ON THE SEPARATELY OPEN TOPOLOGY

Zbigniew Piotrowski — Robert W. Vallin — Eric Wingler

ABSTRACT. We consider the relationship between separately continuous functions and separately open sets, and we study the properties of the separately open topology on \(\mathbb{R}^2 \) and on \(\mathbb{Q}^2 \). We show that \(\mathbb{R}^2 \) with this topology (denoted \(\mathbb{R} \oplus \mathbb{R} \)) is completely and strongly Hausdorff and that \(\mathbb{Q} \oplus \mathbb{Q} \) is normal but not a \(p \)-space. In addition, we show that each point of \(\mathbb{Q} \oplus \mathbb{Q} \) has an uncountable neighborhood base.

1. Introduction

This paper deals with two topologies on the space \(\mathbb{R}^2 \), the usual Euclidean topology and the separately open (or plus) topology. In this paper we will compare and contrast these topologies and the \(G_\delta \) sets formed by each.

Let \(f \) be a function from \(\mathbb{R}^2 \) into \(\mathbb{R} \). We say that \(f \) is continuous with respect to \(x \) (with respect to \(y \)) if the restricted function \(f_y(x) = f(x, y) \), where \(y \) is fixed \((f_x(y) = f(x, y), \text{where } x \text{ is fixed}) \) is a continuous function from \(\mathbb{R} \) into \(\mathbb{R} \). If \(f \) is continuous with respect to both \(x \) and \(y \), then \(f \) is called a separately continuous function. The canonical example of a function that is separately continuous at a point where it is not continuous, is

\[
\begin{align*}
 f(x, y) &= \begin{cases}
 2xy & \text{if } (x, y) \neq (0, 0), \\
 0 & \text{if } (x, y) = (0, 0).
 \end{cases}
\end{align*}
\]

Since \(f \) is not continuous at \((0, 0)\), we know that there exist open intervals \(I = (-a, a) \) such that \(f^{-1}(I) \) is not an open Euclidean set in the plane. It is natural to ask what such a set \(f^{-1}(I) \) looks like. The answer is a separately open set containing the origin.

Definition 1. The \(\varepsilon \)-plus at \((a, b)\) of radius \(\varepsilon > 0 \) is

\[
P_{\varepsilon}(a, b) = \{(x, b) \in \mathbb{R}^2 : |x - a| < \varepsilon\} \cup \{(a, y) \in \mathbb{R}^2 : |y - b| < \varepsilon\}.
\]

(Note: We shall use \(B_{\varepsilon}(a, b) \) to denote a Euclidean open ball about \((a, b)\).)

2000 Mathematics Subject Classification: Primary 05C38, 15A15; Secondary 05A15, 15A18.

Keywords: separately open topology, separate continuity.
More generally, if \(X \) and \(Y \) are topological spaces, \((p,q) \in X \times Y\), and \(U \) and \(V \) are open neighborhoods of \(p \) and \(q \), respectively, we define the \((U,V)\)-plus at \((p,q)\) by

\[
P_{U,V}(p,q) = \{(x,q) : x \in U\} \cup \{(p,y) : y \in V\}.
\]

Definition 2. A set \(G \subset \mathbb{R}^2 \) is said to be separately open if for each point \((a,b) \in G\) there exists \(\varepsilon > 0 \) such that \(P_\varepsilon (a,b) \subset G \).

In general, the separately open topology is formed as follows: Let \(X_1, X_2, \ldots, X_n \) be a finite collection of topological spaces and let \(X = \prod_{i=1}^{n} X_i \). We say that \(S \subset X \) is separately open provided that for each \(x = (x_1, x_2, \ldots, x_n) \in S \) and each \(i = 1, 2, \ldots, n \) there is a neighborhood \(N_i \) of \(x_i \) in \(X_i \) such that \(\prod_{i=1}^{n} A_i \subset S \) where \(A_j = \{x_j\} \) when \(j \neq i \) and \(A_i = N_i \). For more information, see \([6]\) and \([7]\).

2. **Structure of separately open sets**

It is obvious that Euclidean open sets are separately open. The following example shows that the converse is not true.

Example 1. The Maltese Cross

\[
A = \{(0,0)\} \cup \{(x,y) \in \mathbb{R}^2 : |y| > 3|x|\} \cup \left\{(x,y) \in \mathbb{R}^2 : |y| < \left|\frac{x}{3}\right|\right\}
\]

is a separately open, but not Euclidean open set.

The Maltese Cross has only one point \((0,0)\) where it is not open in the usual sense; that is, it is the union of an open set with a singleton. Obviously, one can quickly come up with a set with an infinite number of such points. For example, let

\[
A_{(0,0)} = A \cap \left[-\left(\frac{1}{2}, \frac{1}{2}\right) \times \left(-\frac{1}{2}, \frac{1}{2}\right)\right],
\]

and let \(A_{(i,j)} = (i,j) + A_{(0,0)} \) for each \((i,j) \in \mathbb{Z}^2\). Then \(\cup \{A_{(i,j)} : (i,j) \in \mathbb{Z}^2\} \) is separately open, but each point \((i,j) \in \mathbb{Z}^2\) lies outside of the (Euclidean) interior.

Example 2. Another example of a separately open set that is not Euclidean open was given by Popvassilev \([12]\). Remove any circle from the plane letting one point \(P \) of this circle remain. The remaining set is separately open, but \(P \) is not in the (Euclidean) interior.
ON THE SEPARATELY OPEN TOPOLOGY

These routine examples motivate us to ask the following question: Where can these points of “essential” separate openness occur; that is, can a nonempty separately open set be constructed in a way different from adding points to an existing nonempty open set?

The answer to this question is yes. We mention here a few ways to show this. One of the easiest examples to construct is the following: Let \(\alpha \) and \(\beta \) be real numbers such that \(\alpha^2 + \beta^2 = 1 \) and \(\alpha \beta \notin \mathbb{Q} \), and let \(f \) be the rotation defined by

\[
f(x, y) = (\alpha x + \beta y, -\beta x + \alpha y).
\]

Then it can be easily seen that the set \(G = f(\mathbb{Q}^2) \) has the property that every horizontal or vertical line intersects it in at most one point. Hence \(\mathbb{R}^2 \setminus G \) is separately open. Since \(G \) is dense in \(\mathbb{R}^2 \) under the usual topology, \(\mathbb{R}^2 \setminus G \) cannot be obtained by adding points to an existing nonempty open set.

The following is a construction that can be generalized to other topological spaces. In the unit square \(I \times I \), where \(I = (0, 1) \), pick a countable base \(\mathcal{B} = \{B_1, B_2, \ldots \} \). Using induction, we shall first construct a dense countable set \(D \) that has at most one point in common with every horizontal and every vertical segment. (Such a set \(D \) is called a dense thin subset of \(I \times I \), see [11].) First, choose an arbitrary point \((x_1, y_1)\) of \(B_1 \). Suppose that for some natural number \(n \) we have already chosen \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) such that \((x_i, y_i) \in B_i \) and if \(i \neq j \), then \(x_i \neq x_j \) and \(y_i \neq y_j \). Since every set in \(\mathcal{B} \) is of cardinality \(\mathfrak{c} \), by the Pigeonhole Principle we can pick \((x_{n+1}, y_{n+1}) \in B_{n+1} \) such that \(x_{n+1} \neq x_i \) and \(y_{n+1} \neq y_i \) for \(i = 1, 2, \ldots, n \). Let \(D = \{(x_n, y_n) : n \in \mathbb{N}\} \). By construction, the set \(D \) is countable and dense. Now, let \(G = (I \times I) \setminus D \). It is easy to see that \(G \) is separately open. The above construction can be generalized to fairly general topological spaces, e.g., both spaces in the product being Baire spaces having countable \(\pi \)-weight. (For results on thin and very thin dense sets, see [10], [13], and [5].)

Finally, Hart and Kunen [6, Remark 2.2] give the following example. Let \(f: \mathbb{R} \to \mathbb{R} \) be a 1–1 function whose graph \(\Gamma \) is dense in the plane. Then \(\mathbb{R}^2 \setminus \Gamma \) is separately open. However, since \(\Gamma \) is dense in the plane, \(\mathbb{R}^2 \setminus \Gamma \) has an empty interior, so it cannot be derived by adding points to a nonempty open set.

Example 3. The Maltese Cross \(A \) is a \(G_\delta \) set in the Euclidean topology. If we let \(A_n = A \cup B_{1/n}(0,0) \), then each \(A_n \) is Euclidean open and \(\cap A_n = A \).

Theorem 1. If \(C \) is a separately open subset of \(\mathbb{R}^2 \) and is Euclidean open at all points except those in a set \(E \subset C \) that is a \(G_\delta \) set in the Euclidean topology, then \(C \) is a \(G_\delta \) set in the Euclidean topology.
Proof. Since E is a G_δ set, there is a countable collection of Euclidean open sets U_n such that $E = \cap U_n$. The set $C_n = C \cup U_n$ is Euclidean open for each n and $C = \cap C_n$. \qed

Question. The set E can be finite or in some cases countably infinite, but how far can we extend this exceptional set? Will any countable set do? What about a nowhere dense set?

It is not the case, though, that every separately open set is a Euclidean G_δ one.

Example 4. Let $S = \{(x, x) : x \in \mathbb{R} \setminus \mathbb{Q}\}$ and let $G = \mathbb{R}^2 \setminus S$. Then each x-section and each y-section is open in \mathbb{R} so G is separately open. However, G is not a Euclidean G_δ set because if it were, then $G \cap \{(x, x) : x \in \mathbb{R}\}$ would be a G_δ subset of the line $y = x$. This is impossible since this set is homeomorphic to \mathbb{Q}.

This example shows that it is not sufficient for the set E in Theorem 1 to be countable. We note that in this example the set $\mathbb{R} \setminus \mathbb{Q}$ could be replaced by any other subset of \mathbb{R} (G_δ or not, nor even Borel) and the resulting set G would be separately open. This shows that the cardinality of the collection of separately open sets in \mathbb{R}^2 is $2^\mathfrak{c}$, and since the cardinality of the collection of Borel subsets of \mathbb{R}^2 is \mathfrak{c}, there must exist separately open sets that are not Borel sets.

An interesting fact about the usual topology on \mathbb{R}^2 is that each open set can be expressed as the inverse image of an open set in \mathbb{R} under some continuous function. In particular, if $G \subset \mathbb{R}^2$ is open and $f(x)$ is the distance from x to $\mathbb{R}^2 \setminus G$, then $f^{-1}((0, \infty)) = G$.

Question. Is every separately open set in \mathbb{R}^2 the inverse image of an open set in \mathbb{R} under a separately continuous function?

The answer to this question is no, as can be seen by the following cardinality argument. The cardinality of $\{G \subset \mathbb{R} : G$ is open$\}$ is \mathfrak{c}, and since a separately continuous function on \mathbb{R}^2 is uniquely determined by its values on a dense subset (such as \mathbb{Q}^2) of \mathbb{R}^2 (see [14]), the cardinality of the set of separately continuous functions is \mathfrak{c}. Hence the cardinality of

$$\{f^{-1}(G) : G$ is open in $\mathbb{R} \text{ and } f : \mathbb{R}^2 \to \mathbb{R}$ is separately continuous$\}$$

is \mathfrak{c}. However, the cardinality of the collection of all separately open sets in \mathbb{R}^2 is $2^\mathfrak{c}$. It follows that most separately open sets in \mathbb{R}^2 cannot be expressed as the inverse image of an open set in \mathbb{R} under a separately continuous function.
3. Generalized separate oscillation

In this section we will assume that all spaces are Hausdorff.

Let Z be a topological space. A sequence $\{G_n : n \in \mathbb{N}\}$ of open covers of Z is called a development of Z if for each $z \in Z$ the set $\{st(z, G_n) : n \in \mathbb{N}\}$ is a base at z. A regular developable space is called a Moore space.

Further, a completely regular space Z is a p-space if and only if there exists a sequence $\{G_n : n \in \mathbb{N}\}$ of families of open subsets of βZ such that

1. each G_n covers Z;
2. for each $z \in Z$, $\cap \{st(z, G_n) : n \in \mathbb{N}\} \subset Z$.

The following term was introduced in [8]:

DEFINITION 3. We say that a topological space Z has the property (*) if there is a sequence $\{G_n : n \in \mathbb{N}\}$ of open covers of Z such that if $z \in G_n \in G_n$ for each n, and if W is an open set in Z that contains z, then $\cap \{G_j : 1 \leq j \leq n\} \subset W$ for some n.

In the class of completely regular spaces, p-spaces with a G_δ-diagonal coincide with spaces that have property (*). Also, every developable space has the property (*). (See [8] for additional information.)

Refining the generalized oscillation ω_f introduced in [8], we will now define a generalized separate oscillation ω_f^{sep} of $f : X \times Y \to Z$. Define the generalized separate oscillation ω_f^{sep} of f on the (U,V)-plus $P = P_{U,V}(p,q)$ by

$$\omega_f^{\text{sep}}(P) = \inf \left\{ \frac{1}{n} : n \in \mathbb{N}, \exists G \in G_n \text{ such that } f(P) \subset G \right\}.$$

The generalized oscillation ω_f^{sep} of f is defined by

$$\omega_f^{\text{sep}}(p,q) = \inf \left\{ \omega_f^{\text{sep}}(P) : P \in \mathcal{P}(p,q) \right\},$$

where $\mathcal{P}(p,q)$ stands for the collection of all (U,V)-pluses at (p,q).

4. An extension theorem

It is well-known [10, p. 422] that if f is a continuous function defined on a subset A of a metric space X with values in a complete metric space Y, then there exists a continuous extension f^* of f to a G_δ subset A^* of X. This motivates us to look for an analogous result for separately continuous functions defined on subsets of the Cartesian plane \mathbb{R}^2. To begin, let A be a subset of \mathbb{R}^2, and let f be a real-valued separately continuous function defined on A; that is, the restrictions of f to each horizontal and vertical section of A are continuous.
Call a point \(p \) a weak plus-accumulation point of \(A \) if \(p \) is an accumulation point of \(P_1(p) \cap A \) in the usual topology on \(\mathbb{R}^2 \). Call a point \(p = (x, y) \) a plus-accumulation point of \(A \) if \(p \) is an accumulation point of both \((\{x\} \times \mathbb{R}) \cap A \) and \((\mathbb{R} \times \{y\}) \cap A \) in the usual topology on \(\mathbb{R}^2 \). Let \(A^+ \) denote the set \(A \) together with all its plus-accumulation points. For each point \(p \) in \(A^+ \) define \(\omega^+(f, p) \), the separate oscillation of \(f \) at \(p \), to be the oscillation considered only over pluses at \(p \); that is,

\[
\omega^+(f, p) = \lim_{r \to 0} \sup \{ |f(q_1) - f(q_2)| : q_1, q_2 \in A \cap P_r(p) \}.
\]

(Notice that if \(p \) is an isolated point of \(A \), in the sense that \(P_r(p) \cap A = \{p\} \) for some \(r \), then \(\omega^+(f, p) = 0 \).) Let \(A^* \) be the set of points \(p \) in \(A^+ \) for which \(\omega^+(f, p) = 0 \). To each \(p = (x_0, y_0) \) in \(A^* \) assign the sequence \(\{p_n\} \) in \(A \) with \(p_n \to p \) and \(p_n = (x_n, y_n) \) or \(p_n = (x_n, y_0) \). Since \(\omega^+(f, p) = 0 \), we have

\[
\lim_{n \to \infty} \text{diam}\left(f\{p_n, p_{n+1}, \ldots \} \right) = 0.
\]

So \(\{f(p_n)\} \) is a Cauchy sequence whose limit we will denote as \(f^*(p) \). Then \(f^* \) is the extension of \(f \) to \(A^* \). Separate continuity follows directly from the fact that \(\omega^+(f^*, p) = 0 \). Hence we have the following:

Theorem 2. Let \(f : A \to \mathbb{R} \) be a separately continuous function where \(A \subset \mathbb{R}^2 \) and let \(A^* \) be as defined above. If \(A \) is a proper subset of \(A^* \), then \(f \) has a separately continuous extension to \(A^* \).

Remark 1. The statement of this theorem is far weaker than we would have liked, which would have been to say that \(A^* \) is a separately \(G_\delta \) set (that is, the intersection of a countable collection of separately open sets). While it is true that the set of points in \(A^+ \) where \(\omega^+(f^*, p) = 0 \) is the intersection of the sets

\[
A_n = \left\{ p \in A^+ : \omega^+(f^*, p) < \frac{1}{n} \right\},
\]

we cannot say that the sets \(A_n \) are separately open. For suppose \(p \in A_n \). To show that \(A_n \) is open, we would need to show that there is \(r > 0 \) such that \(P_r(p) \cap A^+ \) is contained in \(A_n \). However, for any \(r > 0 \) there may exist points \(q \) in \(P_r(p) \cap A^+ \) such that \(\omega^+(f^*, q) \geq 1/n \), simply because there are points from \(A \) that lie on a plus centered at \(q \) that do not lie on a plus centered at \(p \).

Even if all of the sets \(A_n \) were separately open, we still would not be able to say that \(f \) could be extended to a separately \(G_\delta \) set, because it is not clear that \(A^+ \) is a separately \(G_\delta \) set. While it is true that every horizontal and vertical section of a separately \(G_\delta \) subset of \(\mathbb{R}^2 \) is a \(G_\delta \) subset of \(\mathbb{R} \), the following question

1Separate oscillation and generalized separate oscillation (mentioned in the previous section) are related. However, the former is an extended real-valued function, while the latter is bounded above by 1.
remains: If every horizontal and vertical section of a subset A of \mathbb{R}^2 is a G_δ subset of \mathbb{R}, is A a separately G_δ set?

Upon examining the proof of the preceding theorem, one might think that instead of using plus accumulation points in the definition of A^+, we could have used weak plus accumulation points instead. The following example will show that this is not always possible.

Example 5. Let

$$f(p) = \begin{cases} 1 & \text{if } p \in \mathbb{Q} \times (\mathbb{Q} \setminus \{0\}); \\
0 & \text{if } p \in (\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q}), \end{cases}$$

and let

$$A = \left[\mathbb{Q} \times (\mathbb{Q} \setminus \{0\}) \right] \cup \left[(\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q}) \right].$$

Then f is separately continuous on A, because it is constant on each horizontal and each vertical section. Each point $p = (x,0)$ is a weak plus-accumulation point of A, and $\omega^+(p) = 0$. However, $f^*(p)$ will be either 0 or 1 depending on whether x is irrational or rational. Hence, f^* is not separately continuous on A^*.

The next example demonstrates a limitation on the above method used to obtain an extension.

Example 6. Let A be a countable dense subset of $(0,1)^2$ having at most one point in common with each horizontal and each vertical line. (The construction of such a set D is demonstrated in the text following Example 2.) Also, let B and C be disjoint subsets of A such that both B and C are dense in A and $A = B \cup C$. Now, consider the following two functions:

1. $f_1: A \rightarrow \mathbb{R}$, defined by $f_1(p) = 1$ for each $p \in A$, and
2. $f_2: A \rightarrow \mathbb{R}$, defined by $f_2(p) = 1$ for each $p \in B$ and $f_2(p) = -1$ for each $p \in C$.

Note that the extension function f_1^* is given by $f_1^*(p) = 1$ for each $p \in (0,1)^2$, but f_1^* cannot be obtained by the “sequence techniques” used above, because A has no plus-accumulation points. For the same reason, our technique does not extend f_2 continuously either.

The authors are grateful to the referee for supplying the previous example.

For abstract topological spaces, a corresponding result is Theorem 1.1 of [2].
5. Separation axioms

In this section we will discuss which separation axioms the plus topology satisfies. To distinguish between the space $X \times Y$ with the product topology and the space $X \times Y$ with the plus topology, we will denote the latter by $X \otimes Y$.

Henriksen and Woods [7] have shown that if each of X and Y has a countable π-weight and Y is a Baire space, then $X \otimes Y$ is not regular. A more explicit construction showing that $\mathbb{R} \otimes \mathbb{R}$ is not regular is provided by Hart and Kunen [6], where it is shown that if $D \subset \mathbb{R} \times \mathbb{R}$ is dense in the Tychonoff topology and can be viewed as the graph of a 1–1 function that is closed and discrete in the plus topology, then the non-regularity of $\mathbb{R} \otimes \mathbb{R}$ follows from Sierpinski’s theorem (see [6]), which asserts that every such separately open set is dense in the plus topology. Yet another construction showing the non-regularity of $\mathbb{R} \otimes \mathbb{R}$, based on the Baire Category theorem, was provided by Popvassilev [12].

The space $\mathbb{R} \otimes \mathbb{R}$ is clearly Hausdorff because its topology is stronger than the usual topology, which is Hausdorff. More generally, it is shown in [6] that $X \otimes Y$ is Hausdorff if and only if both X and Y are Hausdorff.

Similar arguments can be made for the properties Urysohn, completely Hausdorff, and strongly Hausdorff. A space X is Urysohn (see [15]) if for each pair of distinct points x and y in X there is a continuous function $f : X \to [0, 1]$ such that $f(x) = 0$ and $f(y) = 1$. The space $\mathbb{R} \otimes \mathbb{R}$ is Urysohn because \mathbb{R}^2 is Urysohn, and a continuous function on \mathbb{R}^2 is also continuous on $\mathbb{R} \otimes \mathbb{R}$.

A space X is completely Hausdorff (see [15]) if for each pair of distinct points x and y there exist disjoint open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$. If X is a Urysohn space, then it is completely Hausdorff. Hence, $\mathbb{R} \otimes \mathbb{R}$ is completely Hausdorff.

A Hausdorff space X is strongly Hausdorff (see [9]) if every infinite subset of X contains a sequence $\{x_n\}$ such that the terms x_n have pairwise disjoint neighborhoods in X. Again, since \mathbb{R}^2 is strongly Hausdorff and the plus topology is stronger than the usual topology, $\mathbb{R} \otimes \mathbb{R}$ is strongly Hausdorff as well; that is, a collection of pairwise disjoint neighborhoods in \mathbb{R}^2 is also a collection of pairwise disjoint neighborhoods in $\mathbb{R} \otimes \mathbb{R}$.

6. Other topological properties

Theorem 3. A neighborhood base for a point in $\mathbb{Q} \otimes \mathbb{Q}$ must be uncountable.

Proof. Suppose that $\{B_n\}$ is a countable neighborhood base of the point (x, y) in $\mathbb{Q} \otimes \mathbb{Q}$. We will construct inductively an open set G containing (x, y) such
that $B_n \not\subset G$ for each n. Let (x_1, y_1) be a point in $B_1 \setminus \{(x, y)\}$. Suppose that points $(x_1, y_1), (x_2, y_2), \ldots, (x_{n-1}, y_{n-1})$ different from (x, y) have been selected respectively from $B_1, B_2, \ldots, B_{n-1}$ so that no two of these points lie on the same horizontal or vertical line. Since B_n contains a plus centered at (x, y), there is a point (x_n, y) in B_n with $x_n \neq x_i$ for all $i = 1, 2, \ldots, n - 1$. Now B_n contains a plus centered at (x_n, y), so there is a point (x_n, y_n) in B_n with $y_n \neq y$ and $y_n \neq y_i$ for all $i = 1, 2, \ldots, n - 1$. Hence $(x_n, y_n) \in B_n \setminus \{(x, y)\}$ and (x_n, y_n) does not lie on any horizontal or vertical line containing (x_i, y_i) for any $i < n$. Now, $G = \mathbb{Q}^2 \setminus \{(x_n, y_n) : n \in \mathbb{N}\}$ is an open set and $B_n \not\subset G$ for each $n \in \mathbb{N}$. Hence, a neighborhood base of (x, y) cannot be countable.

\section*{Remark 2.} Since there are at most \mathfrak{c} subsets of \mathbb{Q}^2 and a neighborhood base of $\mathbb{Q} \otimes \mathbb{Q}$ must be uncountable, under the Continuum Hypothesis there must be exactly \mathfrak{c} open neighborhoods of a point.

In view of the above construction, the cardinality of the neighborhood base of $\mathbb{R} \otimes \mathbb{R}$ must be uncountable. In fact, a neighborhood base for a point in $\mathbb{R} \otimes \mathbb{R}$ must have $2^{\mathfrak{c}}$ elements. This is an immediate corollary of the following theorem (see also [18, p. 739]).

\section*{Theorem 4} ([6, Lemma 2.1, p. 105]). Suppose that X and Y are Hausdorff spaces, that $w(X) \leq \mathfrak{c}$, and that each non-empty open subset of X has size at least \mathfrak{c}. Suppose that there are disjoint countable sets $D_\alpha \subset X$ for $\alpha < \mathfrak{c}$ such that each D_α is dense in Y. Then,

$$\chi((p, q), X \otimes Y) \geq 2^\mathfrak{c} \quad \text{for all } (p, q) \in X \times Y.$$

(For a discussion of the weight $w(X)$ of a topological space X and the character $\chi(p, X)$ of a point in X, see [3, pp. 27–28].) Note that our Theorem 3 does not imply nor is implied by this result.

\section*{Remark 3.} A. V. A r h a n g e l s k i i [4] introduced a class of spaces, called p-spaces, in the following way: X is called a p-space (cf. [4, p. 444]) if there exists a sequence $\{G_n\}$ of open covers of X satisfying the following condition: For each $x \in X$ and each n, if G_n satisfies $x \in G_n \subset G_n$, then

1. $\cap_n G_n$ is compact, and
2. $\{\cap_{i \leq n} G_i : n \in \omega\}$ is an outer network for the set $\cap_n G_n$; that is, every open set containing $\cap_n G_n$ contains some $\cap_{i \leq n} G_i$.

The class of p-spaces is rather large; it contains all metric spaces and all Čech-complete spaces. In the same article [4], A r h a n g e l s k i i showed that if X is a p-space, $w(X) \leq \text{card}(X)$ (see [9], Remark, p. 10).

Obviously, $\text{card}(\mathbb{Q}^2) = \omega$, but we have just shown that $w(\mathbb{Q} \otimes \mathbb{Q})$ is uncountable. This proves that $\mathbb{Q} \otimes \mathbb{Q}$ is not a p-space.
Remark 4. It is natural to ask whether $\mathbb{Q} \otimes \mathbb{Q}$ is a regular space. In fact, it is. Recall (see [6]) that a σ-set is a separable metric space in which every F_σ set is also a G_δ set. Since every countable metric space (in particular, \mathbb{Q} is a σ-set and \mathbb{Q} is a countable non-discrete metric space, it follows from [6, Theorem 5.5, p. 118] that $\mathbb{Q} \otimes \mathbb{Q}$ is regular.

One of the cardinals used in set theory is the cardinal p (see [17, p. 115]). It is known [17, Theorem 3.1(a), p. 116] that $p \geq \omega_1$. It follows from [6, Corollary 5.8, p. 119] that $\mathbb{Q} \otimes \mathbb{Q}$ is normal and strongly 0-dimensional. (For a definition of strongly 0-dimensional, see [3, p. 443].) Of course, it would be nice to see an elementary proof of the normality of $\mathbb{Q} \otimes \mathbb{Q}$.

REFERENCES

ON THE SEPARATELY OPEN TOPOLOGY

Received September 22, 2007

Zbigniew Piotrowski
Eric Wingler
Department of Mathematics
Youngstown State University
Youngstown, OH 44555
U.S.A.
E-mail: zpiotr@math.ysu.edu
wingler@math.ysu.edu

Robert W. Vallin
Department of Mathematics
Slippery Rock University of PA
Slippery Rock, PA 16057
U.S.A.
E-mail: robert.vallin@sru.edu