PRODUCT OF M-MEASURES

Petra Mazureková - Jozefína Petrovičová - Beloslav Riečan

Abstract

M\)-measures have been introduced as a useful tool for probability theory on IF-events. We deal with the product of M-measures, a notion which is important for the construction of a joint observable - an analogue of a random vector in the Kolmogorov theory.

It is well-known that, in probability theory, the σ-additivity plays a key role. It can be expressed as a conjunction of continuity and additivity:

$$
P(A)+P(B)=P(A \cap B)+P(A \cup B), \quad A, B \subset \Omega
$$

Of course, if instead of (crisp) sets, we consider fuzzy sets (i.e., functions $f: \Omega \longrightarrow[0,1])$, then some operations with fuzzy sets, instead of sets, will be considered. In [1], IF-sets, i.e., pairs

$$
A=\left(\mu_{A}, \nu_{A}\right), \quad \mu_{A}, \nu_{A}: \Omega \longrightarrow<0,1>, \quad \mu_{A}+\nu_{A} \leq 1,
$$

are considered. If \mathcal{F} is a set of IF-sets, then the probability can be regarded as a mapping

$$
m: \mathcal{F} \longrightarrow[0,1] .
$$

The second important concept of probability theory is the notion of a random variable. It is a measurable mapping

$$
\xi: \Omega \longrightarrow R_{1}
$$

(if A is a Borel set, then $\xi^{-1}(A) \in \mathcal{S}$, where \mathcal{S} is a given σ-algebra of subsets of Ω). In the IF-probability theory instead of random variables, the so-called observables

$$
x: \mathcal{B}(R) \longrightarrow \mathcal{F}
$$

are considered. For $C \in \mathcal{B}(R)$ we denote

$$
x(C)=\left(x^{b}(C), 1-x^{\sharp}(C)\right) \in \mathcal{F} .
$$

Then the mappings

$$
x^{b}, x^{\sharp}: \mathcal{B}(R) \longrightarrow[0,1]
$$

[^0]
PETRA MAZUREKOVÁ - JOZEFÍNA PETROVIČOVÁ - BELOSLAV RIEČAN

have nice properties leading to the notion of an M-measure (see Definition 1).
In the present paper we deal with the existence of products of M-measures. It is motivated by the construction of a joint observable - an analogue of a random vector in the Kolmogorov theory. In Theorem 4 we construct a product of two M-measures defined on σ-algebras, our main result.

Definition 1. Let \mathcal{R} be an algebra of subsets of a set Ω. A mapping $\mu: \mathcal{R} \rightarrow[0,1]$ is called an M-measure if the following properties are satisfied:
(i) $\mu(\Omega)=1, \mu(\emptyset)=0$;
(ii) $\mu(A \cup B)=\mu(A) \vee \mu(B), \mu(A \cap B)=\mu(A) \wedge \mu(B)$ for any $A, B \in \mathcal{R}$;
(iii) $A_{n} \nearrow A, B_{n} \searrow B, A_{n}, B_{n}, A, B \in \mathcal{R} \Longrightarrow \mu\left(A_{n}\right) \nearrow \mu(A), \mu\left(B_{n}\right) \searrow \mu(B)$.

Theorem 2. For every M-measure μ defined on an algebra \mathcal{R} there exists exactly one M-measure $\bar{\mu}$ on $\sigma(\mathcal{R})$ extending μ.

Proof. See [3].
Definition 3. Let \mathcal{C} be a family of subsets of Ω. We say that \mathcal{C} is a compact family if for every sequence $\left(C_{n}\right)_{n} \subset \mathcal{C}$ the following implication holds:

$$
\left(\forall n: \bigcap_{i=1}^{n} C_{i} \neq \emptyset\right) \Longrightarrow \bigcap_{i=1}^{\infty} C_{i} \neq \emptyset .
$$

A mapping $\lambda: \mathcal{R} \longrightarrow[0,1]$ is called compact if there exists a compact family \mathcal{C} such that to every $A \in \mathcal{R}$ and every $\varepsilon>0$

$$
B \in \mathcal{R}, C \in \mathcal{C}, B \subset C \subset A \quad \text { with } \quad \lambda(A \backslash B)<\varepsilon
$$

Theorem 4. Let $(\Omega, \mathcal{S}, \mu),(Y, \mathcal{T}, \nu)$ be two spaces with compact M-measures, where $\mu: \mathcal{S} \longrightarrow[0,1]$ and $\nu: \mathcal{T} \longrightarrow[0,1]$. Then there exists exactly one M-measure $\bar{\kappa}: \sigma(\mathcal{R})=\mathcal{S} \otimes \mathcal{T} \longrightarrow[0,1]$ such that

$$
\bar{\kappa}(A \times B)=\mu(A) \wedge \nu(B) \quad \text { for all } \quad A \in \mathcal{S}, B \in \mathcal{T}
$$

Proof. Let \mathcal{R} be an algebra of all sets of the form

$$
\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)
$$

where

$$
n \in N, A_{i} \in \mathcal{S}, B_{i} \in \mathcal{T}, \quad \text { and } \quad\left(A_{i} \times B_{i}\right) \cap\left(A_{j} \times B_{j}\right)=\emptyset \quad \text { for } \quad i \neq j
$$

Since the operations $a \vee b=\max (a, b)$ and $a \wedge b=\min (a, b)$ satisfy the distributive law, the expression

$$
\bigvee_{i=1}^{n}\left(\mu\left(A_{i}\right) \wedge \nu\left(B_{i}\right)\right)
$$

does not depend on the choice of A_{i} and B_{i}. Therefore, we can define

$$
\kappa\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)\right)=\bigvee_{i=1}^{n}\left(\mu\left(A_{i}\right) \wedge \nu\left(B_{i}\right)\right)
$$

This way we obtain a mapping $\kappa: \mathcal{R} \rightarrow[0,1]$. Moreover,

$$
\begin{equation*}
\kappa(A \times B)=\mu(A) \wedge \nu(B) \tag{1}
\end{equation*}
$$

We shall prove that κ is an M-measure. Evidently,

$$
\begin{aligned}
\kappa(X \times Y) & =\mu(X) \wedge \nu(Y)=1 \wedge 1=1, \\
\kappa(\emptyset) & =\mu(\emptyset) \wedge \nu(\emptyset)=0 .
\end{aligned}
$$

Further,

$$
\begin{aligned}
& \kappa(A \cup B) \\
& =\kappa\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right) \cup \bigcup_{j=1}^{m}\left(C_{j} \times D_{j}\right)\right)=\kappa\left(\bigcup_{i=1}^{n} \bigcup_{j=1}^{m}\left(A_{i} \times B_{i}\right) \cup\left(C_{j} \times D_{j}\right)\right) \\
& =\kappa\left(\bigcup_{i=1}^{n} \bigcup_{j=1}^{m}\left(\left(A_{i} \backslash C_{j}\right) \times B_{i}\right) \cup\left(\left(A_{i} \cap C_{j}\right) \times\left(B_{i} \cup D_{j}\right)\right) \cup\left(\left(C_{j} \backslash A_{i}\right) \times D_{j}\right)\right) \\
& =\bigvee_{i=1}^{n} \bigvee_{j=1}^{m}\left(\mu\left(A_{i} \backslash C_{j}\right) \wedge \nu\left(B_{i}\right)\right) \vee\left(\mu\left(A_{i} \cap C_{j}\right) \wedge \nu\left(B_{i} \cup D_{j}\right)\right) \vee\left(\mu\left(C_{j} \backslash A_{i}\right) \wedge \nu\left(D_{j}\right)\right) \\
& \left.=\bigvee_{i=1}^{n} \bigvee_{j=1}^{m}\left(\mu\left(A_{i}\right) \wedge \nu\left(B_{i}\right)\right) \vee\left(\mu\left(C_{j}\right) \wedge \nu(D) j\right)\right) \\
& = \\
& \\
& \kappa(A) \vee \kappa(B) .
\end{aligned}
$$

Similarly,

$$
\kappa(A \cap B)=\kappa(A) \wedge \kappa(B) \quad \text { for all } \quad A, B \in \mathcal{R}
$$

Now, we shall prove

$$
\begin{equation*}
A_{n} \in \mathcal{R}(n=1,2, \ldots), \quad A_{n} \searrow \emptyset \Longrightarrow \kappa\left(A_{n}\right) \searrow 0 . \tag{2}
\end{equation*}
$$

Since μ, ν are compact M-measures, there exist compact families $\mathcal{K}_{1} \subset 2^{X}$, $\mathcal{K}_{2} \subset 2^{Y}$ such that

$$
\forall A \in \mathcal{S} \quad \forall \varepsilon>0 \quad \exists E \in \mathcal{S}, \quad C \in \mathcal{K}_{1}, \quad E \subset C \subset A, \quad \mu(A \backslash E)<\varepsilon
$$

and

$$
\forall B \in \mathcal{T} \quad \forall \varepsilon>0 \quad \exists F \in \mathcal{T}, \quad D \in \mathcal{K}_{2}, \quad F \subset D \subset B, \quad \nu(B \backslash F)<\varepsilon
$$

PETRA MAZUREKOVÁ - JOZEFÍNA PETROVIČOVÁ - BELOSLAV RIEČAN

Denote

$$
\mathcal{K}=\left\{C ; \quad C=\bigcup_{i=1}^{n}\left(C_{i} \times D_{i}\right), \quad n \in N, \quad C_{i} \in \mathcal{K}_{1}, \quad D_{i} \in \mathcal{K}_{2}\right\}
$$

First, we show that

$$
\begin{equation*}
\forall \varepsilon>0 \quad \forall A \in \mathcal{R} \quad \exists B \in \mathcal{R}, \quad C \in \mathcal{K}, \quad B \subset C \subset A, \quad \kappa(A \backslash B)<\varepsilon \tag{3}
\end{equation*}
$$

Let $A=\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right), A_{i} \in \mathcal{S}, B_{i} \in \mathcal{T}(i=1,2, \ldots, n)$.
Since μ, ν are compact M-measures, then $\exists H_{i} \in \mathcal{K}_{1}, E_{i} \in \mathcal{S}$ such that

$$
E_{i} \subset H_{i} \subset A_{i}, \quad \mu\left(A_{i} \backslash E_{i}\right)<\varepsilon \quad \text { and } \quad \exists G_{i} \in \mathcal{K}_{2}, F_{i} \in \mathcal{S}
$$

such that

$$
F_{i} \subset G_{i} \subset B_{i}, \quad \nu\left(B_{i} \backslash F_{i}\right)<\varepsilon
$$

Put

$$
C=\bigcup_{i=1}^{n}\left(H_{i} \times G_{i}\right), \quad B=\bigcup_{j=1}^{n}\left(E_{j} \times F_{j}\right)
$$

and

$$
C \subset B \subset A
$$

Then,

$$
\begin{aligned}
\kappa(A \backslash B) & =\kappa\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right) \backslash \bigcup_{j=1}^{n}\left(E_{j} \times F_{j}\right)\right) \\
& =\kappa\left(\bigcup_{i=1}^{n}\left(\left(A_{i} \backslash E_{i}\right) \times B_{i}\right) \cup \bigcup_{j=1}^{n}\left(A_{j} \times\left(B_{j} \backslash F_{j}\right)\right)\right) \\
& =\bigvee_{i=1}^{n}\left(\mu\left(A_{i} \backslash E_{i}\right) \wedge \nu\left(B_{i}\right)\right) \vee \bigvee_{j=1}^{n}\left(\mu\left(A_{j}\right) \wedge \nu\left(B_{j} \backslash F_{j}\right)\right) \\
& \leq \bigvee_{i=1}^{n} \mu\left(A_{i} \backslash E_{i}\right) \vee \bigvee_{j=1}^{n} \nu\left(B_{j} \backslash F_{j}\right)<\varepsilon .
\end{aligned}
$$

Now return to the sequence $\left(A_{n}\right), A_{n} \in \mathcal{R}, A_{n} \searrow \emptyset$.
Using (33) we construct

$$
B_{n} \in \mathcal{R}, \quad C_{n} \in \mathcal{K}, \quad B_{n} \subset C_{n} \subset A_{n}, \quad \kappa\left(A_{n} \backslash B_{n}\right)<\varepsilon .
$$

Putting

$$
D_{n}=\bigcap_{i=1}^{n} C_{i}, \quad C_{i} \in \mathcal{K} .
$$

We get

$$
\bigcap_{n=1}^{\infty} D_{n} \subset \bigcap_{n=1}^{\infty} A_{n}=\emptyset .
$$

Since \mathcal{K} is a compact family, there exists m such that

$$
\bigcap_{i=1}^{m} B_{i} \subset D_{m}=\bigcap_{i=1}^{m} C_{i}=\emptyset
$$

We have

$$
\begin{aligned}
\kappa\left(A_{m}\right) & =\kappa\left(A_{m} \backslash \bigcap_{i=1}^{m} B_{i}\right) \\
& =\kappa\left(\bigcup_{i=1}^{m}\left(A_{m} \backslash B_{i}\right)\right) \\
& \leq \kappa\left(\bigcup_{i=1}^{m}\left(A_{i} \backslash B_{i}\right)\right) \\
& =\bigvee_{i=1}^{m} \kappa\left(A_{i} \backslash B_{i}\right)<\varepsilon .
\end{aligned}
$$

Further

$$
\kappa\left(A_{n}\right) \leq \kappa\left(A_{m}\right)<\varepsilon \quad \text { for any } \quad n \geq m
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \kappa\left(A_{n}\right)=0
$$

Now if

$$
B_{n} \in \mathcal{R}, B_{n} \nearrow B, B \in \mathcal{R}, \quad \text { then } \quad B \backslash B_{n} \searrow \emptyset
$$

and hence

$$
\begin{aligned}
\kappa(B) & =\kappa\left(\left(B \backslash B_{n}\right) \cup B_{n}\right) \\
& =\kappa\left(B \backslash B_{n}\right) \vee \kappa\left(B_{n}\right) \\
& \leq \kappa\left(B \backslash B_{n}\right) \vee \bigvee_{i=1}^{\infty} \kappa\left(B_{i}\right) .
\end{aligned}
$$

Therefore,

$$
\kappa(B) \leq \lim _{n \rightarrow \infty} \kappa\left(B \backslash B_{n}\right) \vee\left(\bigvee_{i=1}^{\infty} \kappa\left(B_{i}\right)\right)=\bigvee_{i=1}^{\infty} \kappa\left(B_{i}\right) \leq \kappa(B)
$$

and hence

$$
\kappa(B)=\lim _{i \rightarrow \infty} \kappa\left(B_{i}\right)
$$

PETRA MAZUREKOVÁ - JOZEFÍNA PETROVIČOVÁ - BELOSLAV RIEČAN

On the other hand, $C_{n} \searrow C$ implies $C_{n} \backslash C \searrow \emptyset$,

$$
\begin{aligned}
\kappa\left(C_{n}\right) & =\kappa\left(\left(C_{n} \backslash C\right) \vee C\right)=\kappa\left(C_{n} \backslash C\right) \vee \kappa(C), \\
\bigwedge_{n=1}^{\infty} \kappa\left(C_{n}\right) & =\left(\bigwedge_{n=1}^{\infty} \kappa\left(C_{n} \backslash C\right)\right) \vee \kappa(C)=0 \vee \kappa(C)=\kappa(C) .
\end{aligned}
$$

We have proved that $\kappa: \mathcal{R} \rightarrow[0,1]$ is an M-measure. By Theorem 1.2 there exists exactly one M-measure $\bar{\kappa}: \sigma(\mathcal{R}) \rightarrow[0,1]$ such that $\bar{\kappa} \mid \mathcal{R}=\kappa$.

By (11) we have

$$
\bar{\kappa}(A \times B)=\mu(A) \wedge \nu(B) \quad \text { for } \quad A \times B \in \mathcal{R}
$$

Fix B and put

$$
\mathcal{L}=\{A \in \mathcal{S} ; \bar{\kappa}(A \times B)=\mu(A) \wedge \nu(B)\} .
$$

Since \mathcal{L} is monotone and $\mathcal{L} \supset X$, it follows that

$$
\mathcal{L} \supset \sigma(X)=\mathcal{S} .
$$

Therefore

$$
\bar{\kappa}(A \times B)=\mu(A) \wedge \nu(B) \quad \text { for each } \quad A \in \mathcal{S}
$$

Further, for fixed $A \in \mathcal{S}$, consider the family

$$
\mathcal{G}=\{B \in \mathcal{T} ; \bar{\kappa}(A \times B)=\mu(A) \wedge \nu(B)\} .
$$

Clearly, $\mathcal{G} \supset Y$. Since \mathcal{G} is monotone,

$$
\mathcal{G} \supset \sigma(Y)=\mathcal{T}
$$

and hence,

$$
\bar{\kappa}(A \times B)=\mu(A) \wedge \nu(B) \quad \text { whenever } \quad A \in \mathcal{S}, B \in \mathcal{T}
$$

This completes the proof.

REFERENCES

[1] ATANASOV, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York, 1999.
[2] KRACHOUNOV, M.: Intuitionistic probability and intuitionistic fuzzy sets, in: 1st International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engeneering (E. El-Darzi et al., eds.), Univ. of Westminister, London, 2006, pp. 18-24.
[3] MAZUREKOVÁ, P.-RIEČAN, B.: A measure extension theorem. in: Proc. of the 2nd International Workshop on Intutionistic Fuzzy Sets, Vol. 12, Banská Bystrica, 2006, pp. 3-8.
[4] RIEČAN, B.: M-probability theory on IF events, in: New Dimensions in Fuzzy Logic and Related Technologies, Proc. of 5th EUSFLAT Vol. I, (M. Štepnička, et al., eds.), Universitas Ostraviensis, Ostrava, 2007, pp. 227-230.
[5] RIEČAN, B.: Probability theory on IF events, in: Algebraic and Proof-theoretic Aspects of Non-classical Logics (S. Aguzzoli et al., eds.), Lecture Notes in Comput. Sci., Vol. 4460, Springer-Verlag, Berlin, 2007, pp. 290-308.

PRODUCT OF M-MEASURES

[6] RIEČAN, B.-NEUBRUNN, T.: Integral, Measure, and Ordering. Math. Appl., Vol. 411, Kluwer Acad. Publ., Dordrecht \& Ister Science, Bratislava, 1997.

Received October 12, 2007

Petra Mazureková
Faculty of Natural Sciences
Matej Bel University
Tajovského 40
SK-974-01 Banská Bystrica
SLOVAKIA
E-mail: korcova@fpv.umb.sk
Jozefína Petrovičová
Faculty of Medicine
Pavol Jozef Šafárik University
Trieda SNP 1
SK-040-11 Košice
SLOVAKIA
E-mail: jozefina.petrovicova@upjs.sk
Beloslav Riečan
Faculty of Natural Sciences
Matej Bel University
Tajovského 40
SK-974-01 Banská Bystrica
SLOVAKIA
E-mail: riecan@fpv.umb.sk

[^0]: 2000 Mathematics Subject Classification: 60A10, 28 A 35.
 Keywords: M-measure, compact family, compact mapping.
 This paper was supported by Grant VEGA 1/0539/08.

