

ON STRONGLY COUNTABLY CONTINUOUS FUNCTIONS

Grażyna Horbaczewska

ABSTRACT. A real-valued function f on \mathbb{R} is strongly countably continuous provided that there is a sequence of continuous functions $(f_n)_{n \in \mathbb{N}}$ such that the graph of f is contained in the union of the graphs of f_n .

Some examples of interesting strongly countably continuous functions are given: one for which the inverse function is not strongly countably continuous, another which is an additive discontinuous function with a big image and a function which is approximately and *I*-approximately continuous, but it is not strongly countably continuous.

DEFINITION 1. A function $f: \mathbb{R} \to \mathbb{R}$ is countably continuous if there exists a family of sets $\{A_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} A_n = \mathbb{R}$ and $f|A_n$, the restriction of fto A_n is continuous.

DEFINITION 2 ([GFG]). A function $f : \mathbb{R} \to \mathbb{R}$ is strongly countably continuous if there is a sequence of continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ such that $f \subset \bigcup_{n=1}^{\infty} f_n$.

Of course, if g is strongly countably continuous, then it is countably continuous (because $\mathbb{R} = \bigcup_{n=1}^{\infty} A_n$, where $A_n = \{x \in \mathbb{R} : f(x) = f_n(x)\}$ and $f|A_n = f_n|A_n$ is continuous for $n \in \mathbb{N}$).

But, the class of strongly countably continuous functions is essentially weaker than the class of the countably continuous functions. For example, each monotone function is countably continuous since it has a countable set of points of discontinuity, but if this set is dense, then the function cannot be strongly countably continuous ([GFG], [CL]).

For basic properties of the class of countably continuous functions, we refer the reader to [GFG].

THEOREM 1. If functions $f, g: \mathbb{R} \to \mathbb{R}$ are strongly countably continuous and $F: \mathbb{R}^2 \to \mathbb{R}$ is also strongly countably continuous, then the function $x \to F(f(x), g(x))$ is also strongly countably continuous.

²⁰⁰⁰ Mathematics Subject Classification: 26A15, 26A21.

Keywords: countable decomposition, additive functions, approximate and I-approximate continuity, Baire*1 functions.

GRAŻYNA HORBACZEWSKA

We omit the definition of a strong countable continuity for the function defined on the plane but it is an obvious generalization.

Proof. By assumption there exist sequences of continuous functions $\{f_n\}_{n\in\mathbb{N}}$, $\{g_n\}_{n\in\mathbb{N}}$, $\{F_n\}_{n\in\mathbb{N}}$ such that

$$f_n, g_n \colon \mathbb{R} \to \mathbb{R}, \quad F_n \colon \mathbb{R}^2 \to \mathbb{R}, \qquad n \in \mathbb{N}$$

and

$$f \subset \bigcup_{n \in \mathbb{N}} f_n, \quad g_n \subset \bigcup_{n \in \mathbb{N}} g_n, \quad F \subset \bigcup_{n \in \mathbb{N}} F_n.$$

Let

$$A_{n} = \{ x \in \mathbb{R} : f_{n}(x) = f(x) \},\$$

$$B_{n} = \{ x \in \mathbb{R} : g_{n}(x) = g(x) \},\$$

$$Z_{n} = \{ (x, y) \in \mathbb{R}^{2} : F_{n}(x) = F(x) \},\$$

$$n \in \mathbb{N}.$$

Then

$$\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n = \mathbb{R} \quad \text{and} \quad \bigcup_{n \in \mathbb{N}} Z_n = \mathbb{R}^2.$$

Let $G \colon \mathbb{R} \to \mathbb{R}^2$ be a function given by the following formula:

$$G(x) = (f(x), g(x)), \qquad x \in \mathbb{R},$$

and let

$$C_{n,k,i} = A_n \cap B_k \cap G^{-1}(Z_i), \qquad n, k, i \in \mathbb{N}$$

Obviously,

$$\bigcup_{n,k,i\in\mathbb{N}}C_{n,k,i}=\mathbb{R}$$

and if $C_{n,k,i} \neq \emptyset$, then for $x \in C_{n,k,i}$ we have $f(x) = f_n(x)$, $g(x) = g_k(x)$ and $(f(x), g(x)) \in Z_i$ so,

$$F(f(x),g(x)) = F_i(f(x),g(x)) = F_i(f_n(x),g_k(x)).$$

Therefore, the function $x \to F(f(x), g(x))$ is continuous on $C_{n,k,i}, n, k, i \in \mathbb{N}$ and $F(f,g) \subset \bigcup_{n,k,i\in\mathbb{N}} F_i(f_n, g_n)$.

The last theorem is slightly stronger than an analogous one in [GFG], but the following corollary comes from [GFG].

COROLLARY 1. If $a, b \in \mathbb{R}$ are constants, $f, g : \mathbb{R} \to \mathbb{R}$ are strongly countably continuous functions then the functions af + bg, $f \cdot g$, $\max(f, g)$, $\min(f, g)$ and $f \circ g$ are also strongly countably continuous. If $g(x) \neq 0$ for all $x \in \mathbb{R}$, then the quotient f|g is also strongly countably continuous.

ON STRONGLY COUNTABLY CONTINUOUS FUNCTIONS

EXAMPLE 1. There is a strongly countably continuous function for which the inverse function is not strongly countably continuous.

Let $g: [0,1] \to [0,1]$ be an increasing, left-hand continuous function satisfying the condition g(1) = 1 and g(0) = 0, with a countable dense set of points of discontinuity denoted by $D = \{y_1, y_2, \dots\}$.

Let $\{I_n\}_{n\in\mathbb{N}}$ be a sequence of intervals, where $I_n = (g(y_n), \lim_{y\to y_n^+} g(y))$ for $n\in\mathbb{N}$. We see, at once, that $I_i\cap I_j = \emptyset$ for $i\neq j$ and $g([0,1]) = [0,1] \setminus \bigcup_{n=1}^{\infty} I_n$. Let $f: [0,1] \to [0,1+\sum_{n=1}^{\infty} \lambda(I_n)]$ be defined by a formula:

$$f(x) = \begin{cases} g^{-1}(x) & \text{for } x \in [0,1] \setminus \bigcup_{n=1}^{\infty} I_n, \\ 1 + \sum_{i=1}^{n-1} \lambda(I_i) + (x - \inf I_n) & \text{for } x \in I_n, n \in \mathbb{N}, \end{cases}$$

where $\lambda(I)$ denotes the length of an interval I.

It is easy to check out that f is strongly countably continuous. We have to construct a sequence of continuous functions such that $f \subset \bigcup_{n=0}^{\infty} f_n$. Let f_0 be an extension of the function f from $[0,1] \setminus \bigcup_{n=1}^{\infty} I_n$ to [0,1] given by the formula

$$f_0(x) = \begin{cases} g^{-1}(x) & \text{for } x \in [0,1] \setminus \bigcup_{n=1}^{\infty} I_n, \\ y_n & \text{for } x \in I_n, n \in \mathbb{N} \end{cases}$$

and for each $n \in \mathbb{N}$, let f_n be an extension of the function f from I_n to [0,1] given by the formula

$$f_n(x) = 1 + \sum_{i=1}^{n-1} \lambda(I_n) + (x - \inf I_n) \quad \text{for} \quad x \in [0, 1].$$

This sequence fulfils the desired conditions, so f is strongly countably continuous.

Suppose, contrary to our claim, that the inverse function f^{-1} is strongly countably continuous. Since $g \subset f^{-1}$, it follows that the function $g = f^{-1}_{|[0,1]}$ should be also strongly countably continuous, which is not the case (see [GFG, Example 1]).

Now, we want to look at our class of functions in the context of additive functions.

DEFINITION 3 ([K]). A function $f \colon \mathbb{R} \to \mathbb{R}$ is additive if it satisfies Cauchy's equation

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}$.

We wish to investigate how large an image for a strongly countably continuous additive but discontinuous function can be. We know that an image for such a function can be uncountable ([GFG]).

GRAŻYNA HORBACZEWSKA

EXAMPLE 2. There is a strongly countably continuous additive discontinuous function with an image which intersects every uncountable Borel subset of \mathbb{R} . Consequently, its image is a set of the full outer measures and of the second category everywhere.

Let $H \subset \mathbb{R}$ be a Burstin basis, it means, a Hamel basis which intersects every uncountable Borel subset of \mathbb{R} (such a basis exists — see [K]). The construction of the desired function appears in [GFG].

Fix a point $h_0 \in H$ and let

$$f(x) = \begin{cases} x & \text{for } x \in H \setminus \{h_0\}, \\ 0 & \text{for } x = h_0. \end{cases}$$

Then $f(H) = (H \setminus \{h_0\}) \cup \{0\}$. Since $\frac{f(x)}{x}$ is not a constant function, the additive extension $g: \mathbb{R} \to \mathbb{R}$ of $f: H \to \mathbb{R}$ is discontinuous (see [K]). The function g is strongly countably continuous (see [GFG] for more details). The image $g(\mathbb{R})$ contains $H \setminus \{h_0\}$. It is easy to check out that if a set intersects every uncountable Borel subset of \mathbb{R} , then this intersection contains at least two points, so the image $g(\mathbb{R})$ is as we want it to be.

Suppose, the set $g(\mathbb{R})$ is not of the full outer measure. Then its complement has a positive inner measure, hence it contains a F_{σ} set with a positive measure (an uncountable Borel set), a contradiction. Similarly, if there exists an interval I, such that $I \setminus g(\mathbb{R})$ is residual on I, then it contains a G_{δ} set of the second category (an uncountable Borel set), which is impossible.

In [GFG], we can find an example of a bounded approximately continuous function which is not strongly countably continuous.

EXAMPLE 3. There exists a bounded function which is approximately and *I*-approximately continuous but it is not strongly countably continuous.

For relevant definitions, look in [CLO]

We use here a function from [CLO, p. 84].

Let $\{q_n\}_{n\in\mathbb{N}}$ be a sequence of all rational numbers and $E = \bigcup_{n\in\mathbb{N}} [a_n, b_n]$ be an interval set for which 0 is a right-side dispersion and *I*-dispersion point.

Put

$$f(x) = \begin{cases} 0 & \text{for } x \notin E, \\ \frac{\text{dist}(\{x\}, (a_n, b_n)^c)}{b_n - a_n}, & x \in [a_n, b_n] \end{cases}$$

and let $h_n(x) = \frac{2}{3^n} f(x - q_n)$ for $n \in \mathbb{N}$.

Then $h_n(x) \in \left[0, \frac{1}{3^n}\right]$ for $x \in \mathbb{R}$, $n \in \mathbb{N}$ and $\operatorname{osc}(h_n, q_n) = \frac{1}{3^n}$. We define $g_n = \sum_{i \leq n} h_i$ for $n \in \mathbb{N}$ and $g = \lim_{n \to \infty} g_n$. Since $|g(x) - g_n(x)| < \frac{1}{3^{n+1}}$ for $x \in \mathbb{R}, n \in \mathbb{N}$, the sequence converges uniformly.

ON STRONGLY COUNTABLY CONTINUOUS FUNCTIONS

Each function h_n is approximately and *I*-approximately continuous since it is a linear function on intervals except the point q_n and it is a constant function on the neighbourhood of q_n in density and *I*-density topology. Since the families of approximately and *I*-approximately continuous functions are closed under addition and uniform convergence, the function g is also approximately and *I*approximately continuous function.

Assume that g is strongly countably continuous, i.e., there exists a sequence of continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}$ such that $g \subset \bigcup_{n=1}^{\infty} f_n$.

Let $A_n = \{x : f(x) = f_n(x)\}$ for $n \in \mathbb{N}$. Then $\mathbb{R} = \bigcup_{n=1}^{\infty} A_n$, therefore there exist $n_0 \in \mathbb{N}$ and an open interval J such that $J \subset \overline{A_{n_0}}$. Define $k_o = \min\{k \in \mathbb{N} : q_k \in J\}$. Since $\operatorname{osc}(g, q_{k_0}) = \frac{1}{3^{k_0}}$, and g is not continuous from the right-side (see [CLO, p. 83]), so there exist two decreasing sequences $\{x_i\}_{i\in\mathbb{N}}$ and $\{z_i\}_{i\in\mathbb{N}}$ of points from J tending to q_{k_0} such that

$$\left|\lim_{i\to\infty}g(x_i)-\lim_{i\to\infty}g(z_i)\right|=\frac{1}{3^{k_0}}.$$

Fix $i \in \mathbb{N}$. If $x_i \notin Q$, then $\operatorname{osc}(g, x_i) = 0$. If $x_i \in Q$, then there exists an index $k > k_0$ such that $x_i = q_k$, hence $\operatorname{osc}(g, x_i) = \frac{1}{3^k} \leq \frac{1}{3} \cdot \operatorname{osc}(g, q_{k_0}) = \frac{1}{3} \cdot \frac{1}{3^{k_0}}$. In both cases, $\operatorname{osc}(g, x_i) \leq \frac{1}{3^k} \leq \frac{1}{3} \operatorname{osc}(g, q_{k_0})$. Similarly, we obtain $\operatorname{osc}(g, z_i) \leq \frac{1}{3} \operatorname{osc}(g, q_{k_0})$.

Since A_{n_0} is dense on J, then for every $i \in \mathbb{N}$ there exists a point $\hat{x}_i \in J \cap A_{n_0}$ such that

$$|\hat{x}_i - x_i| < \frac{1}{i}$$
 and $|g(x_i) - g(\hat{x}_i)| < \frac{3}{7} \operatorname{osc}(g, q_{k_0})$

and there exists a point $\hat{z}_i \in J \cap A_{n_0}$ such that

$$|\hat{z}_i - z_i| < \frac{1}{i}$$
 and $|g(z_i) - g(\hat{z}_i)| < \frac{3}{7} \operatorname{osc}(g, q_{k_0}).$

Obviously,

$$\lim_{i \to \infty} \hat{x}_i = q_{k_0} \quad \text{and} \quad \lim_{i \to \infty} \hat{z}_i = q_{k_0}$$

and

$$\liminf_{i \to \infty} |g(\hat{x}_i) - g(\hat{z}_i)| \ge \left(1 - \frac{3}{7} - \frac{3}{7}\right) \operatorname{osc}(g, q_{k_0}) = \frac{1}{7} \operatorname{osc}(g, q_{k_0}),$$

but simultaneously,

$$g(\hat{x}_i) = f_{n_0}(\hat{x}_i)$$
 and $g(\hat{z}_i) = f_{n_0}(\hat{z}_i)$,

since $\hat{x}_i, \hat{z}_i \in A_{n_0}$.

Therefore, the function f_{n_0} is not continuous at the point q_{k_0} – a contradiction.

Remark 1. The function presented above is countably continuous since its set of discontinuity is countable.

GRAŻYNA HORBACZEWSKA

This function is of the first Baire class but not Baire^{*1}, since to be Baire^{*1}, a function should be continuous on a dense open set.

The following characterization of Baire*1 function was given by O'Malley:

THEOREM 2 ([O'M]). A function $f: [0,1] \to \mathbb{R}$ is Baire*1 if and only if there is a sequence of closed sets E_n such that $\bigcup_{n \in \mathbb{N}} E_n = [0,1]$ and $f|E_n$ is continuous for each $n \in \mathbb{N}$.

REFERENCES

- [CL] CSASZAR, A.—LACZKOVICH, M.: Some remarks on discrete Baire classes, Acta Math. Acad. Sci. Hungar. 33 (1979), 51–70.
- [CLO] CIESIELSKI, K.—LARSON, L.—OSTASZEWSKI, K.: I-density Continuous Functions, Mem. Amer. Math. Sci., Vol. 107, AMS, Providence, 1994.
- [GFG] GRANDE, Z.—FATZ-GRUPKA, A.: On countably continuous functions, Tatra Mt. Math. Publ. 28 (2004) 57–63.
- [K] KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities. PWN, Warszawa, 1985.
- [O'M] O'MALLEY, R. J.: Approximately differentiable functions: The r-topology, Pacific J. Math. 72 (1977), 207–222.

Received September 26, 2007

Department of Mathematics and Computer Science Lódź University Banacha 22 PL-90-238 Łódź POLAND E-mail: grhorb@math.uni.lodz.pl