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ON THE SHARKOVSKY’S PROPERTY OF

DARBOUX FUNCTIONS

Ryszard J. Pawlak

ABSTRACT. Examinations of Sharkovsky’s property for discontinuous func-

tions are usually connected with complex considerations. In this paper we as-
certain the relation between two families of functions giving possibility to resolve
the question about Sharkovsky’s property of functions belonging to one of those
families into examination J1 property of the second of them.

Introduction

On the website http://at.yorku.ca/t/a/i/c/41.htm, M. M i s i u r e w i c z
has written: Combinatorial Dynamics has its roots in Sharkovsky’s Theorem1.
Consequently, it seems to be important to consider Sharkovsky’s property also
for discontinuous functions ([6], [8]). It is well known that continuous functions
and functions possessing connected and Gδ graphs are Sharkovsky’s functions
(e.g., [1], [8]). However, there exist functions which have Sharkovsky’s property
and do not fulfil the above assumptions (for example, some functions belonging to
families PC and PD defined in the second part of this paper). However, a question
when a fixed function possesses Sharkovsky’s property is rather difficult. So, it
seems to be interesting to give a method permitting to replace the investigation
of Sharkovsky’s property of a given functions (or functions belonging to some
family of functions) with applying results connected with property J1 of the well-
known classes of functions (in fact, Sharkovsky’s property is closely connected
with the property J1 also for a well-known class of functions, e.g., [8]). In order
to attain it, we will establish some relation between functions (more precisely
between the class of functions containing considered one) and suitable family

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 26A18, 26A15, 37E15, 54C40, 54H25,

26A15.
Keywords: Darboux function, periodic point, Sharkovsky’s function, property J , family
substituted by a class of functions.
1The name Sharkovsky, which appears in many English written papers, is spelled differently.
I would like to use Misiurewicz’s spelling from the web page.
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of functions possessing property J1, which will give us a possibility to infer
Sharkovsky’s property of considered function.

1. Preliminaries

We will use standard definitions and notations mostly (see [1], [2], [5]). In
particular, by N, R we will denote the set of positive integers, real numbers.

The interior of a set A will be denoted by Int(A).

If A, B are subsets of the domain of f , then f � A denotes the restriction of f
to A. We say that a set A f -covers a set B (denoted by A −→

f
B) if B ⊂ f(A).

Let f be a function. A point x such that fM (x) = x, but fn(x) �= x, for
n ∈ {1, 2, . . . ,M − 1} is called a periodic point of f of prime period M . The set
of all periodic points of f of prime period M will be denoted by PerM (f).

If F is a family of functions mapping R into R, then we shall denote

Fc = {fn ◦ fn−1 ◦ · · · ◦ f1 : f1, f2, . . . , fn ∈ F , n ≥ 1}.
Let D (B1, C) denote the class of all Darboux functions, i.e., functions having

Darboux property or, in other words, intermediate value property ([3]) (functions
in Baire class 1, continuous functions). If we wish to consider the intersection
of two classes, we shall write them next to each other, e.g., DB1 consists of all
Darboux functions in Baire class 1.

Now, we can consider the following Sharkovsky’s ordering of the set of all
positive integers.

3 ≺ 5 ≺ 7 ≺ · · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ · · · ≺ 22 · 3 ≺ 22 · 5 ≺ . . .

· · · ≺ 23 ≺ 22 ≺ 2 ≺ 20 = 1.

We shall say that f is a Sharkovsky’s function (or f possesses Sharkovsky’s
property) if PerM (f) �= ∅ and M ≺ N , then PerN (f) �= ∅.

In the next definitions, the addition of index numbers means addition mod-
ulo M (i.e., M +1 = 1)2. Let (I1, I2, . . . , IM ) be a finite sequence of continuums
(Ii ⊂ R, for i = 1, 2, . . . ,M ) and let f1, f2, . . . , fM : R −→ R. We say that
(I1, I2, . . . , IM ) is (f1, f2, . . . , fM)-cycle if

I1 −→
f1

I2 −→
f2

I3 −→
f3

. . . −→
fM−1

IM −→
fM

IM+1 = I1.

If f1 = f2 = · · · = fM = f , we say that a (f1, f2, . . . , fM )-cycle (I1, I2, . . . , IM )
is (f)-cycle.

2In the whole paper, if we have a sequence consisting of M elements, numbered from 1 to M ,
then we accept M + 1 = 1 (the addition of index numbers is modulo M).
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If x0 ∈ I1 is a point such that

(fi ◦ fi−1 ◦ · · · ◦ f1)(x0) ∈ Ii+1 for i ∈ {1, 2, . . . ,M},
we say that x0 is connected with an (f1, f2, . . . , fM )-cycle (I1, I2, . . . , IM ).

We say ([8]) that a family of functions F has property J if for any

(f1, f2, . . . , fM )-cycle (I1, I2, . . . , IM ) (f1, f2, . . . , fM ∈ F),

there exists a point x0 connected with this cycle such that (fM ◦ fM−1 ◦ · · · ◦
f1)(x0) = x0.

We say that a family of functions F has the property J1 if for any (f)-cycle
(I1, I2, . . . , IM ) (f ∈ F) there exists a point x0 connected with this cycle and
such that fM (x0) = x0 (in the case of continuous functions defined in compact
interval, the property J1 is connected with so-called Itinerary Lemma).

2. Main results

Throughout the paper we will assume that all considered functions are Dar-
boux functions (and at the same time, all considered classes of functions consist
of Darboux functions).

It is very useful to introduce the following notions.

We will say that an (f)-cycle (J1, J2, . . . , JM ) predominates
(f1, f2, . . . , fM )-cycle, (I1, I2, . . . , IM ) if for each i ∈ {1, 2, . . .
. . . ,M}, there exists a homeomorphic embedding ξi : Ji → Ii
such that

(fi ◦ · · · ◦ f1)
(
ξ1(x)

)
= ξi+1

(
f i(x)

)
for each point x connected with (f)-cycle (J1, J2, . . . , JM ).

We say that a family of functions F is substituted by a class
of functions F1 if for any natural number M and any arbitrary
(f1, f2, . . . , fM )-cycle (I1, I2, . . . , IM ), where f1, . . . , fM ∈ F ,
there exists an (f)-cycle (J1, J2, . . . , JM ) which predominates
(f1, f2, . . . , fM )-cycle (I1, I2, . . . , IM ) such that f ∈ F1.

First, we shall establish two classes of functions PC and PD, which will form
a model for our considerations. Let us note that some functions belonging to
PC (PD ) have been considered in a lot of papers and monographs (e.g., [3], [4]).

Let P be an arbitrary Cantor-like set in [0, 1] (for simplicity of considera-
tions we assume that 0, 1 ∈ P ) and let P ′ ⊂ P . Then we can distinguish some
properties of functions fP ′, P : R −→ R which are connected with the sets P ′

and P .

1. fP ′, P (x) = 0 if x ∈ P \ P ′ and if P ′ �= ∅, then fP ′, P (x) = 1, if x ∈ P ′.
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2. fP ′, P � [a, b] is a continuous function and fP ′, P
(
[a, b]

)
= [0, 1] for any

component (a, b) of [0, 1] \ P .

2′. fP ′, P � (a, b) is a continuous function, fP ′, P � [a, b] is a Darboux function
and fP ′, P

(
[a, b]

)
= [0, 1], for any component (a, b) of [0, 1] \ P .

3. fP ′, P (x) = fP ′, P (0), for x < 0 and fP ′, P (x) = fP ′, P (1), for x > 1.

Let PC (PD) be a family of all functions fP ′, P fulfilling conditions 1, 2
and 3 (1,2′,3) for all possible pairs of sets (P ′, P ).

Let us remark that PC ⊂ D (PD ⊂ D) and, moreover, both classes contain
nonmeasurable (in the Lebesgue sense) functions (if the measure of P is positive
and P ′ is a nonmeasurable set).

Now, we will show that:

The family PC is substituted by a family C.
The family PD is substituted by a family DB1. (1)

Let (I1, I2, . . . , IM ) be a fixed (f1, f2, . . . , fM )-cycle, i.e.,

I1 −→
f1

I2 −→
f2

. . . −→
fM−1

IM −→
fM

I1,

where fi = fP ′
i, Pi

∈ PC (fi = fP ′
i, Pi

∈ PD) (for i = 1, 2, . . . ,M ). Let us fix

i0 ∈ {1, . . . ,M}. If Int(Ii0) is a subset of a component of the complement of Pi0

then we can put (ai0 , bi0) = Int(Ii0) (of course, it is sufficient to consider non-
degenerate intervals). In the opposite case, there exists an component (ai0 , bi0)
of [0, 1] \ Pi0 such that [ai0 , bi0 ] ⊂ Int(Ii0). Thus for any i ∈ {1, 2, . . . ,M}, there
exists an interval (ai, bi) ⊂ Ii such that [ai, bi] −→

fi
fi(Ii). So, we have

fi
(
[ai, bi]

) ⊃ fi(Ii) ⊃ Ii+1 ⊃ [ai+1, bi+1] for i = 1, 2, . . . ,M.

Therefore,

[a1, b1] −→
f1

[a2, b2] −→
f2

. . . −→
fM−1

[aM , bM ] −→
fM

[a1, b1].

Let
{
[a′i, b

′
i]
}M

i=1
be a sequence of disjoint intervals such that b′i − a′i = bi − ai

and put δi = a′i − ai. Then [a′i, b
′
i] = [ai, bi] + δi (i = 1, 2, . . . ,M ).

Let ξi : [a
′
i, b

′
i] → Ii be defined by the formula

ξi(x) = x− δi, i = 1, 2, . . . ,M.

Of course, ξi is a homeomorphic embedding such that ξi
(
[a′i, b

′
i]
)
= [ai, bi].

Let us define a function f : R → R in the following way:

f(x) = fi
(
ξi(x)

)
+ δi+1 for x ∈ [a′i, b

′
i]

(i = 1, 2, . . . ,M ) and f is linear function in the closure of any component of the

complement of
⋃M

i=1 [a
′
i, b

′
i].
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It is easy to see that f ∈ C if we consider the family PC, or f ∈ DB1 if we
consider the family PD.

Now, we shall show that
(
[a′1, b

′
1], [a

′
2, b

′
2], . . . , [a

′
M , b′M ]

)
is (f)-cycle, i.e.,[

a′1, b
′
1

] −→
f

[
a′2, b

′
2

] −→
f

. . . −→
f

[
a′M , b′M

] −→
f

[
a′1, b

′
1

]
. (2)

Let us fix i0 ∈ {1, 2, . . . ,M}. Then

f
([

a′i0 , b
′
i0

])
= fi0

(
ξi0

([
a′i0 , b

′
i0

]))
+ δi0+1

⊃ [ai0+1, bi0+1] + δi0+1 =
[
a′i0+1, b

′
i0+1

]
, (3)

which proves (2).

Let x be an arbitrary point connected with (f)-cycle

(
[a′1, b

′
1], [a

′
2, b

′
2], . . . . . . , [a

′
M , b′M ]

)
.

It means that

x ∈ [a′1, b
′
1]

and

f(x) ∈ [a′2, b
′
2], f

2(x) ∈ [a′3, b
′
3], . . . , f

M−1(x) ∈ [a′M , b′M ], fM (x) ∈ [a′1, b
′
1].

So, we have:

f1
(
ξ1(x)

)
= ξ2

(
f(x)

)
,

f2

(
f1
(
ξ1(x)

))
= f2

(
ξ2
(
f(x)

))
= ξ3

(
f2(x)

)
.

Now, we suppose that (fi−1 ◦ · · · ◦ f1)
(
ξ1(x)

)
= ξi

(
f i−1(x)

)
for i ≥ 2. Then

we shall prove that

(fi ◦ fi−1 ◦ · · · ◦ f1)
(
ξ1(x)

)
= ξi+1

(
f i(x)

)
.

We can calculate(
fi ◦ (fi−1 ◦ · · · ◦ f1)

)(
ξ1(x)

)
= fi

(
ξi
(
f i−1(x)

))
= ξi+1

(
f i(x)

)
.

This completes the proof of (1).

Remark� One can consider various modifications of our models. For example,
we can replace the condition 2 (and 2′) with

2′′. f � [a, b] ∈ DB1 and f
(
[a, b]

)
= [0, 1], for any component of [0, 1] \ P .

Then such a family is also substituted by DB1.

Moreover, the assumption 3 suggests that one can consider the functions
mapping [0, 1] into itself.

The following lemma is the basic statement for further considerations.
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����� 2.1� If a family F is substituted by a class of functions F1 and the
family F1 has property J1, then the family Fc has property J .

P r o o f. Let f1, f2, . . . , fM ∈ Fc and let (I1, I2, . . . , IM ) be (f1, f2, . . . , fM)-
-cycle. We can suppose that fk = hk,N(k) ◦ hk,N(k)−1 ◦ · · · ◦ hk,1, where hk,i ∈ F ,
(i = 1, 2, . . . , N(k)) and k ∈ {1, 2, . . . ,M}. Thus

fM ◦ · · · ◦ f1 = hM,N(M)◦ · · · ◦ hM,1 ◦ hM−1,N(M−1) ◦ . . .
· · · ◦ hM−1,1 ◦ · · · ◦ h1,N(1) ◦ · · · ◦ h1,1.

Let us denote IM,N(M)+1 = IM+1 = I1 =
[
aM,N(M)+1, bM,N(M)+1

]
, where

aM,N(M)+1 = a1, bM,N(M)+1 = b1. Remark that hM,N(M)−1 ◦ · · · ◦ hM,1(IM ) is
a connected set and IM+1 is a subset of a connected set

fM (IM ) = hM,N(M)

(
hM,N(M)−1 ◦ · · · ◦ hM,1(IM )

)
.

Thus, there exist points aM,N(M), bM,N(M) ∈ hM,N(M)−1 ◦ · · · ◦ hM,1(IM ) such
that

hM,N(M)

(
aM,N(M)

)
= aM,N(M)+1

and

hM,N(M)

(
bM,N(M)

)
= bM,N(M)+1.

Of course, it is possible that bM,N(M) < aM,N(M), however, we can restrict
our considerations to the case aM,N(M) < bM,N(M) with no loss of generality. Let

us put IM,N(M) =
[
aM,N(M), bM,N(M)

]
. Since hM,N(M) is a Darboux function,

then IM,N(M) −→
hM,N(M)

IM,N(M)+1.

Now, we apply the above reasoning again. Note that

aM,N(M), bM,N(M) ∈ hM,N(M)−1

(
hM,N(M)−2 ◦ · · · ◦ hM,1(IM )

)
which means that there exist points aM,N(M)−1, bM,N(M)−1 in

hM,N(M)−2 ◦ · · · ◦ hM,1(IM )

such that

hM,N(M)−1

(
aM,N(M)−1

)
= aM,N(M)

and

hM,N(M)−1

(
bM,N(M)−1

)
= bM,N(M).

Put IM,N(M)−1 = [aM,N(M)−1, bM,N(M)−1]. Since hM,N(M)−1 is a Darboux func-
tion, then IM,N(M)−1 −→

hM,N(M)−1

IM,N(M).

Repeating this procedure again and again we obtain two sequences of points:

aM,N(M)+1, aM,N(M), aM,N(M)−1, . . . , aM,1
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and

bM,N(M)+1, bM,N(M), bM,N(M)−1, . . . , bM,1

such that

hM,i(aM,i) = aM,i+1, hM,i(bM,i) = bM,i+1 (i = 1, 2, . . . , N(M )).

Simultaneously, we have a sequence of intervals

IM,i = [aM,i, bM,i] (i = 1, 2, . . . , N(M ), N(M ) + 1)

such that

IM,1 −→
hM,1

IM,2 −→
hM,2

. . . −→
hM,N(M)−1

IM,N(M) −→
hM,N(M)

IM,N(M)+1 = IM+1.

It is easy to verify that IM,1 ⊂ IM .

We can repeat the above procedure for successive numbersM−1,M−2, . . . , 1.
Consequently, for any k ∈ {1, 2, . . . ,M} we obtain sequences of points

ak,N(k)+1, ak,N(k), ak,N(k)−1, . . . , ak,1

and

bk,N(k)+1, bk,N(k), bk,N(k)−1, . . . , bM,1

such that

hk,i(ak,i) = ak,i+1, hk,i(bk,i) = bk,i+1 (i = 1, 2, . . . , N(k));

Ik,i = [ak,i, bk,i] (i = 1, 2, . . . , N(k), N(k) + 1)

and

Ik,1 ⊂ Ik (k = 1, 2, . . . ,M ); (4)

Ik,N(k)+1 ⊂ Ik+1 (k = 1, 2, . . . ,M );

hk,i(Ik,i) ⊃ Ik,i+1 (k = 1, 2, . . . ,M ).

Let us denote W =
∑M

i=1N(i).

Now, we will introduce new enumerations of sequences{
h1,1, . . . , h1,N(1), . . . , hM,N(M)

}
and

{
I1,1, . . . , I1,N(1), . . . , IM,N(M)+1

}
preserving the order:

h0
1 = h1,1, h

0
2 = h1,2, . . . , h

0
N(1) = h1,N(1), h

0
N(1)+1 = h2,1, . . .

. . . , h0
N(1)+N(2)−1 = h2,M , . . . , h0

W = hM,N(M),

I01 = I1,1, I
0
2 = I1,2, . . . , I

0
N(1) = I1,N(1), I

0
N(1)+1 = I1,N(1)+1,

I0N(1)+2 = I2,2, . . . , I
0
W+1 = IM,N(M)+1 = I1.
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Making some basic observation, we obtain

I01 −→
h0
1

I02 −→
h0
2

. . . −→
h0
N(1)−1

I0N(1) −→
h0
N(1)

I0N(1)+1 −→
h0
N(1)+1

. . . −→
h0
W−1

I0W −→
h0
W

I0W+1.

This means that
(
I01 , . . . , I

0
W

)
form an

(
h0
1, . . . , h

0
W

)
-cycle. According to our

assumption, there exists an (f0)-cycle (J1, . . . , JW ) predominating the above
cycle, where f0 ∈ F1.

Let y0 ∈ J1 be a point connected with an (f0)-cycle (J1, . . . , JW ) such that
fW
0 (y0) = y0 and let ξi : Ji → Ii (i = 1, . . . ,W ) be a homeomorphic embedding
such that (

h0
i ◦ · · · ◦ h0

1

)(
ξ1(y0)

)
= ξi+1

(
f i
0(y0)

)
(i = 1, 2, . . . ,W ). (5)

Let us put x0 = ξ1(y0) ∈ I1.

We shall prove that x0 is a required point fulfilling the conditions defined in
property J for an (f1, . . . , fM )-cycle (I1, . . . , IM ).

Let us fix a number k0 belonging to {1, 2, . . . ,M}. Let us put

W0 =

k0∑
i=1

N(i).

By (5) we can write

(fk0
◦ · · · ◦ f1)(x0) = (h0

W0
◦ · · · ◦ h0

1)(x0)

= ξW0+1(f
W0
0 (y0)) ∈ IW0+1 (6)

= Ik0,N(k0)+1 ⊂ Ik0+1,

which proves that x0 is a point connected with (f1, . . . , fM)-cycle (I1, . . . , IM ).
To complete the proof it is sufficient to show that

(fM ◦ · · · ◦ f1)(x0) = x0.

Now, using (5), we compute:

(fM ◦ · · · ◦ f1)(x0) = (h0
W ◦ · · · ◦ h0

1)(x0) = ξW+1

(
fW
0 (y0)

)
= ξ1(y0) = x0.

�

According to Lemma 2.1 and [8], Lemma 3.3, we have:

����� 2.2� If a family F is substituted by a family F1 and the family F1 has
the property J1, then for each f ∈ Fc such that PerP (f) �= ∅ we have:

(1) if P > 1 and P is odd, then for every Q > P , and for every even Q and
for Q = 1 there exist closed intervals I1, . . . , IQ such that

I1 −→
f

. . . −→
f

IQ −→
f

I1
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and moreover, for every x ∈ I1 such that fQ(x) = x and f i(x) ∈ Ii+1 for
i = 1, . . . , Q− 1, x ∈ PerQ(f);

(2) if P > 2 and P is even, then there exist closed intervals I1 and I2 such
that I1 −→

f
I1 and I1 −→

f
I2 −→

f
I1 and, moreover, for every x ∈ I1 such

that f2(x) = x and f(x) ∈ I2, f(x) �= x;

(3) if P = 2, then there exists a closed interval I1 such that I1 −→
f

I1.

����	�� 2.3� Let us suppose that F is a family of functions substituted by
a family F1 and the family F1 has the property J1. Then each function f ∈ Fc

is Sharkovsky’s function.

P r o o f. According to Lemma 2.1, Fc has the property J .

Let f be a fixed function belonging to Fc for which there exists a point x0 in
PerM (f). We shall show that PerN (f) �= ∅ for any natural number N such that
M ≺ N .

The proof will be divided into 4 steps (note that the case M = 2m ·r, N = 2n,
and n > m one can reduce to the undermentioned cases). Of course, we generally
assume that M ≺ N .

I. Either M is an odd number and N is a positive integer, or M is an even
number and N ∈ {1, 2}.

II. M = 2m, where m > 1.

III. M = 2m · r (r > 1 is an odd number, m ≥ 1) and N = 2n, where n ≤ m.

IV. M = 2m · r (r > 1 is an odd number m ≥ 1) and N = 2n · s, where s > 1.

The proof in the case I follows immediately from Lemma 2.1 and Lemma 2.2.
Now, we shall prove the remaining cases.

Proof of case II. Of course, N = 2n, where m > n. In view of case I, it is

sufficient to consider n > 1. Let us consider a function ξ = f
N
2 ∈ Fc. So, we

have ξ2
m−n+1

(x0) = fM (x0) = x0.

Now, we will show that

x0 ∈ Per2m−n+1(ξ).

On the contrary, suppose that there exists a positive integer k < 2m−n+1 such

that ξk(x0) = x0. Then fk·2n−1

(x0) = x0 and k · 2n−1 < M .

We obtain a contradiction with the assumption that x0 ∈ PerM (f).

In view of case I, we can deduce that there exists a point y0 in Per2(ξ). It is
not difficult to verify that y0 ∈ PerN (f).

Proof of the case III. In this case we put ξ = f
M
r = f2m ∈ Fc. So, we have

x0 ∈ Perr(ξ). Since r is an odd number, then on account of case I, there exists
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z0 ∈ Per2(ξ). Then z0 ∈ Per2m+1(f). According to case II, we have PerN (f) �= ∅,
where N = 2n and n ≤ m.

Proof of case IV. For the proof of this case we will show by induction on m
that:

If f ∈ Fc, M = 2m · r (r > 1 is an odd number and m ≥ 1 is a positive

integer) and PerM (f) �= ∅, then PerN (f) �= ∅, for each (7)

N = 2n · s (s > 1 is an odd number) such that M ≺ N.

The first step of the induction: m = 1. Let x0 ∈ Per2·r(f). Let μ = f2 ∈ Fc.
It is not difficult to verify that

x0 ∈ Perr(μ). (8)

If there exists an odd number d > 1 such that Perd(f) �= ∅, then (according
to the case I.) PerN (f) �= ∅ for any N such that d ≺ N . So, in our considerations
(in this step of induction) we will assume that there is no odd number d > 1
such that Perd(f) �= ∅.

We will continue further considerations in two cases.

1) n = 1. Then r < s. In view of (8) and case I there exists y0 ∈ Pers(μ). We
will show that

y0 ∈ Per2·s(f).

It is obvious that f2·s(y0) = y0. On the contrary we suppose that fk(y0) =
y0 and k < 2 · s. According to our assumption, k is an even number. So let
k = 2 · w (w < s). Thus y0 = μw(y0) which is impossible.

2) n > 1. Note that N = 2 ·k0 (k0 ≥ 1 is some positive integer) and moreover

r ≺ k0.

According to case I, there exists p0∈Perk0
(μ). Obviously, p0 ∈ Per2·k0

(f) =
PerN (f). This finishes the proof of the first step of this induction.

Let us suppose that (7) is true for a positive integer m − 1 (m > 1). We shall
prove that (7) is also true for the number m.

So, let f ∈ Fc, x0 ∈ Per2m·r(f) for some odd number r > 1 and N = 2n · s
(s > 1 is an odd number such that 2m · r ≺ N). Let us put ξ = f2 ∈ Fc. It is
not difficult to verify that x0 ∈ Per2m−1·r(ξ).

Note that N is an even number, and so N = 2 · n0 (n0 = 2n−1 · s, n− 1 ≥ 1).
Let us notice that

2m−1 · r ≺ n0 = 2n−1 · s. (9)

According to (9) and the inductive supposition, we can infer that there exists
t0 in Pern0

(ξ). Obviously, t0 ∈ Per2·n0
(f) = PerN (f). �
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ON THE SHARKOVSKY’S PROPERTY OF DARBOUX FUNCTIONS

Remark� It is known ([7], [8]) that families C and DB1 have property J1. So, as
a simple consequence of this theorem and the considerations beginning this pa-
per, we have: any function f ∈ PD is a Sharkovsky’s function (and consequently,
any function f ∈ PC is a Sharkovsky’s function).

Problem� If F is some family of functions possessing the property J1 and F1 is
substituted by F , then (Theorem 2.3) Fc

1 consists of Sharkovsky’s functions and,
moreover, (Lemma 2.1) Fc

1 has the property J1. Then we can consider a family
F2, which is substituted by Fc

1 (if such a family there exists). This leads us to
the following question:

Whether for any family F of Darboux functions possessing the prop-
erty J1 there exists a family F1 �= F which is substituted by F.
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