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ON THE SEPARATELY OPEN TOPOLOGY

Zbigniew Piotrowski — Robert W. Vallin — Eric Wingler

ABSTRACT. We consider the relationship between separately continuous func-
tions and separately open sets, and we study the properties of the separately open
topology on R2 and on Q2. We show that R2 with this topology (denoted R⊗R)

is completely and strongly Hausdorff and that Q⊗Q is normal but not a p-space.
In addition, we show that each point of Q⊗Q has an uncountable neighborhood
base.

1. Introduction

This paper deals with two topologies on the space R2, the usual Euclidean
topology and the separately open (or plus) topology. In this paper we will com-
pare and contrast these topologies and the Gδ sets formed by each.

Let f be a function from R2 into R. We say that f is continuous with respect
to x (with respect to y) if the restricted function fy (x) = f (x, y), where y is fixed
(fx (y) = f (x, y), where x is fixed) is a continuous function from R into R. If f is
continuous with respect to both x and y, then f is called a separately continuous
function. The canonical example of a function that is separately continuous at
a point where it is not continuous, is

f (x, y) =

{ 2xy
x2+y2 , (x, y) �= (0, 0) ,

0, (x, y) = (0, 0) .
(∗)

Since f is not continuous at (0, 0), we know that there exist open intervals
I = (−a, a) such that f−1(I) is not an open Euclidean set in the plane. It is
natural to ask what such a set f−1(I) looks like. The answer is a separately open
set containing the origin.

���������� 1� The ε-plus at (a, b) of radius ε > 0 is

Pε (a, b) =
{
(x, b) ∈ R2 : |x− a| < ε

} ∪ {
(a, y) ∈ R2 : |y − b| < ε

}
.

(Note: We shall use Bε (a, b) to denote a Euclidean open ball about (a, b) .)
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More generally, if X and Y are topological spaces, (p, q) ∈ X ×Y , and U and
V are open neighborhoods of p and q, respectively, we define the (U, V )-plus at
(p, q) by

PU,V (p, q) =
{
(x, q) : x ∈ U

} ∪ {
(p, y) : y ∈ V

}
.

���������� 2� A set G ⊂ R2 is said to be separately open if for each point
(a, b) ∈ G there exists ε > 0 such that Pε (a, b) ⊂ G.

In general, the separately open topology is formed as follows: Let X1, X2, . . .
. . . , Xn be a finite collection of topological spaces and let X =

∏n
i=1Xi. We say

that S ⊂ X is separately open provided that for each x = (x1, x2, . . . , xn) ∈ S
and each i = 1, 2, . . . , n there is a neighborhood Ni of xi in Xi such that∏n

i=1Ai ⊂ S where Aj = {xj} when j �= i and Ai = Ni. For more informa-
tion, see [6] and [7].

2. Structure of separately open sets

It is obvious that Euclidean open sets are separately open. The following
example shows that the converse is not true.

Example 1. The Maltese Cross

A =
{
(0, 0)

} ∪ {
(x, y) ∈ R2 : |y| > |3x|} ∪

{
(x, y) ∈ R2 : |y| <

∣∣∣x
3

∣∣∣}

is a separately open, but not Euclidean open set.

The Maltese Cross has only one point (0, 0) where it is not open in the usual
sense; that is, it is the union of an open set with a singleton. Obviously, one can
quickly come up with a set with an infinite number of such points. For example,
let

A(0,0) = A ∩
[(

−1

2
,
1

2

)
×
(
−1

2
,
1

2

)]
,

and let A(i,j) = (i, j) + A(0,0) for each (i, j) ∈ Z2. Then ∪{A(i,j) : (i, j) ∈ Z2
}

is separately open, but each point (i, j) ∈ Z2 lies outside of the (Euclidean)
interior.

Example 2. Another example of a separately open set that is not Euclidean
open was given by P o p v a s s i l e v [12]. Remove any circle from the plane letting
one point P of this circle remain. The remaining set is separately open, but P
is not in the (Euclidean) interior.
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These routine examples motivate us to ask the following question: Where can
these points of “essential” separate openness occur; that is, can a nonempty
separately open set be constructed in a way different from adding points to an
existing nonempty open set?

The answer to this question is yes. We mention here a few ways to show this.
One of the easiest examples to construct is the following: Let α and β be real
numbers such that

α2 + β2 = 1 and
α

β
�∈ Q,

and let f be the rotation defined by

f(x, y) = (αx+ βy,−βx+ αy).

Then it can be easily seen that the set G = f(Q2) has the property that every
horizontal or vertical line intersects it in at most one point. Hence R2 \ G is
separately open. Since G is dense in R2 under the usual topology, R2 \G cannot
be obtained by adding points to an existing nonempty open set.

The following is a construction that can be generalized to other topological
spaces. In the unit square I × I, where I = (0, 1), pick a countable base B =
{B1, B2, . . . }. Using induction, we shall first construct a dense countable set D
that has at most one point in common with every horizontal and every vertical
segment. (Such a set D is called a dense thin subset of I × I, see [11].) First,
choose an arbitrary point (x1, y1) of B1. Suppose that for some natural number n
we have already chosen (x1, y1), (x2, y2), . . . , (xn, yn) such that (xi, yi) ∈ Bi and
if i �= j, then xi �= xj and yi �= yj. Since every set in B is of cardinality c, by
the Pigeonhole Principle we can pick (xn+1, yn+1) ∈ Bn+1 such that xn+1 �= xi

and yn+1 �= yi for i = 1, 2, . . . , n. Let D =
{
(xn, yn) : n ∈ N

}
. By construction,

the set D is countable and dense. Now, let G = (I × I) \ D. It is easy to
see that G is separately open. The above construction can be generalized to
fairly general topological spaces, e.g., both spaces in the product being Baire
spaces having countable π-weight. (For results on thin and very thin dense sets,
see [16], [13], and [5].)

Finally, H a r t and K u n e n [6, Remark 2.2] give the following example. Let
f : R → R be a 1–1 function whose graph Γ is dense in the plane. Then R2 \ Γ
is separately open. However, since Γ is dense in the plane, R2 \ Γ has an empty
interior, so it cannot be derived by adding points to a nonempty open set.

Example 3. The Maltese Cross A is a Gδ set in the Euclidean topology. If we
let An = A ∪B1/n (0, 0), then each An is Euclidean open and ∩An = A.

	
����� 1� If C is a separately open subset of R2 and is Euclidean open at
all points except those in a set E ⊂ C that is a Gδ set in the Euclidean topology,
then C is a Gδ set in the Euclidean topology.
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P r o o f. Since E is a Gδ set, there is a countable collection of Euclidean open
sets Un such that E = ∩Un. The set Cn = C ∪ Un is Euclidean open for each n
and C = ∩Cn. �

Question� The set E can be finite or in some cases countably infinite, but how
far can we extend this exceptional set? Will any countable set do? What about
a nowhere dense set?

It is not the case, though, that every separately open set is a EuclideanGδ one.

Example 4. Let S =
{
(x, x) : x ∈ R \ Q

}
and let G = R2 \ S. Then each

x-section and each y-section is open in R so G is separately open. However, G
is not a Euclidean Gδ set because if it were, then G ∩ {

(x, x) : x ∈ R
}
would be

a Gδ subset of the line y = x. This is impossible since this set is homeomorphic
to Q.

This example shows that it is not sufficient for the set E in Theorem 1 to
be countable. We note that in this example the set R \ Q could be replaced
by any other subset of R (Gδ or not, nor even Borel) and the resulting set G
would be separately open. This shows that the cardinality of the collection of
separately open sets in R2 is 2c, and since the cardinality of the collection of
Borel subsets of R2 is c, there must exist separately open sets that are not Borel
sets.

An interesting fact about the usual topology on R2 is that each open set can
be expressed as the inverse image of an open set in R under some continuous
function. In particular, if G ⊂ R2 is open and f(x) is the distance from x to
R2 \G, then f−1

(
(0,∞)

)
= G.

Question� Is every separately open set in R2 the inverse image of an open set
in R under a separately continuous function?

The answer to this question is no, as can be seen by the following cardinality
argument. The cardinality of {G ⊂ R : G is open} is c, and since a separately
continuous function on R2 is uniquely determined by its values on a dense subset
(such as Q2) of R2 (see [14]), the cardinality of the set of separately continuous
functions is c. Hence the cardinality of{

f−1(G) : G is open in R and f : R2 → R is separately continuous
}

is c. However, the cardinality of the collection of all separately open sets in R2

is 2c. It follows that most separately open sets in R2 cannot be expressed as the
inverse image of an open set in R under a separately continuous function.
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3. Generalized separate oscillation

In this section we will assume that all spaces are Hausdorff.

Let Z be a topological space. A sequence {Gn : n ∈ N} of open covers of Z is
called a development of Z if for each z ∈ Z the set

{
st(z,Gn) : n ∈ N

}
is a base

at z. A regular developable space is called a Moore space.

Further, a completely regular space Z is a p-space if and only if there exists
a sequence {Gn : n ∈ N} of families of open subsets of βZ such that

(1) each Gn covers Z;

(2) for each z ∈ Z, ∩{st(z,Gn) : n ∈ N} ⊂ Z.

The following term was introduced in [8]:

���������� 3� We say that a topological space Z has the property (*) if there is
a sequence {Gn : n ∈ N} of open covers of Z such that if z ∈ Gn ∈ Gn for each n,
and if W is an open set in Z that contains z, then ∩{Gj : 1 ≤ j ≤ n} ⊂ W for
some n.

In the class of completely regular spaces, p-spaces with a Gδ-diagonal coin-
cide with spaces that have property (*). Also, every developable space has the
property (*). (See [8] for additional information.)

Refining the generalized oscillation ωf introduced in [8], we will now define
a generalized separate oscillation ωsep

f of f : X × Y → Z. Define the generalized

separate oscillation ωsep
f of f on the (U, V )-plus P = PU,V (p, q) by

ωsep
f (P ) = inf

{
1

n
: n ∈ N, ∃G ∈ Gn such that f(P ) ⊂ G

}
.

The generalized oscillation ωsep
f of f is defined by

ωsep
f (p, q) = inf

{
ωsep
f (P ) : P ∈ P(p, q)

}
,

where P(p, q) stands for the collection of all (U, V )-pluses at (p, q).

4. An extension theorem

It is well-known [10, p. 422] that if f is a continuous function defined on
a subset A of a metric space X with values in a complete metric space Y, then
there exists a continuous extension f∗ of f to aGδ subset A

∗ ofX. This motivates
us to look for an analogous result for separately continuous functions defined
on subsets of the Cartesian plane R2. To begin, let A be a subset of R2, and
let f be a real-valued separately continuous function defined on A; that is, the
restrictions of f to each horizontal and vertical section of A are continuous.
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Call a point p a weak plus-accumulation point ofA if p is an accumulation point of
P1(p)∩A in the usual topology on R2. Call a point p = (x, y) a plus-accumulation
point of A if p is an accumulation point of both

({x}×R
)∩A and

(
R×{y})∩A

in the usual topology on R2. Let A+ denote the set A together with all its
plus-accumulation points. For each point p in A+ define ω+(f, p), the separate
oscillation1 of f at p, to be the oscillation considered only over pluses at p;
that is,

ω+(f, p) = lim
r→0

sup
{|f(q1)− f(q2)| : q1, q2 ∈ A ∩ Pr(p)

}
.

(Notice that if p is an isolated point of A, in the sense that Pr(p) ∩ A = {p}
for some r, then ω+(f, p) = 0.) Let A∗ be the set of points p in A+ for which
ω+(f, p) = 0. To each p = (x0, y0) in A∗ assign the sequence {pn} in A with
pn → p and pn = (x0, yn) or pn = (xn, y0). Since ω+(f, p) = 0, we have

lim
n→∞ diam

(
f
({pn, pn+1, . . . }

))
= 0.

So
{
f (pn)

}
is a Cauchy sequence whose limit we will denote as f∗(p). Then f∗

is the extension of f to A∗. Separate continuity follows directly from the fact
that ω+(f∗, p) = 0. Hence we have the following:

	
����� 2� Let f : A → R be a separately continuous function where A ⊂ R2

and let A∗ be as defined above. If A is a proper subset of A∗, then f has a sepa-
rately continuous extension to A∗.

Remark 1� The statement of this theorem is far weaker than we would have
liked, which would have been to say that A∗ is a separately Gδ set (that is, the
intersection of a countable collection of separately open sets). While it is true
that the set of points in A+ where ω+(f∗, p) = 0 is the intersection of the sets

An =

{
p ∈ A+ : ω+(f∗, p) <

1

n

}
,

we cannot say that the sets An are separately open. For suppose p ∈ An. To
show that An is open, we would need to show that there is r > 0 such that
Pr(p) ∩A+ is contained in An. However, for any r > 0 there may exist points q
in Pr(p) ∩ A+ such that ω+(f∗, q) ≥ 1/n, simply because there are points from
A that lie on a plus centered at q that do not lie on a plus centered at p.

Even if all of the sets An were separately open, we still would not be able
to say that f could be extended to a separately Gδ set, because it is not clear
that A+ is a separately Gδ set. While it is true that every horizontal and vertical
section of a separately Gδ subset of R

2 is a Gδ subset of R, the following question

1Separate oscillation and generalized separate oscillation (mentioned in the previous section)
are related. However, the former is an extended real-valued function, while the latter is bounded
above by 1.
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remains: If every horizontal and vertical section of a subset A of R2 is a Gδ subset
of R, is A a separately Gδ set?

Upon examining the proof of the preceding theorem, one might think that
instead of using plus accumulation points in the definition of A+, we could have
used weak plus accumulation points instead. The following example will show
that this is not always possible.

Example 5. Let

f(p) =

{
1 if p ∈ Q× (

Q \ {0});
0 if p ∈ (R \Q)× (R \Q),

and let

A =
[
Q× (

Q \ {0})] ∪ [
(R \Q)× (R \Q)

]
.

Then f is separately continuous on A, because it is constant on each horizontal
and each vertical section. Each point p = (x, 0) is a weak plus-accumulation
point of A, and ω+(p) = 0. However, f∗(p) will be either 0 or 1 depending
on whether x is irrational or rational. Hence, f∗ is not separately continuous
on A∗.

The next example demonstrates a limitation on the above method used to
obtain an extension.

Example 6. Let A be a countable dense subset of (0, 1)2 having at most one
point in common with each horizontal and each vertical line. (The construction
of such a set D is demonstrated in the text following Example 2.) Also, let B
and C be disjoint subsets of A such that both B and C are dense in A and
A = B ∪ C. Now, consider the following two functions:

(1) f1 : A → R, defined by f1(p) = 1 for each p ∈ A, and

(2) f2 : A → R, defined by f2(p) = 1 for each p ∈ B and f2(p) = −1 for each
p ∈ C.

Note that the extension function f∗
1 is given by f∗

1 (p) = 1 for each p ∈ (0, 1)2,
but f∗

1 cannot be obtained by the “sequence techniques” used above, because A
has no plus-accumulation points. For the same reason, our technique does not
extend f2 continuously either.

The authors are grateful to the referee for supplying the previous example.

For abstract topological spaces, a corresponding result is Theorem 1.1 of [2].
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5. Separation axioms

In this section we will discuss which separation axioms the plus topology
satisfies. To distinguish between the space X×Y with the product topology and
the space X × Y with the plus topology, we will denote the latter by X ⊗ Y .

H e n r i k s e n and W o o d s [7] have shown that if each of X and Y has
a countable π-weight and Y is a Baire space, then X ⊗Y is not regular. A more
explicit construction showing that R ⊗ R is not regular is provided by H a r t
and K u n e n [6], where it is shown that if D ⊂ R×R is dense in the Tychonoff
topology and can be viewed as the graph of a 1–1 function that is closed and
discrete in the plus topology, then the non-regularity of R ⊗ R follows from
Sierpinski’s theorem (see [6]), which asserts that every such separately open
set is dense in the plus topology. Yet another construction showing the non-
regularity of R ⊗ R, based on the Baire Category theorem, was provided by
P o p v a s s i l e v [12].

The space R ⊗ R is clearly Hausdorff because its topology is stronger than
the usual topology, which is Hausdorff. More generally, it is shown in [6] that
X ⊗ Y is Hausdorff if and only if both X and Y are Hausdorff.

Similar arguments can be made for the properties Urysohn, completely Haus-
dorff, and strongly Hausdorff. A space X is Urysohn (see [15]) if for each pair of
distinct points x and y in X there is a continuous function f : X → [0, 1] such
that f(x) = 0 and f(y) = 1. The space R⊗R is Urysohn because R2 is Urysohn,
and a continuous function on R2 is also continuous on R⊗ R.

A spaceX is completely Hausdorff (see [15]) if for each pair of distinct points x
and y there exist disjoint open sets U and V such that x ∈ U , y ∈ V, and
U ∩ V = ∅. If X is a Urysohn space, then it is completely Hausdorff. Hence,
R⊗ R is completely Hausdorff.

A Hausdorff space X is strongly Hausdorff (see [9]) if every infinite subset
of X contains a sequence {xn} such that the terms xn have pairwise disjoint
neighborhoods in X. Again, since R2 is strongly Hausdorff and the plus topology
is stronger than the usual topology, R⊗R is strongly Hausdorff as well; that is, a
collection of pairwise disjoint neighborhoods in R2 is also a collection of pairwise
disjoint neighborhoods in R⊗ R.

6. Other topological properties

	
����� 3� A neighborhood base for a point in Q⊗Q must be uncountable.

P r o o f. Suppose that {Bn} is a countable neighborhood base of the point (x, y)
in Q ⊗ Q. We will construct inductively an open set G containing (x, y) such
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that Bn �⊂ G for each n. Let (x1, y1) be a point in B1 \
{
(x, y)

}
. Suppose that

points (x1, y1), (x2, y2), . . . , (xn−1, yn−1) different from (x, y) have been selected
respectively from B1, B2, . . . , Bn−1 so that no two of these points lie on the
same horizontal or vertical line. Since Bn contains a plus centered at (x, y), there
is a point (xn, y) in Bn with xn �= x such that xn �= xi for all i = 1, 2, . . . , n− 1.
Now Bn contains a plus centered at (xn, y), so there is a point (xn, yn) in Bn

with yn �= y and yn �= yi for all i = 1, 2, . . . , n−1. Hence (xn, yn) ∈ Bn \
{
(x, y)

}
and (xn, yn) does not lie on any horizontal or vertical line containing (xi, yi) for
any i < n. Now, G = Q2 \ {

(xn, yn) : n ∈ N
}
is an open set and Bn �⊂ G for

each n ∈ N. Hence, a neighborhood base of (x, y) cannot be countable. �

Remark 2� Since there are at most c subsets of Q2 and a neighborhood base
of Q⊗Q must be uncountable, under the Continuum Hypothesis there must be
exactly c open neighborhoods of a point.

In view of the above construction, the cardinality of the neighborhood base
of R⊗R must be uncountable. In fact, a neighborhood base for a point in R⊗R

must have 2c elements. This is an immediate corollary of the following theorem
(see also [18, p. 739]).

	
����� 4 ([6, Lemma 2.1, p. 105])� Suppose that X and Y are Hausdorff
spaces, that w(X) ≤ c, and that each non-empty open subset of X has size at
least c. Suppose that there are disjoint countable sets Dα ⊂ Y for α < c such
that each Dα is dense in Y. Then,

χ
(
(p, q), X ⊗ Y

) ≥ 2c for all (p, q) ∈ X × Y.

(For a discussion of the weight w(X) of a topological space X and the char-
acter χ(p,X) of a point in X, see [3, pp. 27–28].) Note that our Theorem 3 does
not imply nor is implied by this result.

Remark 3� A. V. A r h a n g e l’ s k i ı̆ [1] introduced a class of spaces, called p-
spaces, in the following way: X is called a p-space (cf. [4, p. 444]) if there exists
a sequence {Gn} of open covers of X satisfying the following condition: For each
x ∈ X and each n, if Gn satisfies x ∈ Gn ∈ Gn, then

(1) ∩nGn is compact, and

(2)
{∩i≤nGi : n ∈ ω

}
is an outer network for the set ∩nGn; that is, every

open set containing ∩nGn contains some ∩i≤nGi.

The class of p-spaces is rather large; it contains all metric spaces and all
Čech-complete spaces. In the same article [1], A r h a n g e l’ s k i ı̆ showed that
if X is a p-space, w(X) ≤ card(X) (see [9], Remark, p. 10).

Obviously, card(Q2) = ω, but we have just shown that w(Q⊗Q) is uncount-
able. This proves that Q⊗Q is not a p-space.
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Remark 4� It is natural to ask whether Q⊗Q is a regular space. In fact, it is.
Recall (see [6]) that a σ-set is a separable metric space in which every Fσ set
is also a Gδ set. Since every countable metric space (in particular, Q is a σ-set
and Q is a countable non-discrete metric space, it follows from [6, Theorem 5.5,
p. 118] that Q⊗Q is regular.

One of the cardinals used in set theory is the cardinal p (see [17, p. 115]). It is
known [17, Theorem 3.1(a), p. 116] that p ≥ ω1. It follows from [6, Corollary 5.8,
p. 119] that Q ⊗ Q is normal and strongly 0-dimensional. (For a definition of
strongly 0-dimensional, see [3, p. 443].) Of course, it would be nice to see an
elementary proof of the normality of Q⊗Q.
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