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A NOTE ON MEASURE EXTENSION PROBLEM OF

�-GROUP-VALUED MEASURES

Surjit Singh Khurana

ABSTRACT. For an Abelian, Archimedean Dedekind complete lattice-ordered,
weakly σ-distributive group G and an algebra F of subsets of a set X, every pos-
itive measure μ : F → G has a unique countably additive (in order convergence)
extension to σ-algebra generated by F .

1. Introduction and notations

In this note, R is the set of real numbers and R̄ = [−∞,∞], G is an Abelian,
Archimedean Dedekind complete lattice-ordered, weakly σ-distributive group,
F is an algebra of subsets of a set X and μ : F → G a positive measure (this
means for a disjoint sequence {An} ⊂ F with ∪An ∈ F, μ(A) =

∑
μ(An),

considering limit in order convergence) and A the σ-algebra generated by F.
In [6], using Carathéodory measurability, the author has given a very inter-

esting sophisticated proof of the unique extension, in order convergence, of the
measure to A (in [4, 5] the author has given other proofs of this result). In this
note we prove that this result can also be easily obtained from the representation
theorem proved in [8] (see also [3]).

2. Main result

������� 1 ([6, Theorem 5.1])� Let μ : F → G be a positive measure. Then
there is a unique extension μ : A → G which is positive and countably additive
in order convergence.
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P r o o f. For a compact Hausdorff Stonian (extremely disconnected) space Y,
E(Y ) will denote the space of all continuous functions f : Y → R̄ such that f is
finite-valued almost everywhere (this means the set where it is ±∞ is nowhere
dense). �

As in [8], we can assume, that F separates the points of X. As in [8, p. 70],

there is a totally disconnected compact Hausdorff space X̃, the Boolean space
for F, in which X is dense. If F̃ and B are the classes of all clopen subsets and
all Baire subsets of X̃, then the mapping ρ : B → B ∩X, when restricted to F̃,
is an isomorphism onto F and when restricted to B is a σ-homomorphism of B
onto a class which contains A with kernel being the class of Baire sets disjoint
from X [8]. The measure μ gives a finitely additive positive mapping

μ̃ : F̃ → G, μ̃(A) = μ(A ∩X).

By [2, Theorem 4], there is a compact Hausdorff Stonian space Y such that G
is lattice group isomorphic to a sub-lattice group of E(Y ), preserving arbitrary
sup and inf; we denote this isomorphism by i. Put i◦μ(X) = e0 and let Y0 be an
open dense subset of Y where e0 is finite-valued. We denote by C(Y0) the space
of all real-valued continuous functions on the locally compact space Y0. The
mapping C(Y0) → E(Y ), f → f̃ (continuous extension) is a lattice isomorphism
preserving arbitrary sup and inf. Put e = (e0)|Y0

. The finitely additive positive
measure

ν : F̃ → C(Y0)

is defined as

ν(A) =
(
i ◦ μ̃(A))|Y0

.

Putting

I =
{
f ∈ C(Y0) : |f | ≤ e

}
,

we get a Dedekind complete vector sub-lattice E of C(Y0), E = ∪∞
n=1nI with a

strong unit e and a positive finitely additive measure ν : F̃ → E. Defining the
norm ‖.‖ on E, ‖f‖ = inf{λ > 0 : |f | ≤ λe}, E becomes a Dedekind complete
M -space [1] and so there is an extremely disconnected compact Hausdorff space
S such that E is linear lattice isomorphic to C(S), preserving arbitrary sup and

inf. Thus we get a finitely additive positive measure ν : F̃ → C(S) which extends
to linear positive mapping

ν : S(F̃) → C(S), S(F̃)

being the space of all real-valued F̃-simple functions on X; with sup norm topol-
ogy on S(F̃), this mapping is easily verified to be continuous. Since X is totally

disconnected, by Stone-Weierstrass theorem, S(F̃) is norm dense in C(X̃). Thus,
we get a positive continuous mapping

ν : C(X̃) → C(S).
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By [7], we get a quasi-regular Baire measure on X̃ which extends ν. Since G is
weakly σ-distributive, the measure ν : B → G is regular. Now, for any compact
Gδ-set C ⊂ X̃ \X, there is a decreasing sequence {Fn} ⊂ F̃ such that Fn ↓ χC ;
since μ is a measure, we get ν(C) = 0. By regularity, ν(B) = 0 for any Baire

subset of X̃ disjoint from X. Now, for any A ∈ A we can define μ(A) = ν(B)

for any Baire subset B of X̃ with B ∩X = A. The rest is easily verified.
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