

Tatra Mt. Math. Publ. **42** (2009), 187–189 DOI: 10.2478/v10127-009-0017-6

A NOTE ON MEASURE EXTENSION PROBLEM OF ℓ -GROUP-VALUED MEASURES

SURJIT SINGH KHURANA

ABSTRACT. For an Abelian, Archimedean Dedekind complete lattice-ordered, weakly σ -distributive group G and an algebra \mathcal{F} of subsets of a set X, every positive measure $\mu: \mathcal{F} \to G$ has a unique countably additive (in order convergence) extension to σ -algebra generated by \mathcal{F} .

1. Introduction and notations

In this note, R is the set of real numbers and $\overline{R} = [-\infty, \infty]$, G is an Abelian, Archimedean Dedekind complete lattice-ordered, weakly σ -distributive group, \mathcal{F} is an algebra of subsets of a set X and $\mu: \mathcal{F} \to G$ a positive measure (this means for a disjoint sequence $\{A_n\} \subset \mathcal{F}$ with $\cup A_n \in \mathcal{F}, \ \mu(A) = \sum \mu(A_n)$, considering limit in order convergence) and \mathcal{A} the σ -algebra generated by \mathcal{F} .

In [6], using Carathéodory measurability, the author has given a very interesting sophisticated proof of the unique extension, in order convergence, of the measure to \mathcal{A} (in [4, 5] the author has given other proofs of this result). In this note we prove that this result can also be easily obtained from the representation theorem proved in [8] (see also [3]).

2. Main result

THEOREM 1 ([6, Theorem 5.1]). Let $\mu: \mathcal{F} \to G$ be a positive measure. Then there is a unique extension $\mu: \mathcal{A} \to G$ which is positive and countably additive in order convergence.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28B05; Secondary 46G10. Keywords: extremely disconnected compact Hausdorff spaces, lattice-valued measures.

SURJIT SINGH KHURANA

Proof. For a compact Hausdorff Stonian (extremely disconnected) space Y, $\mathcal{E}(Y)$ will denote the space of all continuous functions $f: Y \to \overline{R}$ such that f is finite-valued almost everywhere (this means the set where it is $\pm \infty$ is nowhere dense).

As in [8], we can assume, that \mathcal{F} separates the points of X. As in [8, p. 70], there is a totally disconnected compact Hausdorff space \tilde{X} , the Boolean space for \mathcal{F} , in which X is dense. If $\tilde{\mathcal{F}}$ and \mathcal{B} are the classes of all clopen subsets and all Baire subsets of \tilde{X} , then the mapping $\rho: B \to B \cap X$, when restricted to $\tilde{\mathcal{F}}$, is an isomorphism onto \mathcal{F} and when restricted to \mathcal{B} is a σ -homomorphism of \mathcal{B} onto a class which contains \mathcal{A} with kernel being the class of Baire sets disjoint from X [8]. The measure μ gives a finitely additive positive mapping

$$\tilde{\mu} \colon \mathcal{F} \to G, \qquad \tilde{\mu}(A) = \mu(A \cap X).$$

By [2, Theorem 4], there is a compact Hausdorff Stonian space Y such that G is lattice group isomorphic to a sub-lattice group of $\mathcal{E}(Y)$, preserving arbitrary sup and inf; we denote this isomorphism by i. Put $i \circ \mu(X) = e_0$ and let Y_0 be an open dense subset of Y where e_0 is finite-valued. We denote by $C(Y_0)$ the space of all real-valued continuous functions on the locally compact space Y_0 . The mapping $C(Y_0) \to \mathcal{E}(Y)$, $f \to \tilde{f}$ (continuous extension) is a lattice isomorphism preserving arbitrary sup and inf. Put $e = (e_0)_{|Y_0}$. The finitely additive positive measure

$$\gamma \colon \mathcal{F} \to C(Y_0)$$

ı

is defined as

$$\nu(A) = \left(i \circ \tilde{\mu}(A)\right)_{|Y_0}.$$

Putting

$$I = \{ f \in C(Y_0) : |f| \le e \},\$$

we get a Dedekind complete vector sub-lattice E of $C(Y_0)$, $E = \bigcup_{n=1}^{\infty} nI$ with a strong unit e and a positive finitely additive measure $\nu : \tilde{\mathcal{F}} \to E$. Defining the norm $\|.\|$ on E, $\|f\| = \inf\{\lambda > 0 : |f| \le \lambda e\}$, E becomes a Dedekind complete M-space [1] and so there is an extremely disconnected compact Hausdorff space S such that E is linear lattice isomorphic to C(S), preserving arbitrary sup and inf. Thus we get a finitely additive positive measure $\nu : \tilde{\mathcal{F}} \to C(S)$ which extends to linear positive mapping

$$\nu: \mathcal{S}(\tilde{\mathcal{F}}) \to C(S), \ \mathcal{S}(\tilde{\mathcal{F}})$$

being the space of all real-valued $\tilde{\mathcal{F}}$ -simple functions on X; with sup norm topology on $\mathcal{S}(\tilde{\mathcal{F}})$, this mapping is easily verified to be continuous. Since X is totally disconnected, by Stone-Weierstrass theorem, $\mathcal{S}(\tilde{\mathcal{F}})$ is norm dense in $C(\tilde{X})$. Thus, we get a positive continuous mapping

$$\nu \colon C(X) \to C(S).$$

188

MEASURE EXTENSION

By [7], we get a quasi-regular Baire measure on \tilde{X} which extends ν . Since G is weakly σ -distributive, the measure $\nu: \mathcal{B} \to G$ is regular. Now, for any compact G_{δ} -set $C \subset \tilde{X} \setminus X$, there is a decreasing sequence $\{F_n\} \subset \tilde{\mathcal{F}}$ such that $F_n \downarrow \chi_C$; since μ is a measure, we get $\nu(C) = 0$. By regularity, $\nu(B) = 0$ for any Baire subset of \tilde{X} disjoint from X. Now, for any $A \in \mathcal{A}$ we can define $\mu(A) = \nu(B)$ for any Baire subset B of \tilde{X} with $B \cap X = A$. The rest is easily verified.

REFERENCES

- ALIPRANTIS, C. D.—BURKINSHAW, O.: Positive Operators. Academic Press, Orlando, 1985.
- [2] BERNAU, S. J.: Unique representation of Archimedaen lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. (3) 15 (1965), 599–631.
- [3] KHURANA, S. S.: Lattice-valued Borel measures, Rocky Mountain J. Math. 6 (1976), 377–382.
- [4] RIEČAN, B.: On measures and integrals with values in ordered groups, Math. Slovaca 33 (1983), 153–163.
- [5] RIEČAN, B.—NEUBRUNN, T.: Integral, Measure and Ordering. Math. Appl., Vol. 411, Kluwer Acad. Publ., Dordrecht, 1997.
- [6] RIEČAN, B.: Carathéodory measurability revisited, Tatra Mt. Math. Publ. 34 (2006), 321–332.
- [7] WRIGHT J. D. M.: Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19 (1969), 107–122.
- [8] WRIGHT J. D. M.: The measure problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), 65–85.

Received July 20, 2008

Departemt of Mathematics The University of Iowa Iowa City, Iowa 52242 U.S.A. E-mail: khurana@math.ujowa.edu