = lim sup
t→0+

m(E ∩ [x, x+ t])

t

are called the right lower density of E at x and right upper density of E at x,
respectively.

The left lower and upper densities of E at x are defined analogously. If

d+(E, x) = d̄+(E, x) and d−(E, x) = d̄−(E, x),

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 26A15, 26A30.
Keywords: density of a set at a point, ρ-upper continuous functions, approximately contin-

uous functions, Baire 1 functions, Denjoy property.

85
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then we call these numbers the right density and left density of E at x, respec-
tively, and denote them by d+(E, x), d−(E, x).

���������� 2� The number

d̄(E, x) = lim sup
t→0+, h→0+

t+h �=0

m(E ∩ [x− h, x+ t])

t+ h

is called the upper density of E at x.

The lower density of E at x, denoted by d(E, x), is defined analogously.

���������� 3� If d̄(E, x) = d(E, x) = ρ, the density of E at x is said to exist
and the number d(E, x) = ρ is called the density of E at x.

Let E be a measurable subset of the real line, x ∈ R and ρ ∈ [0, 1).

���������� 4 ([KN])� We say that x is a point of ρ-type upper density of E
if d̄(E, x) > ρ.

���������� 5 ([KN])� A function f : R → R is called ρ-upper continuous at x
provided that there exists a measurable set E ⊂ R such that x is a point of ρ-type
upper density of E, x ∈ E, and f|E is continuous at x.

If f is ρ-upper continuous at every point, we say that f is ρ-upper continuous.
The class of all ρ-upper continuous functions defined on R will be denote by UCρ.
���������� 6� We say that a function f : R → R has Denjoy property at x0

if for each ε > 0 and δ > 0 the set
{
x ∈ (x0 − δ, x0 + δ) : |f(x) − f(x0)| < ε

}

contains a measurable subset of positive measure.

We say that f has Denjoy property if it has Denjoy property at each point
x ∈ R.

Let M denote the family of all measurable functions f : R → R and let D
denote the family of all functions defined on R having Denjoy property.

In [KN], the authors proved that UCρ ⊂ M ∩ D for each ρ ∈ (0, 1) (Theo-
rem 2.1 and Remark 2.1). It is easy to see that this inclusion holds also for ρ = 0.
Consequently, ⋃

ρ∈(0,1)

UCρ ⊂ UC0 ⊂ M∩D.

We will prove that the latter inclusion is proper. For this purpose, we will use
a function defined by J. B o r s ı́ k in [B].

	
����� 7� There exists a measurable function f : R → [0, 1] such that f has
Denjoy property and f �∈ UCρ for each ρ ∈ [0, 1).

86



SOME REMARKS ON ρ-UPPER CONTINUOUS FUNCTIONS

P r o o f. Let f be a function defined in [B, Proposition 5], for r = 0. Then f is
continuous at each point different from zero and for each ε > 0 there is an open
set U such that d(U, 0) > 0 and |f(x) − f(0)| < ε for each x ∈ U. Hence,
f is measurable and has Denjoy property. Simultaneously, for each measurable
set A such that d̄(A, 0) > 0, the restiction f|(A∪{0}) is not continuous at 0.
Consequently, f �∈ UCρ for each ρ ∈ [0, 1). �

Let A denote the family of all approximately continuous functions. Obviously,
each approximately continuous function is ρ-upper continuous for each ρ ∈ [0, 1),
so A ⊂

⋂

ρ∈[0,1)

UCρ.

We will prove that this inclusion is also proper.

	
����� 8� There exists a function f : R → [0, 1] such that f ∈ UCρ for each
ρ ∈ [0, 1) and f is not approximately continuous.

P r o o f. Let f be a function defined in [B, Proposition 1]. Then f is continuous
at each point different from zero and ρ-upper continuous at zero for each ρ ∈
[0, 1). Simultaneously, f is not approximately continuous at zero. �

The next theorem is an improvement of the result obtained by K o w a l c z y k
and N o w a k o w s k a for ρ ∈ (

0, 12
)
.

	
����� 9� There exists a function f : R → [0, 1] such that f ∈ UCρ for each
ρ ∈ [0, 1) and f is not in the first class of Baire.

P r o o f. We will construct a Cantor-like set in the following way:

In the first step, we remove a concentric open interval I1,1 of the length 1
3

from the interval J0,1 = [0, 1]. Let us denote the components of the set J0,1 \ I1,1
by J1,1, J1,2, respectively. Next, from each of the intervals J1,1, J1,2, we re-
move concentric open intervals I2,1, I2,2 of the length 2

2+2 ·m(J1,1). Denote the

components of the set [0, 1] \ (I1,1 ∪ I2,1 ∪ I2,2) by J2,1, J2,2, J2,3, J2,4, respec-
tively. Assume that we have already removed concentric open intervals Ii,k for
i ∈ {1, . . . , n}, k ∈ {1, . . . , 2i−1}, each of the length i

i+2 ·m(Ji−1,1), where Ji−1,1

is the first component from the left of the set [0, 1] \ ⋃n
l=1

⋃2l−1

p=1 Il,p. Denote

the components of the set [0, 1] \ ⋃n
l=1

⋃2l−1

p=1 Il,p by Jn,k, for k ∈ {1, . . . , 2n}.
From each of the intervals Jn,k, for k ∈ {1, . . . , 2n}, we remove a concentric open
interval In+1,k of the length n+1

(n+1)+2 ·m(Jn,1).

Let us put

C = [0, 1] \
∞⋃

l=1

2l−1⋃

p=1

Il,p
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and let H be the set of the endpoints of all intervals Il,p, where l ∈ N, p ∈
{1, . . . , 2l−1}. Put

A =

∞⋃

s=1

2(2s−1)−1⋃

p=1

I2s−1,p ∪H

and

B =

∞⋃

s=1

22s−1⋃

p=1

I2s,p ∪ (C \H) ∪ (
R \ [0, 1]).

For x ∈ R, put
f(x) = χA(x).

We will prove that f ∈ UCρ for each ρ ∈ [0, 1). It is sufficient to show that
d̄(A, x) = 1 for each x ∈ A and d̄(B, x) = 1 for each x ∈ B. Let x ∈ C. Then,
for each l ∈ N, there exists a number p(l) ∈ {1, . . . , 2l} such that x ∈ Jl,p(l).
Define two sequences {ki}i∈N, {ti}i∈N in the following way. For each i ∈ N, we
have x ∈ Ji,p(i). In the case when the interval Ii+1,p(i) =

(
ai+1,p(i), bi+1,p(i)

)

removed from Ji,p(i) is on the right side of the point x, put ki = bi+1,p(i) − x

and ti = 0. In another case, let us put ki = 0 and ti = x − ai+1,p(i). Then,
[x− ti, x+ ki] ⊂ Ji,p(i).

Consider subsequences {k2s−1}s∈N and {t2s−1}s∈N of the sequences {ki}i∈N

and {ti}i∈N, respectively. Then,

I2s,p(2s−1) ⊂ [x− t2s−1, x+ k2s−1],

so
m(B ∩ [x− t2s−1, x+ k2s−1])

t2s−1 + k2s−1
≥ m(I2s,p(2s−1))

m(J2s−1,p(2s−1))

=
2s

2s+2 ·m(J2s−1,p(2s−1))

m(J2s−1,p(2s−1))

=
2s

2s+ 2
.

Hence,

lim
s→∞

m(B ∩ [x− t2s−1, x+ k2s−1])

t2s−1 + k2s−1
= 1.

Since lims→∞ t2s−1 = 0 and lims→∞ k2s−1 = 0, we obtain d̄(B, x) = 1. Con-
sidering similarly subsequences {k2s}s∈N and {t2s}s∈N of the sequences {ki}i∈N

and {ti}i∈N, respectively, we obtain

m(A ∩ [x− t2s, x+ k2s])

t2s + k2s
≥ m(I2s+1,p(2s))

m(J2s,p(2s))
=

2s+1
(2s+1)+2 ·m(J2s,p(2s))

m(J2s,p(2s))
=

2s+ 1

2s+ 3
.

Hence, d̄(A, x) = 1.
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If x ∈ A \ C, then obviously d̄(A, x) = 1. Analogously, if x ∈ B \ C, then
d̄(B, x) = 1. Hence, f ∈ UCρ for each ρ ∈ [0, 1).

Let us note that f|C has no point of continuity. In fact, for each x ∈ C,
there exist two sequences {xn}n∈N ⊂ A ∩ C and {yn}n∈N ⊂ B ∩ C such that
limn→∞ xn = x, limn→∞ yn = x. So, limn→∞ f(xn) = 1 and limn→∞ f(yn) = 0.
Thus f is not in the first class of Baire. �
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