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A CATEGORY ANALOGUE OF THE
GENERALIZATION OF LEBESGUE DENSITY
TOPOLOGY

WoiciEcH WOJDOWSKI

ABSTRACT. A notion of Ar-topology, a generalization of Wilczyriski’s I-density
topology (see [Wilczynski, W.: A generalization of the density topology, Real.
Anal. Exchange 8 (1982-1983), 16-20] is introduced. The notion is based on his
reformulation of the definition od Lebesgue density point. We consider a category
version of the topology, which is a category analogue of the notion of an Ag4-
-density topology on the real line given in [Wojdowski, W.: A generalization of
density topology, Real. Anal. Exchange 32 (2006/2007), 1-10]. We also discuss
the properties of continuous functions with respect to the topology.

Let S be a g-algebra of subsets of the real line R, and I C S a proper o-ideal.
We shall say that the sets A, B € S are equivalent (A ~ B) if and only if
ANAB € I. We will denote by A the Lebesgue measure on the real line.

Let us recall that the point € R is said to be a Lebesgue density point of
a measurablea a set A, if

. )\(Aﬂ [x — h,x + h])
lim
h—0 2h

=1. (%)

W. Wilczynski [WI] gave his reformulation of the notion of the density
point of a measurable set A, in terms of convergence almost everywhere of the
sequence of characteristic functions of dilations of a set A:

A point = € R is Lebesgue density point of a measurable set A if and only if
every subsequence

{X(nm.(A.r))ﬂ[l,l] }mEN of {X(n.(A.r))ﬂ[l,l] }neN

contains a subsequence

{X(n,,,,,p (A=) [-1,1] }peN
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which converges to x(_1,1) almost everywhere on [—1,1] (which means except on
a null set).

Wilezynski’s approach relieved definition of the notion of a measure. His defi-
nition requires only null sets. Instead of the notion of convergence in measure of
a sequence of measurable functions, he uses the convergence almost everywhere.
This opened a new space for studying of more subtle properties of the notion
of the Lebesgue density point and density topology, their various modifications,
and, most of all, the category analogues (see [PWWT], [PWW2], [CLO]).

The reformulated definition could be considered in more general settings as
follows:

A point z € R is an I-density point of a set A € S, if every subsequence

{X(nm-(Aac))ﬂ (1,1 }meN of {X(n-(Ax))ﬂ (1,1 }neN

contains a subsequence

{X(nmp-(Aa’:)) n[—1,1] }pEN7

which converges to x[_1,1] I-almost everywhere on [—1,1] (which means except
from a set belonging to I).

In [PWW?2, Corollary 1, p. 556] in the category case, and in [W2] in the
measure case, it is proved that the following conditions are equivalent:

1. z is an [-density point of a set A € S.

2. For any decreasing to zero sequence of real numbers {¢,,} there exists

its subsequence {tn,, },,cy such that the sequence

neN’

{X 1 ~(A—m)m[—1,1}}

tnm meN
of characteristic functions converges I-almost everywhere on [—1,1] to
X[-1,1]-
3. Given {t,},cns
condition sup,,_,

a decreasing to zero sequence of real numbers fulfilling
ty
trnta
contains a subsequence {t;}

I

< o0, every subsequence {% }meN of {i}nEN

bEN such that

X( s aer }
{ (t"’"tp (A ))ﬂ[ 1,1] pEN

converges to X[—1,1] [-almost everywhere on [—1, 1].

Following Wilczynski’s approach in [WOI] we have introduced a notion
of Ag4-density of a Lebesgue measurable set leading to a notion of 74, topology
on the real line stronger than the Lebesgue density topology. The generalization
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was related to a given appropriate family of subsets of [—1, 1], namely the family
of measurable sets having density one at zero.

Now, we shall formulate a generalization of the definition of .44-density point

and then consider its category analogue.

We shall consider the following families of sets:

a) Fi-1,1] the family of ((S,I)-residual) subsets of interval [—1,1] (ie.,
Fi—1,1) C S and for A € F_y 1] we have [-1,1]\ A€ I),

b) Fi_qa,q) the family of subsets of interval [-1,1] such that F;_; ) C S and
[—a,a] \ A €1, for some 0 < a <1 (i.e., (S, I)-residual on [—a, ], where
0<a<l),

c¢) Fr the family of subsets of interval [—1, 1] from S having 0 as its I-density
point.

We have F[_1 1) C Frj—a,q C FI-
DEFINITION 1. We shall say that x is an Fj-density point of A € S, if for any

sequence of real numbers {t, }, .y, decreasing to zero, there exists a subsequence
{tn,, }men and a set B € Fr such that the sequence

{X 1 (A—m)ﬂ[—l,l]}

tn7!L

meN
of characteristic functions converges I-almost everywhere on [—1,1] to x p.

By analogy, we define a notion of F|_, 4j-density point and F|_; jj-density
point of A € S. The family Fj;_1 1) corresponds precisely to the definition of
I-density point of a set A € S. The set of all Fj-density points, Fr[_q,q-density
points and I-density points of A € S will be denoted by @z, (4), ¢, _, ., (A)
and @ (A), respectively. Obviously, @7, , |, (A) = @1 (A).

PROPOSITION 1. Let us observe that if x is an Fr-density point of A € S, there
is no decreasing to zero sequence {t”}nEN such that the sequence

{X#(A—m)m[—Lu}
neN

of characteristic functions converges I-almost everywhere on [—1,1] to 0.
Proof. It is a simple consequence of the definition. O
PROPOSITION 2. For each A€ S, ®;(A) C @r,_, , (4) C 25 (A).

Proof. It is obvious. O

From now on, we shall consider a particular case; an S stands for the o-algebra
of subsets of the real line R with the Baire property and I C S is the o-ideal of
the sets of first category. The families F|_; 1}, F[—a,q and F; will be denoted

13



WOJCIECH WOJDOWSKI

by Ar-1,1), Ar[—a,q] and Ay, respectively. Let us recall that we can uniquely
assign a regular open set G to every A C R that has the Baire property, such
that AAG € I. We shall call it a regular open representation of A and denote
by G (A) (see [O] and [WO2]).

Remark 1. Let us observe that for any sets A, B € S, such that AAB € I,
the I-a.e. convergence of the sequence of characteristic functions {xa,,.4},cy O
[—1,1], for each {a,},y to x4 is equivalent to the convergence of the sequence
of characteristic functions {xa,.B},cy o0 [—1,1] to x 4.

LEMMA 1. Let A C [0,1] be a set with the Baire property and let {a,}, oy be
a sequence of positive numbers converging to 1, a,, < 3. Then the sequence of
characteristic functions {Xa, A},en converges I-a.e. on [—1,1] to x 4.

Proof. Tt is clear that for an open set A C [0,1] and a sequence of positive
numbers {ay}, oy, converging to 1, a, < % the sequence of characteristic func-
tions {Xa,.A},cy converges I-almost everywhere on [—1,1] to x 4. By the above
Remark 1 it follows that we may equivalently replace the set A in thesis with
its regular open representation G (A). This finishes the proof. U

PROPOSITION 3. There exists a set A such that @1 (A) G ® 4, (A).

Proof. We shall start with the notion of density from the right. We shall define
a set A such that:

1) 0 is not an I-density point of A from the right,
2) 0 is not an I-density point of R—A from the right,
3) 0 is an Aj-density point of A from the right.

Let D € Aj be a set such that [0,1]\ D € S\ I, and {c,}, oy be an arbitrary
sequence of real numbers decreasing to 0, ¢; < 1, such that lim,,_,,, <2 = 0.

We define a set A € S as Cn
A= U [(Cn . D) N (Cn+17 Cn)] .
n=1

Now, let {t,}, <y be an arbitrary sequence of real numbers decreasing to zero.
We can find the subsequences {t,, },cy and {cm, },cn Of {tn}, cn and {cn}, cns
respectively, and there are neither elements of {¢, }nen nor of {c, }nen between
Cm, and &, .

Consider the sequence {c,, - %}

ny ITEN
1 i
subsequence {cmrk - }k N’

There are two possibilities:

C (0,1]. We can find a convergent

. 1 s . 1 o
a) limg— oo (ka T ) =a # 0;ie., limg_, o0 (Cmrk o ) =1 and
Tk Ty
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b) limyse (cmk 1 ) —0.

trry

In case a)

Xcm,.k [ emry 1 1
CLZ, emry keN

converges [-almost everywhere on (0,1) to x[o,1), and by Lemma 1

Xemp [(emp s oo
atn,, Cmp,

converges I-almost everywhere to xp on [0, 1]. Equivalently,

keN

X
1
[r— [(C7rer+l7C7nrk )ﬂ (cmrk ~D)]

converges I-almost everywhere to xp on [0, 1]. Thus, since

(Cmy-k—i—b Cmr,-k> N (Cmy-k : D) = (Cm7-k +1 Cmr,-k> N A,

the sequence x ( L

keN

A)n o] converges [-almost everywhere to xp on [0, 1],

a-tp,.

and consequently, X( converges [-almost everywhere to X (4.p)n[0,q]

~L—-A)n[0,a]

trgg

on [0,al.
Thus, we obtain B on [0, a] as

Bn[0,a] = (a-D)NJ[0,a].

If a = 1, the proof is complete; 0 is an Aj-density point of B = DN |0, 1] from
the right.
If a < 1, we have to determine B on (a, 1] as well.

.. . Cmyp, —1
By definition of {c,}, oy, we have limg o tr’: = 0o. Actually,
Tk
. Cm,, —1 . Cm,, —1 Cm,
lim k= lim [ —&— . —*%
k—o00 tnrk k—o00 tnrk,p Cmrk
. Cm,, —1 Cm,
= lim k. k
k— o0 Cmrk tnrk
. My, —1
=a- lim k= o0.
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Hence, because D has 0 as its I-density point from the right, we can find

a subsequence {ﬁ}peN of {i}keN such that the sequence X( ) -A)m(a,1]
» :

Try
kp
converges to X(q,1] /-almost everywhere on (a, 1], since

(Cmrkp7 cmrkpil) M (Cmrkpil ’ D) - (cmrkp7 Cmr’“pil) n4

Cmqp, —1
. k .
and limg oo —/—2— = o0 and limy
"y
"ep

Cm,ye
kp

t
"y,

=a.
Hence, we determine B on [0, 1] as
BnN[0,a] =(a-D)N[0,a] and BN(a,l1] = (a,l].

In case b), i.e., limy_ oo (ka 3 L ) = 0, we have two possibilities again:

nrg

Cmyp, —1 .
bl) The sequence { r— } wen 18 bounded from above.
Ny eN
Cmp, -1 . Cmqp,  —1
D D —
We take a subsequence { T }p N such that lim, - =

b < oo, and proceed similarly to the argument in a). We have b > 1,
and X(_1_ . 4)q[0,1) converges [-almost everywhere to x (4. p)n[0,1) on [0, 1],

trgg

and we obtain B on [0, 1], as

BN[0,1]=(b-D)N[0,1].

b2) The sequence {07:”“71 e ¢y is not bounded from above. We take a sub-
oy

Cm,-kp -1 Cm,-kp -1

tn
Tk
p

= 00. As D has 0 as

sequence { o~ }p en such that lim,

its I-density point from the right and lim, (ka C g L ) = 0, we
D g
1

1
. }SeN of {W}pGN such that the sequence

can find a subsequence { 7
np

X(t,, . _A)m 0.1] converges to X[o,1] [-almost everywhere on [0, 1], and we
—

determine B on [0,1] as
BnN[0,1] =10,1].
and B has 0 as its I-density point from the right.

Finally, 0 is a Aj-density point of —A U A. We shall show that it is not an
I-density point of —AU A or of R\ (~AUA). Let {t,},y be a sequence of
real numbers such that t, = ¢,, n € N. Evidently, the sequence of characteristic
functions

{X(TI,L'A)” [—1,1] }nEN

converges I-almost everywhere on [0, 1] to xp.
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Since [0,1] \ D € S'\ I, no subsequence of

{X(TI,L'A)” [—1,1] }nEN

is convergent I-almost everywhere on [0,1] to xjo,1], and no subsequence of

{X(;«R\A))n[l,u }neN

is convergent I-almost everywhere on [0,1] to xjo,1]-
Therefore, 0 is not an I-density point of A or of R\ A from the right. Hence 0
is not an I-density point of —AU A or of R\ (—AU A). O

THEOREM 1. The mapping ®4,: S — 2% has the following properties:
(0) For each Ae S, Dy, (A)eS.

(1) For each A€ S, A~ ®y, (A).

(2) For each A,B €S, if A~ B, then 4, (A) = &4, (B).
(3) D, (0) =0, B, (R) = R.

(4) For each A,B € S, @4, (ANB) =®y4, (A) N4, (B).

Proof. (0)From Proposition 2 ® 4, (A) = ®; (A)U(®4, (A)\®; (A)). The set
(@4, (A)\ ©7(A)) is a subset of a set R\ ((®; (4) U®; (R\A))) from I. Then
® 4, (A) is a union of a set &y (A) with the property of Baire and of a first
category set, hence a set from S.

(1) It is clear, in view of A ~ ®; (A) (see [PWWI]) and the fact that ® 4, (A)
and ®; (A) differ by a set from 1.

(2) It is a simple consequence of the fact that in the definition of ® 4, (A) the
I-almost everywhere convergence is involved.

(3) It is obvious.

(4) Observe first that if A € B, A, B € S, then ® 4, (A) C D4, (B), so
D4, (ANB) C P4, (A) NPy, (B). To prove the opposite inclusion, assume
€ Oy, (A) NPy, (B). Let {tn},cn be an arbitrary sequence of real numbers
decreasing to zero. From x € ® 4, (A), by definition, there exist a subsequence
{tn,. }men and a set A; € Aj such that the sequence

{ e

of characteristic functions converges I-almost everywhere on [—1, 1] t0 x 4,0 [-1,1]-
Similarly, for {t,,, },,cy from = € ® 4, (B), by definition, there is a subsequence
{tnmk }keN and a set By € Aj such that the sequence

{ -}
keN
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of characteristic functions converges I-almost everywhere on [—~1, 1] to x g, n [~ 1,1]-
It is clear that the sequence

{thl -((AmB)—x)m[—Lu}
mk keN

converges I-almost everywhere on [—1,1] to X(a;nBy)n[-1,1], and = is a P 4,-
-density point of AN B since 41 N By € A; (see [PWWIJ). O

PROPOSITION 4. If x is an Ar-density point of a set A, then there does not ex-
ist a decreasing to zero sequence of real numbers {t,}, .y such that the sequence
{X%-(Afa:)ﬂ —1,1] }neN of characteristic functions converges I-almost everywhere,

neither on [—1,0] nor on [0,—1] to 0.
Proof. It is a simple consequence of Definition 1. O

Remark 2. It is an immediate consequence of (0), (1) and (2) from Theorem 1
that @ 4, is idempotent, i.e., @4, (A) = P4, (P4, (4)). We also have 4, (4) N
<I).AI (R \ A) =

THEOREM 2. The family Ta, = {A €ESAC Dy, (A)} is a stronger topology
than the I-density topology T;.

Proof. From Theorem 1 (3),  and R € T4,, and the family is closed under
finite intersections according to (4). To prove that T4, is closed under arbitrary
unions, observe that from Theorem 1, ®4, (A) \ A is a set from I for each
A € S, and then we follow the proof in [W2]. Take a family {A;},., C Ta,. We
have A; C ®4, (A¢) for each t. Choose a sequence {t,},y such that for each
t € T we have A; \ U, Ay, € I. It is possible because (S,I) CCC property.
Then @4, (4;) = ®a, (A VU, Ar,) U (A — Uy Ar)) © D, (U Ar,)
foreacht e T.

Hence
U A, [ J A | ®a, (A) C 0y, ( UAtn>.

n=1 teT teT
The first and the last set in the above sequence of inclusions differ on a set
from I and both sets have the property of Baire, so J,c A¢ € S. Also, ;e At C
Dy, (UteT At) according to central inclusion and monotonicity of ® 4, implied
by (4) of Theorem 1. Hence, finally ;e At € T, .
The set (—AU A) U {0}, where A is defined in Proposition 2, with D addi-
tionally open, belongs to T4,, but not to 7; topology. O

Remark 3. Like the I-density topology, the Aj-density topology can be de-
scribed in the form: Ty, = {®4, (A)\P: A€ Sand P € I}, asif A € Ty,
then A C P4, (A). Consequently, A = ® 4, (A) \ (P4, (A) \ A), and we take
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P=®4, (A)\Aec I Now,if B=®y, (A)\ P, for some A € S and P € I, then
we get

<I).A1 (B) = <I)-Al (q)-AI (A) \ P)

= CI).AI (CI)AI (A))

= <I).AI (A)Dq).AI (A)\P:B
from Theorem 1 (1), (2) and the above remark.

The Aj-density topology 7.4, has similar properties to those of the I-density
topology T;.
THEOREM 3. For an arbitrary set A C R
IntTA, (A) =ANdy, (B) ,

where B is an S-measurable kernel of A (i.e., B € S and D\ B € I for any
DeS,DCA).

Proof. We can follow the proof of Theorem 2.5 from [W2] here, where ® is
replaced with @ 4,. O

THEOREM 4. A set A € Ty, is Ta,-regqular open if and only if A= ® 4, (A).
Proof. Here we can adopt the proof of Theorem 2.6 from [W2]. The inclusion
® 4, (A) C Cly, (A) in the first part of the proof can now be verified as follows
Cla, (4) = R\Intr,, (R\A)
R\ ((R\ A) N, (R 4)
= AU(R\ P4, (R\A) DAUD,, (A),
since ® 4, (A) CR\ @4, (R\ A) by Remark 2. O
THEOREM 5.
I ={ACR:AisTa, — nowhere dense set}
={ACR: AisTa, — first category set}
={ACR:AisTs — closed Ta, — discrete set}.
Proof. We can follow the proofs of Theorems 2 and 4 from [PWW?2] or Theo-

rem 2.8 from [W2]. To prove the second equality we recall that every set of the
second category has a subset that lacks the property of Baire [see [O]]. O

THEOREM 6. The o-algebra of T, -Borel sets coincides with S.

If E C R is Ta,-compact set, then E is finite.

The space (R, Ta,) is neither first countable nor second countable, Lindeldf,
and separable.

(R,74,) is a Baire space.
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Proof. We can follow the proofs of Theorem 3 of [PWW2] and Theorems 2.9-
—2.12 from [W2]. O

Remark 4. In the proof of the above theorems we have used a classical argument
referring only to results for Lebesgue density topology from [W1] and [W2] and
for I-density topology from [PWW?2] and [PWWT]|. However, since T4, C S and
® 4, is a closed lower density operator (i.e., ® 4, (A) € S) we could rely on more
recent results from [RJH| given in more general settings.

We shall consider some properties of continuous functions from (R, 74, ) into
(R, 7,) now.

DEFINITION 2. We say that a real variable function f is topologically T4,-
-approximately continuous at a point xg if and only if for every number ¢ > 0,
{z : |f(x) —y| < €} there is a T4,-neighborhood of z, i.., there exists a set
Ay €8, Ay C{x:|f (%) —y| < €} such that z is an A;-density point of A,.

DEFINITION 3. We say that a real variable function f is restrictively 74,-approx-
imately continuous at a point ¢ if and only if there exists a set A,, € S such
that
x0 € Pya, (Ay,) and f(zg)= lim f(z).
x%zoxeAwO

THEOREM 7. (i) A real function f defined on R has the property of Baire if and
only if it is Ta,-topologically continuous I-almost everywhere on R.

(13) Every Tr-topologically continuous function is T a,-topologically continuous,
the converse does not hold.

Proof. (i) Suppose that f defined on R has the property of Baire. Then, by
Theorem 7 from [PWWTJ, it is 77-continuous almost everywhere on R; hence
T 4,-continuous almost everywhere on R since Tz C T 4, .

Now, suppose that f is 74,-continuous /-almost everywhere. Let a,b € R, and
B = {x ra< f(x) < b}. We shall show that B has the property of Baire. Let C
be the set of T4,-continuity points of f.

We have B = (BNC)U(B\C) and B\ C € I. The proof is completed by
showing that B N C has the property of Baire. If x € BN C, and y = f (),
we take € > 0, e < min(b—y, y—a). Then {z : |f(z) —y| < €} is a Tu,-
-neighborhood of z, i.e., there exists a set A, € S, A, C {x f(x) —yl < 6}
such that x is a Aj-density point of A,. Of course, A, C B, and we may assume
A, C (BN C), by Theorem 1 (2), since B\ C € 1.

Finally, we obtain BNC = J,cgnc Az € Ta, C S.

(73) The first part is again a consequence of T C T 4,. The characteristic
function of the set (—AU A) U {0}, where A is defined as in Proposition 2, is
T4 -topologically continuous but not 77-topologically continuous at 0. O
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COROLLARY 1. For every measurable real function f, the set of Ta,-topological
continuity points and the set of Tr-topological continuity points may differ by
a set from I.

Remark 5. In the proof of part (i) of the above theorem we have used a classical
argument referring only to results from [PWW1] and to the inclusion 7T; C T4, .
However, since T4, C S and ® 4, is a lower density operator, we could rely on
Theorem 6.39 from [LMZ] or use the recent results of Bartoszewicz and
Kotlicka given in more general settings (see [BK|] Theorem 2.2).

PROPOSITION 5. There exists a function that is (right) Ta,-topologically, but
not T a,-restrictively continuous at zero.

Proof. We shall start with the continuity at zero from the right. Let {c, }, ¢y
be a decreasing to zero sequence of real numbers such that ¢, 1 < %cn, cp=1.

Define

=0 2i+1° 31

f (.7}) = Z (Z %X(L CA} (.7))) X(C7,,+1, Cn} (.T})
n=1 %

for x € (0,1] and f(0) =0.
Equivalently, put

i—0 2i1+1 Y
and define
= 1
£ =320 () N @)
n=1 n

for x € (0,1] and f (0) =0.
The function f is right 74 -topologically continuous at zero.
Really, consider the set
1
By - {xe 0,1]: 1f (2) — 0] < Q—k}
By definition of f,
c
o U o 5]
neN
and it is a simple observation that for every k € N, Fj has 0 as the A;-density
point (even Aj_; j)-density point).
The function f is not right 74 restrictively continuous at 0.

Suppose, on the contrary to our claim, that there exists a set £ € A; such
that limzep, z—0 f (.%‘) =0.
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Let t, = ¢n, n € N. Then, since £ € A;, we can find its subsequence
{tn.. }men such that the sequence

X
{ (t”l'nl, E) N=11] }mEN

of characteristic functions converges I-almost everywhere on [0, 1] to xjo,1]-

On the other side, since limgzep, 40 f (x) = 0, we can ﬁnd ¢ > 0 such that
f(x)<2ikforallx€Eﬂ(0,c) Hence, EN (0,c¢) {x: 2k}

We take a subsequence {t,,, }keN of {tn,, Jmen Such that f( ) < 57, k€N
on EN (O tn nk) By the definition of f, for every k£ € N we have ( ) C

t

m g,

(0, 5% =27 ). Thus, it is clear that the sequence

{X<L"71"k, E) n10.1] }keN

of characteristic functions converges even everywhere on (0, 1] to 0. Since E € Ay,
this is in contradiction with Proposition 1.

Now, the function

flz), x>0,
h (x) = 07 xr = 0,
f(=z). =<0
is T4 topologically but not 7T4,-restrictively continuous at zero. O

DEFINITION 4. We say that the sets A and B are essentially different if for every
t,a € R the set (AA (t-B))N[0,0] is not from 1.

PROPOSITION 6. There exists a set A C [0,1] such that zero is an Ap-right
density point of A and such that there are: a decreasing to zero sequence of
real numbers {tn}nEN and c essentially different sets associated with different
subsequences {i}meN in Definition 1.

Proof. Let {w;};cy be a sequence of all rational numbers from interval (3,1).
Let {cn}, ey be an arbitrary sequence of real numbers decreasing to 0, ¢ < 1,
such that limsup,,_, . < = 0. Put D; = [0, 3] U (w;, 1]. We define a set A:

Cn 72

oo

n
= U U (Cn(n Dy Z‘) N (Cn(nzfl)_'_i_i_l,Cn(n2—1)+i) .
n=11=1

Each natural number k£ can be uniquely presented as a sum k = w + 1,

wherene Nandi=1,2,..., (W — 71(an1)) = n. We denote i as a function

22



A CATEGORY ANALOGUE OF LEBESGUE DENSITY TOPOLOGY

of k, i.e., i (k). In particular, we have (nzl)" = "("271) +n and 2(@) =n.
We may rewrite the definition of the set A as

A= (ck Digiy) N (chsr.cr) .-
k=1

The i (k), as a function of k, takes the following values, consecutively: 1,1,2,
1,2,3, 1,2,3,4,... We shall show that zero is an .4;-density point of AU (—A).

Suppose that {t,}, oy is an arbitrary sequence of real numbers decreasing to
zero. Similarly, as it in described in the proof of Proposition 2, we choose two
subsequences {ty, },,cn and {¢m, },,cy such that ¢, <t, ,r € N and there are

neither elements of {c,,},,cy nor of {t,} between ¢,,, and t, . Again, we

neN .
and find a subsequence { P—
T,

Cmyp

tn, }TEN

consider the sequence { convergent

}kEN
to some a € [0, 1].
There are two possible situations:

. 1 _ . . 1 _
a) limg— o0 (ka . W) =a#0,ie., limg_, o (ka W) =1.
In this case, we consider the behaviour of the sequence Cmry T Wilm,, )
2 nry Tl

Since it is bounded, it contains a subsequence c,,,. w; con-
) r z(mrkp)

o
kp tnr

converges [-a.e. to

vergent to some ¢ € a - [%,1], and X(

Xa-([O,%]U [c,l])'
Thus, we obtain B on [0, a] as

BN[0,a =a- ([0, ﬂ U [§1D

If a = 1, the proof is complete; B € Ajj_q,a] C A
If a < 1, like in the proof of Proposition 2 we obtain

BN[0,a] = aqo%]u[gl})

BN (a,1] = (a,1].
And again, B € Aj_q,a) C Ar-

L_.A)n[0,a]

tng,
k
p

b) limg—oo (Cm,, - 7—) = 0.

In this case, we have two possible situations again:
Cmpy —1
i

bl) the sequence { is bounded from above. We take its subse-

g }kEN
Cmyp, —1

Tk
quence { -

7"Tk:,,

similarly, as in a). We find a subsequence Cm,, —1° 73

; Ty,
Ps kpg

Crmpy, —1

T,

such that limp,_, oo

}peN = b < 00, and proceed

’U)i(m,,.kps -1)
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of cmrkp,l ST Wi(m,, 1) convergent to some ¢ < b and obtain I-
»

Trp

a.e. convergence of X( ) -A)ﬂ[O,b] to Xb_([o’l}u[%y

N D Thus, we obtain
e
the set B as e

1

B= b {o%]u[g@ nlo,1].

And again, B € Aj_q,q) C As-

Cmy —1 . .
b2) the sequence { - }k cn 18 not bounded from above. We take its subse-
7L7~k
Cm,rk —1 . Mg 1
quence { ” P }p N such that lim,_,. ” 2 = o00. As every D; con-
Tkp Tk

tains the interval [0, %], therefore we have [0,1] C % - A, for p appropri-

kp
ately large, and the sequence X( ) .A) converges to x[o,1] a.e. on [0, 1].
And we obtain B on [0, 1] as "TEp

BN[0,1] = [0,1].

And, again, B € Aj_q,q C A1
Finally, zero is an Aj-density point of (—A U A).
Now, let d € [3,1] and {wy, };cy be a subsequence of {wy}, oy convergent
to d. As a sequence {t,},.y we take {cn}, .. The set [0,3] U (d,1] € Af is

associated with the subsequence {cmﬁl),,,i }z and we obtain the sequence of
2

eN
characteristic functions

X
(n;4+1)n;
2
convergent I-a.e. to X[o o on [0,1]. O
'3 s
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