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SOME CONVERGENCE THEOREMS FOR

BK-INTEGRAL IN LOCALLY CONVEX SPACES

Sokol Bush Memetaj

ABSTRACT. In this paper, we present some convergence theorems for Bk-
integral of functions taking values in a locally convex topological vector space.
These theorems are involved with the notion of equi-Bk-integrability.

1. Introduction

The Bk-integral defined in this paper is an extension to a locally convex
topological vector space of Birkhoff integral in the Fremlin sense (see [7]). Our
Bk-integral definition is equivalent to Bk-integral definition in [6] and to V-
integral definition in [8].

The aim of our paper is to give sufficient conditions for the interchange of the
limit and the integration, for a sequence (fn) of Bk-integrable functions from a
complete probability space to a locally convex topological vector space (V, τ). We
assume equi-Bk-integrability in (V, τ) of the sequence (fn) converging pointwise
in the topology τ or in the weak topology σ(V, V ′). For the case when functions
take values in a Banach space, our notion of equi-Bk-integrability is equivalent to
the equi-Birkhoff-integrability in [2] or [10]. Convergence theorems of this type
of functions taking values in a Banach space have been shown in [2], [9], [10].

In the second section, we present three convergence theorems for Bk-integral
which are involved with the notion of equi-Bk-integrability of a sequence (fn);
Theorem 2.1 assumes the pointwise convergence of the sequence (fn) in (V, τ);
Theorem 2.6 and Theorem 2.8 assume the pointwise convergence of the sequence
(fn) in (V, σ(V, V ′)). Theorem 2.1 is a generalization of Theorem 7 in [2]. The-
orem 2.6 is a generalization of Theorem 2.12 in [10].
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The main result in this paper is Theorem 2.8. Theorem 2.1 and Theorem 2.6
are used in the proof of Theorem 2.8. For the case when locally convex topolog-
ical vector space is weakly sequential complete but not complete, we use Theo-
rem 2.8 instead of Theorem 2.6. Do locally convex topological vector spaces of
this type exist? The following example shows that the answer to this question
is positive.

Let V be a Lebesgue space L1([0, 1]) endowed with its weak topology. This
space is locally convex and Hausdorff, and its dual is linearly isometric to
L∞([0, 1]) (see [3, Th.IV.8.5; p. 289]), so the weak topology σ(V, V ′) coincides
with the original one. Sequential completeness follows from the Vitali-Hahn-
Saks Theorem (see [4, p. 29]). Indeed, the elements of L1([0, 1]) can be identified
with the countably additive measure μ on B, the Borel σ-field of [0, 1], that
are absolutely continuous with respect to the Lebesgue measure λ. The weak
convergence of a sequence (μn) is clearly equivalent to pointwise convergence on
all elements of B. To show that V is not complete, it is sufficient to construct a
net (fr) of non-negative L1 functions, with unit norm, such that the limit

lim
r

1∫
0

fr(x)g(x)dx

exists in R for all g ∈ L∞, but defines a finitely additive measure on B which is
not countably additive. To this aim, one can define a sequence (xn) in [0, 1]B.
Since [0, 1]B is compact for the product topology, the sequence (xn) has a conver-
gent subnet (xnr

)r. Now, all elements xnr
can be thought of as measures in B,

absolutely continuous with respect to λ, and their Radon-Nikodym derivatives
fnr

form the requested net.

Throughout this paper, (Ω,Σ, μ) is a complete probability space and (V, τ)
is a locally convex topological vector space, which is Hausdorff (or separated)
space. We set P the family of all continuous semi-norms in this space; for every

p ∈ P , Ṽ p denotes a quotient vector space of the vector space V with respect

to the equivalence relation x ∼p y ⇔ p(x− y) = 0; the map φp : V → Ṽ p is a
canonical quotient map, thus φp(x) is an equivalence class of an element x ∈ V

with respect to the relation “ ∼p ”; a quotient normed space (Ṽ p, p̃) is called a
normed component of the space (V, τ), where p̃(φp(x)) = p(x), for each x ∈ V ;

a Banach space (V
p
, p), which is the completion of the space (Ṽ p, p̃), is called a

Banach component of the space (V, τ); V ′, V ′p , Ṽ
′
p and V

′
p are topological duals

of (V, τ), (V, p), (Ṽ p, p̃) and (V
p
, p), respectively; σ(V, V ′) is the a topology of

(V, τ). It is easy to see that

V ′ =
{
ṽ′p ◦ φp/ṽ

′
p ∈ Ṽ ′p, p ∈ P

}
, (1.1)

because for every v′ ∈ V ′, we have that |v′(.)| ∈ P .
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The function

φ : V →
∏
p

(Ṽ p, p̃), φ(x) = (φp(x)), x ∈ V,

is clearly linear, and since (V, τ) is Hausdorff, it is also one to one. Moreover,
the function φ is readily seen to be a homeomorphism, and hence, an isomor-
phism of V onto φ(V ) (for the isomorphic definition of topological vector spaces
see, [11, p. 11].

For every p, q ∈ P such that p ≤ q, we define the map

g̃pq : Ṽ
q → Ṽ p, g̃pq(wq) = wp, wq ∈ Ṽ q,

where wp = φp(x), for some vector x ∈ wq. Since for every y ∈ wq, we have
φp(y) = wp, the map g̃pq is well defined. It is easy to prove that g̃pq is a

continuous linear map. We also define the map gpq : V
q → V

p
as a continuous

linear extension of g̃pq, for every p, q ∈ P such that p ≤ q.

The projective limit of the family {(Ṽ p, p̃)/p ∈ P} with respect to the family
{g̃pq/p, q ∈ P, p ≤ q} is denoted

lim← (Ṽ p, p̃), g̃pq

and the projective limit of the family {(V p
, p)/p ∈ P} with respect to the family

{gpq/p, q ∈ P, p ≤ q} is denoted

lim
←

(V
p
, p), gpq ,

for the projective limit concept (see [11, p. 52].

The following theorem is proved in a similar way as that of Theorem II. 5.4
in [11, p. 53]. The symbol V ≡ L is used to mean that topological vector spaces
V and L are isomorphic.

������� 1.1� If (V, τ) is a complete locally convex topological vector space,
then we have

(V, τ) ≡ lim← (Ṽ p, p̃), g̃pq ≡ lim← (V
p
, p), gpq.

Let p be an element of P and let Γ = (En) be a countable partition of Ω in Σ.
A series

∑
n xn of elements xn ∈ V, n ∈ N is unconditionally convergent in (V, p)

if and only if
∑

n φp(xn) is unconditionally convergent in (Ṽ p, p̃); moreover, the

series
∑

n φp(xn) is unconditionally convergent to w ∈ Ṽ p, if and only if
∑

n xn

is unconditionally convergent to x ∈ V , for any x ∈ w. The function f : Ω → V
is called p-summable with respect to Γ, if satisfying conditions:

(1) the function f |En
is bounded in (V, p) whenever μ(En) > 0;

(2) the set of sums

Jp(f,Γ) =

{∑
n

μ(En)f(tn)/tn ∈ En, n ∈ N

}
,
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is made up of unconditionally convergent series in (V, p).

��	
�
�
�� 1.2� A function f : Ω → V is called Bk-integrable on Ω in (V, τ) if
there exists a vector If ∈ V satisfying the following property: for every p ∈ P
and for every ε > 0 there exists a countable partition

Γ(p)
ε = (En)

of Ω in Σ such that the function f is p-summable with respect to Γ
(p)
ε and the

inequality

p

(
If −

∑
n

μ(En).f(tn)

)
< ε,

holds true for each choice of points tn ∈ En, n ∈ N .

By virtue of Definition 1.2, we obtain Theorem 1.3. This theorem guarantees
a simple and important relation of Bk-integral in a locally convex spaces and
Birkhoff integral in its components.

������� 1.3� A function f : Ω → V is Bk-integrable on Ω in (V, τ) if and
only if there exists a vector If ∈ V such that for every p ∈ P the function φp ◦ f
is Birkhoff integrable on Ω in the normed component (Ṽ p, p̃) while

(Bk)

∫
Ω

φp ◦ f = φp(If ).

��	
�
�
�� 1.4� A sequence (fn : Ω → V ) is called equi-Bk-integrable in (V, τ)
if every function fn is Bk-integrable on Ω in (V, τ) and for every p ∈ P and for
every ε > 0 there exists a countable partition

Γ(p)
ε = (Am)

of Ω in Σ such that

(1) every function fn is p-summable with respect to Γ
(p)
ε ;

(2) for any choice of points tm ∈ Am,m ∈ N , we have that for each δ > 0
there exists k ∈ N such that

p

(∑
m∈M

μ(Am)fn(tm)

)
≤ δ,

for every finite set M ⊂ N disjoint from {1, . . . , k} and for all n ∈ N ;

(3) the inequality

p

⎛⎝∑
m

μ(Am)fn(tm)− (Bk)

∫
Ω

fn

⎞⎠ ≤ ε

holds for every n ∈ N .
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2. Convergence theorems

The first convergence theorem assumes that the sequence (fn) converges
point-wise to a function f in the topology τ .

������� 2.1� Let (V, τ) be a sequentially complete locally convex topological
vector space. If a sequence (fn : Ω → V ) is equi-Bk-integrable in (V, τ) and
converges to a function f : Ω → V in (V, τ), then the function f is Bk-integrable
on Ω in (V, τ) and we have

lim
n→∞

(Bk)

∫
Ω

fn = (Bk)

∫
Ω

f

in (V, τ).

P r o o f. The sequence (fn) converges to the function f in (V, τ), if and only if for
each p ∈ P the sequence (φp ◦fn) converges to the function φp ◦f in the normed

component (Ṽ p, p̃). Therefore, the sequence (fn) converges to the function f in
(V, τ), if and only if the sequence (φp ◦ fn) converges to the function φp ◦ f in

the Banach component (V
p
, p), for each p ∈ P .

By Definition 1.4, the sequence (φp ◦ fn) is equi-Birkhoff-integrable in the

Banach component (V
p
, p), for each p ∈ P .

Thus, we are in conditions of Theorem 7 in [2], for each p ∈ P . Therefore,
for each p ∈ P the function φp ◦ f is Birkhoff integrable on Ω in the Banach

component (V
p
, p) and

lim
n→∞(Bk)

∫
Ω

φp ◦ fn = (Bk)

∫
Ω

φp ◦ f (2.1)

in (V
p
, p).

According to Theorem 1.3, we have that (Bk)
∫
Ω
φp ◦fn ∈ Ṽ p, for each n ∈ N

and p ∈ P . Therefore, for each p ∈ P , the sequence (φp((Bk)
∫
Ω
fn )) is a

Cauchy sequence in (Ṽ p, p̃). This yields that ((Bk)
∫
Ω
fn) is a Cauchy sequence

in (V, τ) and as a consequence it converges to If ∈ V in (V, τ). By (2.1), this
implies that

φp(If ) = (Bk)

∫
Ω

φp ◦ f,

for every p ∈ P . Consequently, by Theorem 1.3, the function f is Bk-integrable
on Ω in (V, τ) and

lim
n→∞

(Bk)

∫
Ω

fn = (Bk)

∫
Ω

f

in (V, τ). �

Now, we present the convergence theorems which assume that a sequence (fn)
converges pointwise to a function f in the weak topology σ(V, V ′). The following
lemmas prepare the proof of Theorem 2.6.
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���� 2.2� Assume that a locally convex topological vector space W which is
Hausdorff is given and let T : V → W be a continuous linear function. If
a function f : Ω → V is Bk-integrable on Ω in V , then the function T (f) is
Bk-integrable on Ω in W and

(Bk)

∫
Ω

T (f) = T

⎛⎝(Bk)

∫
Ω

f

⎞⎠ .

P r o o f. Let S be the family of all continuous semi-norms in W . Let s be an
arbitrary element of S. Since T is a continuous function, for a given ε > 0, there
exists p ∈ P and ε′ > 0 such that

p(x) < ε′ ⇒ s(T (x)) < ε, x ∈ V. (2.2)

According to Definition 1.2, there exists a countable partition Γ
(p)
ε′ = (En) of

Ω in Σ such that the function f is p-summable with respect to Γ
(p)
ε′ and the

inequality

p

(
If −

∑
n

μ(En).f(tn)

)
< ε′,

holds for each choice of points tn ∈ En, n ∈ N . Therefore, since T is a continu-

ous linear function, the function T (f) is s-summable with respect to Γ
(p)
ε′ and,

because of (2.2), the inequality

s

(
T (If )−

∑
n

μ(En).(T ◦ f)(tn)
)

< ε,

holds for each choice of points tn ∈ En, n ∈ N . Because of arbitrariness of s,
the function T (f) is Bk-integrable on Ω in W and

(Bk)

∫
Ω

T (f) = T

⎛⎝(Bk)

∫
Ω

f

⎞⎠ .

�


���� 2.3� Let (V, τ) be a complete locally convex topological vector space. A
function f : Ω → V is Bk-integrable on Ω in (V, τ) if and only if for every p ∈ P

the function φp ◦f is Birkhoff integrable on Ω in the Banach component (V
p
, p).

In this case, we have that the equality

φp

⎛⎝(Bk)

∫
Ω

f

⎞⎠ = (Bk)

∫
Ω

φp ◦ f,
holds for every p ∈ P .

P r o o f. The direct part of theorem is easy to prove by applying Theorem 1.3.

Conversely, assume that for every p ∈ P the function φp ◦ f is Birkhoff

integrable on S in (V
p
, p). We set (Bk)

∫
Ω
φp ◦ f = Ip, for p ∈ P .
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Assume that two arbitrary continuous semi-norms p and q such that p ≤ q
are given. According to Lemma 2.2, we have

gpq

⎛⎝(Bk)

∫
Ω

φq ◦ f
⎞⎠ = (Bk)

∫
Ω

(g̃pq ◦ φq) ◦ f = (Bk)

∫
Ω

φp ◦ f

or gpq(Iq) = Ip. Consequently, we obtain

(Ip) ∈ lim← (V
p
, p), gpq

and therefore, by Theorem 1.1, it follows that there exists If ∈ V such that

φp(If ) = Ip, for each p ∈ P . By virtue of Theorem 1.3, this means that the
function f is Bk-integrable on Ω in (V, τ) and the proof is finished. �

In the following lemma, the symbol f |E stands for the restriction of the func-
tion f on E. This lemma has been shown in a different way in [6].


���� 2.4� Let (V, τ) be a complete locally convex topological vector space. If
a function f : Ω → V is Bk-integrable on Ω in (V, τ), then, for each E ∈ Σ,
the function f |E is Bk-integrable with respect to (E,ΣE , μE) in (V, τ), where
ΣE = {E ∩ F/F ∈ Σ} and μE stands for the restriction of μ to ΣE .

(In this case, Bk-integral of the function f |E with respect to (E,ΣE , μE) in
(V, τ) is said to be Bk-integral of the function f on E in (V, τ) and it is denoted

(Bk)

∫
E

f = (Bk)

∫
E

f |E).

P r o o f. Let E be an arbitrary element of Σ. By Lemma 2.3, the function φp ◦f
is Birkhoff integrable on Ω in the Banach component (V

p
, p), for each p ∈ P .

Hence, by Theorem 14 in [1, p. 367], the function (φp ◦f)|E is Birkhoff integrable

with respect to (E,ΣE, μE) in the Banach component (V
p
, p), and since

(φp ◦ f)|E = φp ◦ (f |E),
by Lemma 2.3, we obtain that the function f |E is Bk-integrable with respect to
(E,ΣE , μE) in (V, τ). �

According to Lemma 2.3 and Lemma 2.4, we obtain the following

��������� 2.5� Let (V, τ) be a complete locally convex topological vector space
and let E be an element of Σ. A function f : Ω → V is Bk-integrable on E in
(V, τ), if and only if for every p ∈ P the function φp ◦ f is Birkhoff integrable

on E in (V
p
, p). In this case, we have that the equality

φp

⎛⎝(Bk)

∫
E

f

⎞⎠ = (Bk)

∫
E

φp ◦ f,
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holds for each p ∈ P .

Now, we are ready to show the second convergence theorem.

������� 2.6� Let (V, τ) be a complete locally convex topological vector space.
If a sequence (fn : Ω → V ) is equi-Bk-integrable in (V, τ) and converges to
a function f : Ω → V in the weak topology σ(V, V ′), then the function f is
Bk-integrable on Ω in (V, τ) and, for every E ∈ Σ, we have

lim
n→∞(Bk)

∫
E

fn = (Bk)

∫
E

f,

in the weak topology σ(V, V ′).

P r o o f. According to Definition 1.4, the sequence (φp ◦ fn) is equi-Birkhoff-

integrable in the Banach component (V
p
, p), for each p ∈ P .

By virtue of (1.1), the sequence (φp ◦ fn) converges to φp ◦ f in the normed

component (Ṽ p, p̃) in the weak topology, for every p ∈ P . Therefore, for every
p ∈ P , the sequence (φp ◦ fn) converges also to φp ◦ f in the Banach component

(V
p
, p) in the weak topology.

Thus, we are in conditions of Theorem 2.12 in [10], for every p ∈ P . This
yields that for every p ∈ P the function φp ◦ f is Birkhoff integrable on Ω in

(V
p
, p) and, for every E ∈ Σ, we have that the equality

lim
n→∞ v′p

⎛⎝(Bk)

∫
E

φp ◦ fn
⎞⎠ = v′p

⎛⎝(Bk)

∫
E

φp ◦ f
⎞⎠ , (2.3)

holds for every v′p ∈ V
′
p.

Let E be an arbitrary element of Σ. We have that, for every p ∈ P , the
function φp ◦ f is Birkhoff integrable on E in the Banach component (V

p
, p).

Then, by Corollary 2.5, the function f is Bk-integrable on E in (V, τ) and

(Bk)

∫
E

φp ◦ f = φp

⎛⎝(Bk)

∫
E

f

⎞⎠ ∈ Ṽ p, (2.4)

for every p ∈ P . By the same corollary, we also have

(Bk)

∫
E

φp ◦ fn = φp

⎛⎝(Bk)

∫
E

fn

⎞⎠ ∈ Ṽ p, (2.5)

for every p ∈ P and n ∈ N . Hence, by (2.4),(2.5) and (2.3), we obtain that for
every p ∈ P , the equality
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lim
n→∞

(
ṽ′p ◦ φp

)⎛⎝(Bk)

∫
E

fn

⎞⎠ =
(
ṽ′p ◦ φp

)⎛⎝(Bk)

∫
E

f

⎞⎠ , (2.6)

holds for every ṽ′p ∈ Ṽ ′p .
Now, let v′ be an arbitrary element of V ′. According to (1.1), there exist

p ∈ P and ṽ′p ∈ Ṽ ′p such that v′ = ṽ′p ◦φp. The latter equality together with (2.6)
imply

lim
n→∞ v′

⎛⎝(Bk)

∫
E

fn

⎞⎠ = v′

⎛⎝(Bk)

∫
E

f

⎞⎠ .

Because of arbitrariness of v′ and E, this equality holds for every v′ ∈ V ′ and
for every E ∈ Σ. The proof is finished. �

Finally, we can present the third convergence theorem. Let us begin with
following lemma.


���� 2.7� Let (V, τ) be a locally convex topological vector space which is se-
quentially complete with respect to the weak topology σ(V, V ′). If the sequence
(fn : Ω → V ) is equi-Bk-integrable in (V, τ) and converges pointwise to the func-
tion f : Ω → V in the weak topology, then there exists If ∈ V such that the
equality

lim
n→∞ v′

⎛⎝(Bk)

∫
Ω

fn

⎞⎠ = v′(If ),

holds for every v′ ∈ V ′.

P r o o f. The locally convex topological vector space (V, σ(V, V ′)) is Hausdorff
(see [12, Cor.IV.6.1; p. 107]). Let denote by P ′ the family of all continuous
semi norms in (V, σ(V, V ′)). Since P ′ ⊂ P , then the sequence (fn) is equi-Bk-
integrable in (V, σ(V, V ′)) and converges to the function f in this space. So that,
we are in conditions of Theorem 2.1. Hence there exists If ∈ V such that:

lim
n→∞ p′

⎛⎝(Bk)

∫
Ω

fn − If

⎞⎠ = 0,

for every p′ ∈ P ′ and, as a consequence, we have

lim
n→∞

v′

⎛⎝(Bk)

∫
Ω

fn

⎞⎠ = v′(If ),

for every v′ ∈ V ′, because |v′(.)| ∈ P ′. �
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������� 2.8� Let (V, τ) be a locally convex topological vector space which is
sequentially complete with respect to the weak topology σ(V, V ′). If the sequence
of functions (fn : Ω → V ) is equi-Bk-integrable in (V, τ) and converges to f :
Ω → V in the weak topology, then f is Bk-integrable on Ω in (V, τ) and

lim
n→∞(Bk)

∫
Ω

fn = (Bk)

∫
Ω

f,

in the weak topology.

P r o o f. Let p be any continuous semi-norm in (V, τ). By virtue of (1.1), the

sequence (φp ◦ fn) converges to φp ◦ f in the normed component (Ṽ p, p̃) with
respect to the weak topology, and consequently, the sequence (φp ◦fn) converges
also to the function φp ◦ f in the Banach component (V

p
, p) with respect to

the weak topology. According to Definition 1.4, the sequence (φp ◦ fn) is also

equi-Bk-integrable in (V
p
, p). Then, by the Banach version of Theorem 2.6, the

function φp ◦ f is Bk-integrable in (V
p
, p) and the equality

lim
n→∞ v′p

⎛⎝(Bk)

∫
Ω

φp ◦ fn
⎞⎠ = v′p

⎛⎝(Bk)

∫
Ω

φp ◦ f
⎞⎠ ,

holds for every v′p ∈ V
′
p, and since every v′p ∈ V

′
p is the continuous extension of

an element ṽ′p ∈ Ṽ ′p , it follows that the equality

lim
n→∞ ṽ′p

⎛⎝(Bk)

∫
Ω

φp ◦ fn
⎞⎠ = v′p

⎛⎝(Bk)

∫
Ω

φp ◦ f
⎞⎠ (2.7)

holds for every ṽ′p ∈ Ṽ ′p , where v′p is a continuous extension of ṽ′p.
By applying Lemma 2.2, for every φp ◦ fn, we obtain

ṽ′p

⎛⎝(Bk)

∫
Ω

φp ◦ fn
⎞⎠ = (Bk)

∫
Ω

(
ṽ′p ◦ (φp ◦ fn)

)
= (Bk)

∫
Ω

v′p ◦ fn,

where v′p = ṽ′p ◦ φp, and again, by applying Lemma 2.2, for every fn, we obtain

(Bk)

∫
Ω

v′p ◦ fn = v′p

⎛⎝(Bk)

∫
Ω

fn

⎞⎠
and consequently,

ṽ′p

⎛⎝(Bk)

∫
Ω

φp ◦ fn
⎞⎠ = v′p

⎛⎝(Bk)

∫
Ω

fn

⎞⎠ . (2.8)
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Hence, by (2.8) and (2.7), we get

lim
n→∞ v′p

⎛⎝(Bk)

∫
Ω

fn

⎞⎠ = v′p

⎛⎝(Bk)

∫
Ω

φp ◦ f
⎞⎠ (2.9)

Also, according to Lemma 2.7, there exists If ∈ V such that the equality

lim
n→∞

v′p

⎛⎝(Bk)

∫
Ω

fn

⎞⎠ = v′p(If ) = ṽ′p
(
φp(If )

)
(2.10)

holds for every v′p ∈ V ′p . Hence, by (2.10) and (2.9), we obtain

ṽ′p
(
φp(If )

)
= v′p

⎛⎝(Bk)

∫
Ω

φp ◦ f
⎞⎠ ,

for every ṽ′p ∈ Ṽ ′p, where v′p is a continuous extension of ṽ′p. Consequently,

v′p
(
φp(If )

)
= v′p

⎛⎝(Bk)

∫
Ω

φp ◦ f
⎞⎠ ,

for every v′p ∈ V
′
p, and according to [12, Cor.IV.6.2; p. 108], this means that

(Bk)

∫
Ω

φp ◦ f = φp(If ) ∈ Ṽ p.

Therefore, by Theorem 1.3, the function f is Bk-integrable and

(Bk)

∫
Ω

f = If .

�
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