A NEW APPROACH TO ψ-CONTINUITY

MALGORZATA TEREPETA

ABSTRACT. Let T_ψ be a ψ-density topology for a fixed function ψ. For any topological space X with the topology τ we will consider the family $C(X, \mathbb{R}_\psi)$ of all continuous functions f from (X, τ) into (\mathbb{R}, T_ψ). The main aim of this paper is to investigate when $C(X, \mathbb{R}_\psi)$ is a ring. This article is based on the results achieved by M. Knox [A characterization of rings of density continuous functions, Real Anal. Exchange 31 (2005), 165–177].

We will use the following notations: \mathbb{R} will denote the set of real numbers, S – the σ-algebra of Lebesgue measurable subsets on \mathbb{R}, m – the Lebesgue measure on \mathbb{R}. For $A \subset \mathbb{R}$ let A' be its complement. Let C be a family of nondecreasing continuous functions $\psi: (0, \infty) \to (0, \infty)$ such that $\lim_{t \to 0^+} \psi(t) = 0$.

Fix $\psi \in C$. We say that $x \in \mathbb{R}$ is a ψ-density point of a measurable set $A \subset \mathbb{R}$ if

$$\lim_{h \to 0^+} \frac{m(A' \cap (x-h, x+h))}{2h\psi(2h)} = 0.$$

For any $A \in S$ we denote

$$\Phi_\psi(A) = \{x \in \mathbb{R} : x \text{ is a } \psi\text{-density point of } A\}.$$

From [TW-B, Theorem 1.4] we obtain that the family $T_\psi = \{A \in S : A \subset \Phi_\psi(A)\}$ is a topology stronger than the natural topology T_e and weaker than the density topology T_d. We will say that a set is T_ψ-open (T_ψ-closed) when it is open (closed) in topology T_ψ. Some properties of the topology T_ψ are very similar to those of density topology. T_ψ is invariant under translation, but it does not need be invariant under multiplication.

Theorem 1 (F). Let $\psi \in C$. T_ψ is invariant under multiplication if and only if

$$\limsup_{x \to 0^+} \frac{\psi(\alpha x)}{\psi(x)} < \infty$$

for any $\alpha \in \mathbb{R}_+$.

2000 Mathematics Subject Classification: 54A10, 28A05.

Keywords: density point, density topology, ψ-density topology, ring, lattice.
To shorten the notation, we will use the following abbreviations: \(\mathbb{R}_e = (\mathbb{R}, \mathcal{T}_e) \), \(\mathbb{R}_d = (\mathbb{R}, \mathcal{T}_d) \), \(\mathbb{R}_\psi = (\mathbb{R}, \mathcal{T}_\psi) \), \(\mathbb{R}_{\text{discr}} = (\mathbb{R}, \mathcal{T}_{\text{discr}}) \), where \(\mathcal{T}_{\text{discr}} \) stands for discrete topology on the real line. Let \(C(X,Y) \) be the family of all continuous functions \(f: X \to Y \), where \(X, Y \) are topological spaces. If \(Y = \mathbb{R}_e \), then we write \(C(X) \) instead of \(C(X, \mathbb{R}_e) \).

In the articles \([\text{FT1}]\) and \([\text{FT2}]\) there were discussed some properties of families \(C(X,Y) \), where \(X, Y \in \{ \mathbb{R}_e, \mathbb{R}_d, \mathbb{R}_\psi \} \). It was shown that the family \(C(\mathbb{R}_\psi, \mathbb{R}_e) \) consists of constant functions only. It was also proved that the family \(C(\mathbb{R}_\psi, \mathbb{R}_\psi) \) (the family of so-called \(\psi \)-continuous functions) is not closed under pointwise addition: there exists a \(\psi \)-continuous function \(f \) such that \(f + x \) is not \(\psi \)-continuous.

Hence, \(C(\mathbb{R}_\psi, \mathbb{R}_\psi) \) is not a ring for any function \(\psi \in \mathcal{C} \). If the condition \((\Delta2)\) is not fulfilled for a certain \(\alpha > 1 \), then even linear function \(f(x) = \alpha x \) is not \(\psi \)-continuous. In this paper, we will concentrate on the family \(C(X, \mathbb{R}_\psi) \), where \(X = (X, \tau) \) is an arbitrary topological space. If \(f \in C(X, \mathbb{R}_\psi) \), then \(f \) is said to be \(\tau \psi \)-continuous. There a natural question arose—for which topological space \(X \) the family \(C(X, \mathbb{R}_\psi) \) can be a ring? We will also discuss the problem if it is a lattice.

Let \(\mathbb{R}^X \) denote the space of all real-valued functions on \(X \). With the operations of pointwise addition and multiplication, it is a ring. We can define the partial order on \(\mathbb{R}^X \) by \(f \leq g \) if

\[
\forall x \in X, \quad f(x) \leq g(x).
\]

For any two elements of \(\mathbb{R}^X \), there exist infimum and supremum of them. We will denote them by \(f \land g \) and \(f \lor g \), respectively, and for any \(x \in X \) we have

\[
(f \land g)(x) = f(x) \land g(x),
\]

\[
(f \lor g)(x) = f(x) \lor g(x).
\]

Then \(\mathbb{R}^X \) is a lattice. The space \(C(X) \) is a subring and a sublattice of \(\mathbb{R}^X \) for any space \(X \).

Definition 2. Let \(f \in \mathbb{R}^X \). The set

(a) \(Z(f) = \{ x \in X : f(x) = 0 \} \) is called a zero set of the function \(f \),

(b) \(Coz(f) = \{ x \in X : f(x) \neq 0 \} \) is called a cozero set of the function \(f \).

For each function \(f \in C(X) \) the set \(Z(f) \) is closed and \(Coz(f) \) is open in the space \(X \).

If \(Z \) is a subset of \(X \) such that it is a zero set for a certain function \(f \in C(X) \), then we call it a zero set of a space \(X \). The collection of such sets is denoted by \(Z(X) \). It is closed under countable intersection. If \(Z \subset X \) satisfies \(Z = Z(f) \) for a certain function \(f \in C(X, \mathbb{R}_\psi) \), then \(Z \) will be called a \(\psi \)-zero set of a space \(X \) and the family of such sets will be denoted by \(Z_\psi(X) \). So, \(Z_\psi(X) = \{ Z(f) : f \in C(X, \mathbb{R}_\psi) \} \). The families \(Coz(X) \) and \(Coz_\psi(X) \) are defined analogously.
A NEW APPROACH TO ψ-CONTINUITY

Example 3. If $X = \mathbb{R}_e$, then $C(X, \mathbb{R}_\psi) = \text{Const } ([\mathbb{PT}]$) and $Z_\psi(X) = \{\emptyset, \mathbb{R}\}$.

Now, we will discuss some properties of the family $C(X, \mathbb{R}_\psi)$ and τ_ψ-continuous functions. Since $T_e \subset T_\psi \subset T_d$, we obtain $C(X, \mathbb{R}_d) \subset C(X, \mathbb{R}_\psi) \subset C(X)$.

Lemma 4. Let X, Y be topological spaces and suppose that $X = A \cup B$, where A, B are closed. We assume, that $f: A \to Y$ and $g: B \to Y$ are continuous. If $f(x) = g(x)$ for any $x \in A \cap B$, then a function $h: X \to Y$ defined by the formula

$$h(x) = \begin{cases} f(x) & \text{for } x \in A, \\ g(x) & \text{for } x \in B \end{cases}$$

is also continuous.

Proposition 5. For any topological space, X the space $C(X, \mathbb{R}_\psi)$ is a sublattice of $C(X)$.

Proof. Let $f, g \in C(X, \mathbb{R}_\psi)$. From inclusion $C(X, \mathbb{R}_\psi) \subset C(X)$ we obtain that f, g are continuous functions from X to \mathbb{R}_e, hence the sets

$$A = \{x \in X: f(x) \geq g(x)\} \quad \text{and} \quad B = \{x \in X: f(x) \leq g(x)\}$$

are closed in X and $A \cup B = X$. Let us define the function

$$f \vee g = \begin{cases} f & \text{on } A, \\ g & \text{on } B. \end{cases}$$

As f is τ_ψ-continuous on A, and g is τ_ψ-continuous on B, so $f \vee g$ is τ_ψ-continuous on both sets A and B. Moreover, $f = g$ on $A \cap B$, so from Lemma 4 we have that $f \vee g \in C(X, \mathbb{R}_\psi)$. Analogously, we show that the function

$$f \wedge g = \begin{cases} f & \text{on } B, \\ g & \text{on } A \end{cases}$$

is τ_ψ-continuous on X. We obtain that for any $f, g \in C(X, \mathbb{R}_\psi)$ the functions $f \vee g$ and $f \wedge g$ are the elements of the space $C(X, \mathbb{R}_\psi)$, so $C(X, \mathbb{R}_\psi)$ is a sublattice of $C(X)$.

For any $f \in C(X, \mathbb{R}_\psi)$ we put

$$f^+ = f \vee 0, \quad f^- = -f \vee 0, \quad |f| = f^+ \vee f^-,$$

where 0 denotes the constant function equal to zero. From Proposition 5 we obtain the following.

Corollary 6. The functions $f^+, f^-, |f|: X \to \mathbb{R}_\psi$ are τ_ψ-continuous for any $f \in C(X, \mathbb{R}_\psi)$.

Theorem 7. For any topological space X, the family $Z_\psi(X)$ is a sublattice of $Z(X)$ (partially ordered by inclusion).
Proof. It is sufficient to show that the union and intersection of two ψ-zerosets of a space X is also a ψ-zeroset of this space. Let $f, g \in C(X, \mathbb{R}_\psi)$. Then, from the above corollary, their absolute values $|f|, |g|$ are also $\tau\psi$-continuous on X. Hence,

$$|f| \lor |g|, \ |f| \land |g| \in C(X, \mathbb{R}_\psi).$$

Notice that sets

$$Z(f) \cap Z(g) = Z(|f| \lor |g|), \quad Z(f) \cup Z(g) = Z(|f| \land |g|)$$

are elements of $Z_\psi(X)$. □

Corollary 8. Let $f \in C(X, \mathbb{R}_\psi)$, $a, b \in \mathbb{R}$, $a \leq b$. Then,

$$\{x \in X : f(x) \leq a\}, \ \{x \in X : f(x) \geq a\} \in Z_\psi(X),$$

$$\{x \in X : f(x) < a\}, \ \{x \in X : f(x) > a\} \in Coz_\psi(X).$$

Moreover,

$$f^{-1}([a, b]) \in Z_\psi(X), \quad f^{-1}((a, b)) \in Coz_\psi(X).$$

Proof. Let a denotes the costant function on X equal to a real number a. From Proposition 5 we have that the functions $f \lor a$ and $f \land a$ are $\tau\psi$-continuous on X. The topology T_ψ is invariant under translation, hence the functions $f \lor a - a$ and $f \land a - a$ are also $\tau\psi$-continuous on X. We obtain

$$\{x \in X : f(x) \leq a\} = Z(f \lor a - a),$$

hence

$$\{x \in X : f(x) \leq a\} \in Z_\psi(X).$$

The set $\{x \in X : f(x) > a\}$ is a complement of $\{x \in X : f(x) \leq a\}$, so it is the ψ-cozeroset of the space X. In the same way, we prove the next conditions. Let us consider the set

$$f^{-1}([a, b]) = \{x \in X : f(x) \geq a\} \cap \{x \in X : f(x) \leq b\}.$$

As $Z_\psi(X)$ is a sublattice of $Z(X)$, then we obtain $f^{-1}([a, b]) \in Z_\psi(X)$. □

Theorem 9. Let $f, g \in C(X, \mathbb{R}_\psi)$ and

$$Coz(f) \cap Coz(g) = \emptyset. \quad \quad (1)$$

Then $f + g \in C(X, \mathbb{R}_\psi)$.

Proof. Let x be an arbitrary point of X. Let us consider two cases:

1. Let $x \in Coz(f + g)$.

From (1) we obtain that $x \in Coz(f)$ or $x \in Coz(g)$. Let us suppose that $x \in Coz(f)$. Then, $f(x) \neq 0$ and $g(x) = 0$. Hence, there exists the neighbourhood U of x included in $Coz(f)$ such that $f + g = f$ on U. From this, we have that $f + g$ is $\tau\psi$-continuous at point x.

110
A NEW APPROACH TO ψ-CONTINuity

(2) Let $x \in Z(f + g)$.

From (1) we obtain that $Z(f + g) = Z(f) \cap Z(g)$. Let V be a T_ψ-open neighbourhood of 0. We will show that there exists a set $U \in \tau$ such that $f(U) \subset V$. From the assumption $f, g \in C(X, \mathbb{R}_\psi)$, there exist the open neighbourhoods of x: $U_1, U_2 \in \tau$ such that $f(U_1) \subset V$ and $g(U_2) \subset V$. We will show $(f + g)(U_1 \cap U_2) \subset V$. Let $y \in U_1 \cap U_2$. If $y \in Coz(f)$, then from (1) we have $y \in Z(g)$, so $(f + g)(y) = f(y) \in V$. If $y \in Coz(g)$, then $(f + g)(y) = g(y) \in V$. If $y \in Z(f) \cap Z(g)$, then $(f + g)(y) = 0 \in V$. Hence, for any $y \in U_1 \cap U_2$ we obtain $(f + g)(y) \in V$, so $(f + g)(U_1 \cap U_2) \subset V$ and, consequently, $f + g \in C(X, \mathbb{R}_\psi)$.

\[\square \]

Lemma 10. Let $f \in C(X, \mathbb{R}_\psi)$. Then $\frac{1}{f}$ is τ_ψ-continuous on $Coz(f)$.

As it was mentioned earlier, the space $C(\mathbb{R}_\psi, \mathbb{R}_\psi)$ is not a group under addition. Is it possible to determine when $C(X, \mathbb{R}_\psi)$ is a group for any topological space X? The next lemmas and propositions will help us to answer this question.

Fix a function $\psi \in \mathcal{C}$. Without loss of generality, we can assume that for any natural number n

\[
\psi\left(\frac{1}{2^n}\right) \leq 1 \quad \text{and} \quad \frac{1}{2^{n+1}} + \frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^n}\right) < \frac{1}{2^n}.
\]

Lemma 11. Let

\[
V = (-\infty, 0] \cup \bigcup_{n=1}^{\infty} \left(\frac{1}{2^{n+1}} + \frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^n}\right), \frac{1}{2^n}\right).
\]

Then 0 is a ψ-density point of V.

Proof. Notice that $V' = \bigcup_{n=1}^{\infty} \left[\frac{1}{2^{n+1}}, \frac{1}{2^n} + \frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^n}\right)\right]$. Let $h > 0$. Then there exists a natural number n for which $h \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n}\right]$. We estimate the expression

\[
\frac{m(V' \cap [0, h])}{2h\psi(2h)} \leq \frac{m(V' \cap [0, \frac{1}{2^n}])}{2 \cdot \frac{1}{2^{n+1}} \cdot \psi\left(2 \cdot \frac{1}{2^{n+1}}\right)} \leq \frac{\sum_{k-n+1}^{\infty} \frac{1}{2^n} \psi\left(\frac{1}{2^n}\right)}{\frac{1}{2^n} \cdot \psi\left(\frac{1}{2^n}\right)} \leq \frac{\psi\left(\frac{1}{2^n}\right)}{\frac{1}{2^n} \psi\left(\frac{1}{2^n}\right)} < \frac{1}{2^n}.
\]

Therefore, 0 is a ψ-density point of the set V. \[\square \]
Lemma 12. Assume that W is an arbitrary T_ψ-open neighbourhood of 0. Then the set

$$W_0 = ((-\infty, 0] \cap W) \cup \bigcup_{n=1}^{\infty} \left(\left(\frac{1}{2^{n+1}} + \frac{1}{4^{n+1}} \cdot \psi \left(\frac{1}{2^n} \right), \frac{1}{2^n} \right) \cap W - \frac{1}{4^{n+1}} \cdot \psi \left(\frac{1}{2^n} \right) \right) \cap W.$$ \hspace{1cm} (3)

is also a T_ψ-open neighbourhood of 0.

Proof. Assume that V is the set given by formula (2). Let W be an arbitrary T_ψ-open neighbourhood of 0. Then the set

$$V \cap W = ((-\infty, 0] \cap W) \cup \bigcup_{n=1}^{\infty} \left(\left(\frac{1}{2^n} + \frac{1}{4^{n+1}} \cdot \psi \left(\frac{1}{2^n} \right), \frac{1}{2^n} \right) \cap W - \frac{1}{4^{n+1}} \cdot \psi \left(\frac{1}{2^n} \right) \right),$$

is also T_ψ-open neighbourhood of 0. We will show that 0 is a right-hand ψ-density point of the set

$$\bigcup_{n=1}^{\infty} \left(\left(\frac{1}{2^n} + \frac{1}{4^n} \cdot \psi \left(\frac{1}{2^n} \right), \frac{1}{2^n} \right) \cap W - \frac{1}{4^n} \cdot \psi \left(\frac{1}{2^n} \right) \right),$$

hence 0 is a ψ-dispersion point of W'. Let $\varepsilon > 0$. From the assumption, there exists a positive number δ such that for any $x \in (0, \delta)$ we have

$$m \left(W' \cap [0, x] \right) < \frac{\varepsilon}{3}. \hspace{1cm} (4)$$

Let N stands for a natural number for which $\frac{1}{2^{n+1}} \leq \min(\delta, \frac{\varepsilon}{3})$ and $h \in (0, \frac{1}{2^n})$. There is $n \geq N$ such that $h \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right)$. Let us notice that for any $k \geq n + 1$ we have

$$m \left(W_0 \cap \left[\frac{1}{2^{k+1}}, \frac{1}{2^k} \right] \right) = m \left(\left(\frac{1}{2^{k+1}} + \frac{1}{4^{k+1}} \cdot \psi \left(\frac{1}{2^k} \right), \frac{1}{2^k} \right) \cap W - \frac{1}{4^{k+1}} \cdot \psi \left(\frac{1}{2^k} \right) \right)$$

$$= m \left(\left(\frac{1}{2^{k+1}} + \frac{1}{4^{k+1}} \cdot \psi \left(\frac{1}{2^k} \right), \frac{1}{2^k} \right) \cap W \right)$$

$$= m \left((V \cap W) \cap \left[\frac{1}{2^{k+1}}, \frac{1}{2^k} \right] \right).$$
Hence,

\[m\left(W_0' \cap \left[\frac{1}{2k+1}, \frac{1}{2k}\right]\right) = m\left((V' \cup W') \cap \left[\frac{1}{2k+1}, \frac{1}{2k}\right]\right) \]

\[\leq m\left(V' \cap \left[\frac{1}{2k+1}, \frac{1}{2k}\right]\right) + m\left(W' \cap \left[\frac{1}{2k+1}, \frac{1}{2k}\right]\right). \] \hspace{1cm} (5)

Moreover,

\[m\left(W_0' \cap \left[\frac{1}{2n+1}, h\right]\right) \]

\[\leq m\left(V' \cap \left[\frac{1}{2n+1}, h\right]\right) + m\left(W' \cap \left[\frac{1}{2n+1}, h + \frac{1}{4n+1} \cdot \psi\left(\frac{1}{2n}\right)\right]\right) \]

\[\leq m\left(V' \cap \left[\frac{1}{2n+1}, h\right]\right) + m\left(W' \cap \left[\frac{1}{2n+1}, h\right]\right) + \frac{1}{4n+1} \cdot \psi\left(\frac{1}{2n}\right). \] \hspace{1cm} (6)

From (5) and (6) we obtain

\[m\left(W_0' \cap [0, h]\right) \leq m\left(V' \cap [0, h]\right) + m\left(W' \cap [0, h]\right) + \frac{1}{4n+1} \cdot \psi\left(\frac{1}{2n}\right). \]

From the above and (4), we have inequalities

\[\frac{m(W_0' \cap [0, h])}{2h \cdot \psi(2h)} \leq \frac{m(W' \cap [0, h])}{2h \cdot \psi(2h)} + \frac{m(V' \cap [0, \frac{1}{2n}])}{2 \cdot \frac{1}{2n+1} \cdot \psi\left(\frac{1}{2n}\right)} + \frac{1}{4n+1} \cdot \psi\left(\frac{1}{2n}\right) \]

\[\leq \frac{\varepsilon}{3} + \sum_{k=n}^{\infty} \frac{1}{2n} \psi\left(\frac{1}{2n}\right) + \frac{1}{2n} < \varepsilon \]

and we obtain, that 0 is a ψ-dispersion point of W_0'.

Now, we construct the functions which enable us to solve the main problem of this paper.

Lemma 13. Let $\psi \in C$ fulfill the condition (\H2). Suppose that $f \in C(X, \mathbb{R}_\psi)$ is a nonnegative function and its zeroset is not open. Let g_n be a linear mapping from $\left[\frac{1}{2n+1} - \frac{1}{4n+2} \cdot \psi\left(\frac{1}{2n+1}\right), \frac{1}{2n+1}\right]$ onto $\left[\frac{1}{2n+1}, \frac{1}{2n+1} + \frac{1}{4n+1} \cdot \psi\left(\frac{1}{2n}\right)\right]$, $n \in \mathbb{N}$. \hspace{1cm} \square
MAŁGORZATA TEREPETA

If \(g: X \to \mathbb{R}_\psi \) is defined by the following formula

\[
g(x) = \begin{cases}
\frac{1}{16} \cdot \psi\left(\frac{1}{2}\right) + f(x) & \text{for } x \in f^{-1}\left(\left[\frac{1}{2} - \frac{1}{16} \cdot \psi\left(\frac{1}{2}\right), \infty\right]\right), \\
\frac{1}{2n+1} \cdot \psi\left(\frac{1}{2^n}\right) + f(x) & \text{for } x \in f^{-1}\left(\left[\frac{1}{2n+1} - \frac{1}{2n+1} \cdot \psi\left(\frac{1}{2^n}\right), \frac{1}{2n+1}\right]\right), \quad n \geq 2 \\
(g_n \circ f)(x) & \text{for } x \in f^{-1}\left(\left[\frac{1}{2n+1} - \frac{1}{2n+1} \cdot \psi\left(\frac{1}{2^n}\right), \frac{1}{2n+1}\right]\right), \quad n \geq 2 \\
0 & \text{for } x \in Z(f),
\end{cases}
\]

(7)

then \(g \) is \(\tau\psi \)-continuous on \(X \).

Proof. If \(f \in C(X, \mathbb{R}_\psi) \) and condition (A2) is fulfilled, then \(g_n \) is \(\psi \)-continuous, hence \(g_n \circ f \) is \(\tau\psi \)-continuous on \(X \) for any \(n \in \mathbb{N} \). From (7) we have that \(g \) is \(\tau\psi \)-continuous on \(X \setminus Z(f) \) and \(\text{Int} \ Z(f) \). We will show that \(g \) is \(\tau\psi \)-continuous at each point of the set \(Z(f) \setminus \text{Int} \ Z(f) \). Let \(W \) be any \(\mathcal{T}_\psi \)-open neighbourhood of \(0 \). Then, the set \(W_0 \) defined in Lemma 12 is the \(\mathcal{T}_\psi \)-open neighbourhood of \(0 \). Let \(a \in Z(f) \setminus \text{Int} \ Z(f) \). Function \(f \) is \(\tau\psi \)-continuous, so there exists a neighbourhood \(U \in \tau \) of \(a \) such that \(f(U) \subset W_0 \). We will prove that \(g(U) \subset W \).

(a) If \(x \in Z(f) \), then \(g(x) = 0 \). So, \(g(x) \in W \).

(b) If \(x \notin Z(f) \), then \(f(x) \in W_0 \) and there exists \(N \in \mathbb{N} \) such that

\[
f(x) \in \left(\frac{1}{2^{N+1}} + \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right), \frac{1}{2^N}\right) \cap W - \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right).
\]

Hence,

\[
f(x) + \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right) \in \left(\frac{1}{2^{N+1}} + \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right), \frac{1}{2^N}\right) \cap W \subset W. \quad (8)
\]

On the other hand,

\[
f(x) \in \left(\frac{1}{2^{N+1}}, \frac{1}{2^N} + \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right)\right) \cap \left(W - \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right)\right) \subset \left(\frac{1}{2^{N+1}}, \frac{1}{2^N} + \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right)\right).
\]

Therefore, on the set \(f^{-1}\left(\frac{1}{2n+1} + \frac{1}{4n+1} \cdot \psi\left(\frac{1}{2^n}\right)\right) \) we have

\[
g(x) = f(x) + \frac{1}{4^{N+1}} \cdot \psi\left(\frac{1}{2^N}\right).
\]

From this and (5), we get \(g(x) \in W \).

We obtain that \(g(U) \subset W \). Hence the function \(g \) is \(\tau\psi \)-continuous at \(a \) and \(g \in C(X, \mathbb{R}_\psi) \). \(\square \)
A NEW APPROACH TO ψ-CONTINUITY

Proposition 14. Suppose that all assumptions of Proposition 13 are fulfilled and g is the function defined by the formula (7). Then $g - f : X \to \mathbb{R}_\psi$ is not $\tau\psi$-continuous on the set $Z(f) \setminus \text{Int} Z(f)$.

Proof. Let $h = g - f$. Then

$$h(x) = \begin{cases}
\frac{1}{16} \cdot \psi\left(\frac{1}{2^n}\right) & \text{for } x \in f^{-1}\left(\left[\frac{1}{2} - \frac{1}{16} \cdot \psi\left(\frac{1}{2}\right), \infty\right)\right), \\
\frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^n}\right) & \text{for } x \in f^{-1}\left(\left[\frac{1}{2^{n+1}}, \frac{1}{2^n} - \frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^{n+1}}\right)\right]\right), \\
(g_n \circ f - f)(x) & \text{for } x \in f^{-1}\left(\left[\frac{1}{2^{n+1}}, \frac{1}{2^n} - \frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^{n+1}}\right), \frac{1}{2^n}\right]\right), \\
0 & \text{for } x \in Z(f).
\end{cases} \quad (9)$$

We will show that h is not $\tau\psi$-continuous on the set $Z(f) \setminus \text{Int} Z(f)$. Let U be a \mathcal{T}_ψ-open set defined as follows:

$$U = (-\infty, 0] \cup \bigcup_{n=1}^\infty \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \cdot \psi\left(\frac{1}{2^n}\right)\right).$$

Put

$$C = h^{-1}\left(\left\{ \frac{1}{4^n+1} \cdot \psi\left(\frac{1}{2^n}\right) \right\}_{n=1}^\infty\right).$$

Let $a \in Z(f) \setminus \text{Int} Z(f)$. Suppose that C is closed. Then, the set

$$A = (X \setminus C) \cap f^{-1}(U)$$

$$= (X \setminus C) \cap \left(Z(f) \cup \bigcup_{n=n_0}^\infty f^{-1}\left(\left[\frac{1}{2^{n+1}}, \frac{1}{2^n} - \frac{1}{4^{n+1}} \cdot \psi\left(\frac{1}{2^n}\right)\right]\right) \right)$$

is the open neighbourhood of the point a and A is the subset of $Z(f)$. We obtain that $a \in A$ and $a \notin \text{Int} Z(f)$, hence,

$$A \cap \text{Coz}(f) \neq \emptyset.$$

We have a contradiction.

From the above, C is not closed. The set $Y = \left\{ \frac{1}{4^n+1} \cdot \psi\left(\frac{1}{2^n}\right) \right\}_{n=1}^\infty$ is \mathcal{T}_ψ-closed (as a set of measure 0), but its preimage is not closed in X. Hence, the function h is not $\tau\psi$-continuous at a. \[\Box\]

The next theorem presents the main result of this paper.

Theorem 15. Let $\psi \in C$ fulfil the condition (Δ2). The following conditions are equivalent:

1. $C(X, \mathbb{R}_\psi) = C(X, \mathbb{R}_{\text{discr}})$.
2. $C(X, \mathbb{R}_\psi)$ is a ring.
3. $C(X, \mathbb{R}_\psi)$ is closed under multiplication.

115
(4) $C(X, \mathbb{R}_\psi)$ is a group.

(5) $Z(f)$ is open for any function $f \in C(X, \mathbb{R}_\psi)$.

Proof. Implications (2) \Rightarrow (3) and (2) \Rightarrow (4) follow from the definition of a ring. Implication (1) \Rightarrow (2) is obvious, because $C(X, \mathbb{R}_{\text{discr}})$ is a ring.

Let us consider the implication (3) \Rightarrow (4). We will show that $C(X, \mathbb{R}_\psi)$ is closed under addition. Let $f, g \in C(X, \mathbb{R}_\psi)$. If $f_1(x) = e^x$, $g_1(x) = \ln x$ and Δ_2 is fulfilled, then the functions f_1, g_1 are ψ-continuous [FT2, Theorem 11]. Then compositions $(f_1 \circ f)(x) = e^{f(x)}$ and $(g_1 \circ g)(x) = e^{g(x)}$ are $\tau\psi$-continuous. From the assumption, $C(X, \mathbb{R}_\psi)$ is closed under multiplication, so

$$e^{f(x)} \cdot e^{g(x)} = e^{f(x)+g(x)} \in C(X, \mathbb{R}_\psi),$$

$$\ln e^{f(x)+g(x)} \in C(X, \mathbb{R}_\psi),$$

$$f(x) + g(x) \in C(X, \mathbb{R}_\psi).$$

We obtain that $C(X, \mathbb{R}_\psi)$ is closed under addition, so it is a group.

Next, we show the implication (1) \Rightarrow (5). If $C(X, \mathbb{R}_\psi) = C(X, \mathbb{R}_{\text{discr}})$, then for any function $f \in C(X, \mathbb{R}_\psi)$ preimage of any set open in $\mathbb{R}_{\text{discr}}$ is open in X.

So, the set $f^{-1}(\{0\}) = Z(f)$ is open in X.

We will prove the implication (5) \Rightarrow (1) now. Observe that $f \in C(X, \mathbb{R}_{\text{discr}})$ if and only if $f^{-1}(\{y\}) \in \tau$ for any $y \in \mathbb{R}$, that means, f is locally constant. We will show that any function $f \in C(X, \mathbb{R}_\psi)$ with open zeroset belongs to the family $C(X, \mathbb{R}_{\text{discr}})$. Take an arbitrary function $f \in C(X, \mathbb{R}_\psi)$ and a point $y \in \mathbb{R}$. If there is no x_0 such that $y = f(x_0)$, then $f^{-1}(\{y\}) = \emptyset \in \tau$. Consider the case when $y = f(x_0)$ for a certain $x_0 \in X$. Put $g(x) = f(x) - f(x_0)$, $x \in X$. Then $g \in C(X, \mathbb{R}_\psi)$ and the set $Z(g) = \{x \in X : f(x) = f(x_0)\}$ is open from (5) and not empty as $x_0 \in Z(g)$. Hence, we obtain that $f^{-1}(\{y\}) = Z(g) \in \tau$ and $f \in C(X, \mathbb{R}_{\text{discr}})$. As $\mathbb{R}_\psi \subset \mathbb{R}_{\text{discr}}$, so $C(X, \mathbb{R}_\psi) \supset C(X, \mathbb{R}_{\text{discr}})$ and we have the equality $C(X, \mathbb{R}_\psi) = C(X, \mathbb{R}_{\text{discr}})$.

Let us consider the implication (4) \Rightarrow (1). Suppose that $C(X, \mathbb{R}_\psi) \neq C(X, \mathbb{R}_{\text{discr}})$. Then there exists a function $f \in C(X, \mathbb{R}_\psi)$ which zeroset is not open in X. From Proposition 14 there is a function $g \in C(X, \mathbb{R}_\psi)$ such that $g - f$ is not $\tau\psi$-continuous on $Z(f) \setminus \text{Int} Z(f)$. Hence, $C(X, \mathbb{R}_\psi)$ is not a group.

The proof of the last implication completes the proof of theorem. \[\Box\]

Corollary 16. The identity function $f(x) = x$ is ψ-continuous. Its zeroset is not open in \mathcal{T}_ψ, because it is a set of measure zero. Hence, $C(\mathbb{R}_\psi, \mathbb{R}_\psi)$ is not a group, so, it is not a ring. Analogously, we can show that $C(\mathbb{R}_d, \mathbb{R}_d)$ and $C(\mathbb{R}_d, \mathbb{R}_\psi)$ are not groups.

Similar results for the family $C(X, \mathbb{R}_d)$ have been obtained by Michelle Knox in [K].
A NEW APPROACH TO ψ-CONTINUITY

REFERENCES

Received October 23, 2007

Center of Mathematics and Physics
Łódź Technical University
al. Politechniki 11
PL–90-924 Łódź
POLAND
E-mail: ttrep@poczta.onet.pl