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ψ-CONTINUOUS FUNCTIONS AND FUNCTIONS

PRESERVING ψ-DENSITY POINTS

Ma�lgorzata Filipczak — Ma�lgorzata Terepeta

ABSTRACT. Let Tψ be the ψ-density topology for a fixed function ψ. We will
examine some new properties of the family of ψ-continuous functions (that means
continuous functions f : R → R with ψ-density topology Tψ in its domain and
range). In the second part of the article we will discuss functions preserving
ψ-density points.

We will use the following notations: R will denote the set of real numbers,
L – the σ-algebra of Lebesgue measurable subsets of R, m (m∗) – the Lebesgue
measure (outer measure) on R, A′ – the complement of the set A ⊂ R. Let C
be a family of nondecreasing continuous functions ψ : (0,∞) → (0,∞) such that
limt→0+ ψ(t) = 0.

We say that x ∈ R is a ψ-density point of a measurable set A ⊂ R if and
only if

lim
h→0+

m
(
A′ ∩ [x− h, x+ h]

)
2hψ(2h)

= 0 .

A point x ∈ R is said to be a ψ-dispersion point of a measurable set A if it is
a ψ-density point of the complement of A.

In the definition of a ψ-density point we use a symmetric interval of the length
2h and with the center in the point x. As shown in [TW-B, Theorem 0.1], we
cannot replace such an interval with an arbitrary interval I including x. Despite
this fact, we can prove the following property.

Property 1� The point x0 is a ψ-density point of a measurable set S if and
only if

∀ ε > 0 ∃ δ > 0 ∀ I 	 x0

(
m(I) < δ =⇒ m(I \ S)

m(I) ψ
(
2m(I)

) < ε

)
. (1)
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P r o o f. If the condition (1) holds then it is sufficient to put I = [x0−h, x0+h]
and we get that x0 is a ψ-density point of the set S. Suppose that x0 is a ψ-
-density point of a measurable set S. Hence for any ε1 > 0 there exists a positive
number δ1 such that for all h ∈ (0, δ1) we have

m
(
[x0 − h, x0 + h] \ S

)
2hψ(2h)

< ε1.

For a fixed ε > 0 we match δ1 to ε1 = 1
2ε. Let I be an interval containing x0

and having the length less than 1
2δ1. By h we denote the least positive number

such that I ⊂ [x0 − h, x0 + h]. Then h ≤ m(I) ≤ 2h < δ1 and

m(I \ S)
m(I) ψ

(
2m(I)

) ≤
m
(
[x0 − h, x0 + h] \ S

)
hψ(2h)

< 2ε1 = ε.

�

For any A ∈ L we denote

Φψ(A) = {x ∈ R : x is a ψ-density point of A}.

From [TW-B, Theorem 1.4], we obtain that the family Tψ =
{
A ∈ L : A ⊂

Φψ(A)
}
is a topology which is stronger than the natural topology To and weaker

than the density topology Td. Topology Tψ is invariant under multiplication if
and only if for any α > 0.

lim sup
x→0+

ψ(αx)

ψ(x)
<∞. (2)

If the condition (2) is not fulfilled for a certain α > 1, then there is a setA ∈ Tψ
such that 1

αA is not a set from Tψ (compare with [TW-B, Theorem 2.8]).

Fix a function ψ ∈ C. We will examine some properties of continuous functions
f : (R, Tψ) → (R, Tψ). We will call such functions ψ-continuous and the family
of them will be denoted by Cψψ. Each ψ-continuous function is ψ-approximately
continuous, hence it is DB1. In [FT1] we showed that

Coo \ Cψψ �= ∅ and Cψψ \ Coo �= ∅,
where Coo is the family of continuous functions.

The idea of ψ-continuity of a function is strictly connected with the notion of
a function preserving ψ-density points.

���������� 2� We will say that a homeomorphism h preserves ψ-density points
if for any measurable set S ⊂ R and any x0 ∈ Φψ(S)

lim
t→0+

m∗
((
h(S)

)′ ∩ [h(x0)− t, h(x0) + t
])

2tψ(2t)
= 0.
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��������� 3� If h is a homeomorphism preserving ψ-density points, then h
satisfies Lusin’s condition (N).

P r o o f. Let Z be a set of Lebesgue measure zero. There exists a Gδ-set A ⊃ Z
of measure zero. Then h(A) is also a Gδ-set, so it is measurable. Suppose that
m
(
h(A)

)
> 0. Hence h(A) has density 1 at a certain point y0 ∈ h(A), so

lim
t→0+

m
(
h(A) ∩ [y0 − t, y0 + t]

)
2t

= 1.

The point h−1(y0) is from A and it is a ψ-density point of the complement of A.
Let S = A′. For any t > 0 such that ψ(2t) ≤ 1, we have

m
((
h(S)

)′ ∩ [y0 − t, y0 + t]
)

2tψ(2t)
=
m
(
h(S′) ∩ [y0 − t, y0 + t]

)
2tψ(2t)

≥
m
(
h(A) ∩ [y0 − t, y0 + t]

)
2t

.

Therefore, h does not preserve ψ-density points. �

�
����
� 4� If a homeomorphism h : [0, 1] → [0, 1] preserves ψ-density points
then it is an absolutely continuous function.

From Proposition 3, it follows that if homeomorphism h preserves ψ-density
points then, for any measurable set S ⊂ R, h(S) is a measurable set and we need
not use the outer measure from Definition 2.

����
�� 5� A homeomorphism h : R → R preserves ψ-density points if and
only if h−1 is a ψ-continuous function.

P r o o f. First, we assume that h preserves ψ-density points. We will show that
h−1 is a ψ-continuous function at any point. Fix a point y0 and a set V ∈ Tψ
such that x0 = h−1(y0) ∈ V. We will show that there exists a set U ∈ Tψ
such that y0 ∈ U and h−1(U ) ⊂ V. Since V is open in Tψ, for any x ∈ V
we have x ∈ Φψ(V ). The homeomorphism preserves ψ-density points, so h(x) ∈
Φψ
(
h(V )

)
. Hence h(V ) is open in Tψ and putting U = h(V ), we complete the

proof of this implication.

Suppose now that h does not preserve ψ-density points. Fix a point x0 ∈ R

and a measurable set S such that x0 is a ψ-dispersion point of S and

lim sup
t→0+

m∗
(
h(S) ∩

[
h(x0)− t, h(x0) + t

])
2tψ(2t)

> 0.

Let A ⊃ S be a Gδ-set such that m(A \ S) = 0. Then x0 is a ψ-dispersion
point of A, h(A) is measurable and h(S) ⊂ h(A). Hence, there exists a sequence
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(an)n∈N decreasing to 0 and a number α > 0 such that

m
(
h(A) ∩

[
h(x0)− an, h(x0) + an

])
2anψ(2an)

> α

for all n ∈ N. Therefore, there exists a subsequence (ank
)k∈N of the sequence

(an)n∈N such that for any natural k

m
(
h(A) ∩

[
h(x0), h(x0) + ank

])
2ank

ψ(2ank
)

>
α

2
or

m
(
h(A) ∩

[
h(x0)− ank

, h(x0)
])

2ank
ψ(2ank

)
>
α

2
, (3)

For simplicity, we can assume that inequality (3) holds for all elements of the
sequence (an)n∈N and for any natural n we have

m
(
h(A) ∩

[
h(x0) + an+1, h(x0) + an

])
> 0.

From the properties of measurable sets it follows that for any n ∈ N there exists
a closed set Bn ⊂ h(A) ∩

[
h(x0) + an+1, h(x0) + an

]
such that

m(Bn) > m
(
h(A) ∩

[
h(x0) + an+1, h(x0) + an

])
− α

4
· 1

2n
· 2anψ(2an).

We put B =
⋃∞
n=1Bn ∪

{
h(x0)

}
. Observe that B is a closed set in natural

topology. Moreover, for any natural i

m
(
B ∩

[
h(x0), h(x0) + ai

])
2aiψ(2ai)

=

∞∑
n=i

m(Bn)

2aiψ(2ai)
≥ 1

2aiψ(2ai)

×
( ∞∑
n=i

m
(
h(A) ∩

[
h(x0) + an+1, h(x0) + an

])
− α

4

∞∑
n=i

2anψ(2an)
1

2n

)

≥
m
(
h(A) ∩

[
h(x0), h(x0) + ai

])
2aiψ(2ai)

−
α
4 · 2aiψ(2ai)

∞∑
n=i

1
2n

2aiψ(2ai)
≥ α

4
> 0 .

Hence, h(x0) is not a ψ-dispersion point of the set B.

Since h−1(B) ⊂ A, x0 is a ψ-dispersion point of h−1(B). Moreover, h−1(B)
is closed in natural topology, hence the set C = R \ h−1(B) ∪ {x0} ∈ Tψ.
Simultaneously, h(C) = R \ B ∪

{
h(x0)

}
/∈ Tψ, so the function h−1 is not

ψ-continuous. �
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Property 6� If a homeomorphism h : R → R satisfies the condition

∀ ε > 0 ∃ δ > 0 ∀A ∈ L ∀ I ⊃ A(
m(A) < δ m(I) ψ

(
2m(I)

)
=⇒ m

(
h(A)

)
< ε m

(
h(I)

)
ψ
(
2m
(
h(I)

)))
, (4)

then h preserves ψ-density points.

P r o o f. Suppose that x0 is a ψ-density point of a set S ∈ L. Using Property 1,
we will show that for any ε > 0 there exists a positive number γ > 0 such that
for each interval J 	 h(x0) of the length less than γ

m
(
J \ h(S)

)
m(J) ψ

(
2m(J)

) < ε .

Let ε > 0 and choose δ from condition (4). Since x0 ∈ Φψ(S), from Property 1
it follows that there exists λ > 0 such that for any I 	 x0 of length less than λ

m(I \ S)
m(I) ψ

(
2m(I)

) < δ . (5)

Since h−1 is continuous at h(x0), there is γ > 0 such that for any interval
J 	 h(x0) of length less than γ, the length of the interval h−1(J) is less than λ.

Let J be an interval containing h(x0), of the length less than γ. Using (5), we
have

m
(
h−1(J) \ S

)
< δ m

(
h−1(J)

)
ψ
(
2m(h−1(J)

)
.

From condition (4), taking A = h−1(J) \ S and I = h−1(J), we obtain

m (J \ h(S)) = m
(
h(h−1(J) \ S)

)
< ε m(J) ψ

(
2m(J)

)
.

�

����
�� 7� Let a function ψ ∈ C satisfy the condition (2). Suppose that
h : R → R is an absolutely continuous homeomorphism such that for almost
all x ∈ R

0 < α ≤ h′(x) ≤ β <∞. (6)

Then h preserves ψ-density points.

P r o o f. Since h is an increasing function, it is sufficient to show that if x0 is
a right-hand ψ-density point of a measurable set S, then h(x0) is a right-hand
ψ-density point of a set h(S). The left-hand side case can be shown in the similar
way. Let S be a measurable set and ε > 0. We assume that x0 is a right-hand
ψ-density point of S. The function ψ satisfies the condition (2), so there exist
numbers M > 0 and δ1 > 0 such that

ψ(t)

ψ(αt)
< M (7)
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for all t < δ1. The point x0 is a right-hand ψ-density point of the set S, hence
there exists a positive number δ2 <

1
2δ1 such that for all t ∈ (0, δ2)

m
(
[x0, x0 + t] \ S

)
2tψ(2t)

<
εα

βM
. (8)

The fact that h−1 is continuous at the point h(x0) results in the existence
of δ3 > 0 such that h−1(y) < x0 + δ2 for any y ∈

(
h(x0), h(x0) + δ3

)
. To

complete the proof it is sufficient to show that for any interval of the form
J =

[
h(x0), h(x0) + y

]
, where y < δ3, we have

m
(
h(S) \ J

)
2m(J)ψ

(
2m(J)

) < ε.

The function h is a homeomorphism, so there exists an interval I which has
the following properties: its length is less than δ2, so x0 is the endpoint of the
interval I = h−1(J). We have m(I) < δ2. From the inversibility of h we obtain

m
(
h(S) \ J

)
= m

(
h(S) \ h(I)

)
= m

(
h(S \ I)

)
.

From the absolute continuity of h and (6) we have

α m(I) ≤ m
(
h(I)

)
≤ β ·m(I)

and

m
(
h(S \ I)

)
≤ βm(S \ I).

From this, (7) and (8) it follows that

m
(
h(S) \ J

)
2m(J)ψ

(
2m(J)

) ≤ βm(S \ I)
2αm(I)ψ

(
2αm(I)

) =
m(S \ I)

2m(I)ψ
(
2m(I)

) β
α

ψ
(
2m(I)

)
ψ
(
2αm(I)

) < ε.

�

�
����
� 8� Suppose that h : R → R is an absolutely continuous homeomor-
phism such that for almost all x ∈ R

1 ≤ α ≤ h′(x) ≤ β <∞. (9)

Then h preserves ψ-density points for arbitrary function ψ ∈ C.

We follow the proof of Theorem 7. Notice that if α ≥ 1 and ψ ∈ C, then for
each t > 0 we have

ψ(t)

ψ(αt)
≤ 1.

�

Remark 9� Observe that if a function ψ ∈ C does not satisfy the condition (2)
then for any α > 1

lim sup
x→0+

ψ(αx)

ψ(x)
= ∞.
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It means that for any α > 1 there exists a set A ∈ Tψ such that 1
αA /∈ Tψ.

Therefore any linear function f(x) = ax, with a > 1, is not ψ-continuous. By
Corollary 8, such the functions preserve ψ-density points.

�
����
� 10� Let f : I → R. If there are numbers α, β such that

0 < α <
f(x)− f(y)

x− y
< β <∞ (10)

for any x, y ∈ I, x �= y, then f is ψ-continuous for each function ψ ∈ C satisfy-
ing (2).

Moreover, if β ≤ 1, then f is ψ-continuous for any function ψ ∈ C.

P r o o f. From (10) the function f is strictly monotonic and continuous, so
f : I → f(I) has the inverse function g = f−1. This function satisfies the condi-
tion

0 <
1

β
<
g(u)− g(v)

u− v
<

1

α
<∞

for all u, v ∈ f(I), u �= v. As it fulfils the local Lipschitz conditition on f(I),
so g is absolutely continuous. Its derivative g′ is bounded from above and below
by positive numbers, hence g preserves ψ-density points (Theorem 7). From
Theorem 5 the function g−1 = f is ψ-continuous.

If β ≤ 1, then for each function ψ ∈ C, the function g preserves ψ-density
points (we use Corollary 8), whence f is ψ-continuous. �

�
����
� 11� Let ψ ∈ C fulfil the condition (2). If a function h : R → R is
a homeomorphism and h, h−1 satisfy the local Lipschitz condition, then h, h−1

are ψ-continuous.

It is well-known fact that every function f(x) = xτ on the interval [0,∞),
where τ > 0, is density continuous. We will examine, whether such functions are
ψ-continuous.

����
�� 12� Consider the function f : [0,∞) 	 x �→ xτ, where τ > 0. If

lim inf
x→0+

ψ(2x)

ψ
(
2f(x)

) > 0, (11)

then f is ψ-continuous at x = 0 for each ψ ∈ C.

P r o o f. We will show that if 0 is not a right-hand ψ-dispersion point of a mea-
surable set A, then f(0) = 0 is not a right-hand ψ-dispersion point of f(A).
Suppose that there exists a number α > 0 and a sequence (yn)n∈N decreasing to
zero such that for all natural n

m
(
A ∩ [0, yn]

)
2ynψ(2yn)

> α. (12)
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Consider the interval [0, y1]. Let x
(1)
k = y1

2k for k = 0, 1, 2, . . . Notice that there
exists a number k0 such that

m

(
A ∩

[
1

2
x
(1)
k0
, x

(1)
k0

])
> x

(1)
k0

α ψ(2y1) . (13)

Indeed, if for all k

m

(
A ∩

[
1

2
x
(1)
k , x

(1)
k

])
≤ x

(1)
k α ψ(2y1) ,

then

m
(
A ∩ [0, y1]

)
2y1ψ(2y1)

=

∞∑
k=0

m

(
A ∩

[
1
2
x
(1)
k , x

(1)
k

])
2y1ψ(2y1)

≤
αψ(2y1)

∞∑
k=0

x
(1)
k

2y1ψ(2y1)
≤ α ,

contrary to (12). We put a1 = x
(1)
k0

and obtain

m
(
A ∩

[
1
2a1, a1

])
2a1ψ(2a1)

≥
m
(
A ∩

[
1
2a1, a1

])
2a1ψ(2y1)

>
α

2
.

There exists n2 ∈ N such that yn2
< a1. Analogously, we can find a2 ∈ (0, yn2

]
such that

m
(
A ∩

[
1
2a2, a2

])
2a2ψ(2a2)

>
α

2
.

By induction we define the sequence (an)n∈N decreasing to zero such that for all
n ∈ N we have

m
(
A ∩

[
1
2an, an

])
2anψ(2an)

>
α

2
.

Notice that for any n ∈ N the derivative of the function f on the interval[
1
2an, an

]
fulfils the condition

f ′(x) ≥ τaτ−1
n

2τ−1
,

so

m

(
f

(
A ∩

[
1

2
an, an

]))
≥ τaτ−1

n

2τ−1
·m
(
A ∩

[
1

2
an, an

])
.
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Let us estimate the following expression

m
(
f(A) ∩

[
0, aτn

])
2aτnψ

(
2aτn
) =

m
(
f(A) ∩ f

(
[0, an]

))
2aτnψ

(
2aτn
)

=
m
(
f
(
A ∩ [0, an]

))
2aτnψ

(
2aτn
)

≥
m
(
f(A ∩

[
1
2an, an

]))
2aτnψ

(
2f(an)

)

≥τa
τ−1
n

2τ−1
·
m
(
A ∩

[
1
2an, an

])
2aτnψ

(
2f(an)

)
≥ τ

2τ−1
·
m
(
A ∩

[
1
2an, an

])
2anψ(2an)

· ψ(2an)

ψ
(
2f(an)

)
>

τ

2τ−1
· α
2
· ψ(2an)

ψ
(
2f(an)

) .
Since

lim inf
n→∞

ψ(2an)

ψ
(
2f(an)

) > 0,

hence

lim sup
x→0+

m
(
f(A) ∩ [0, x]

)
2xψ(2x)

> 0 .

We obtain that 0 is not a ψ-dispersion point of the set f(A). We have shown
that if 0 is a ψ-dispersion point of the set f(A), then 0 is a ψ-dispersion point
of the set A. Hence f is ψ-continuous at 0. �
�
����
� 13� Let ψ ∈ C. Consider the function f : [0,∞) 	 x �→ xτ, where
τ ≥ 1. Then f is ψ-continuous on

[
0, τ−1/(τ−1)

]
.

In fact, for any x∈
(
0, τ−1/(τ−1)

]
for the derivative f ′(x) we have 0 <f ′(x) ≤1,

so, from Corollary 8, f is ψ-continuous at x. Continuity at 0 follows from the
last theorem.

Remark 14� If ψ satisfies (2), then f(x) = xτ, where τ ≥ 1, is ψ-continuous on
[0,∞).

����
�� 15� Let τ ∈ (0, 1) and f(x) = xτ for x ∈ [0,∞). If

lim
x→0+

ψ(2x)

ψ
(
2f(x)

) = 0, (14)

then f is not ψ-continuous at x = 0.
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P r o o f. We will construct an interval set

A =

∞⋃
n=1

[an, bn], 0 < an < bn < an−1, lim
n→∞ bn = 0

such that 0 is a ψ-dispersion point of the set A and 0 is not a ψ-dispersion point
of the set f−1(A).

Let c1 be a point from (0, 1) such that ψ(2c1) <
1
2 . From the assumption of

a function ψ, there exists d1 ∈ (0, c1) such that for any x ∈ (0, d1]

ψ(2x)

ψ
(
2f−1(x)

) > 1

c1
.

Since
d1

2d1ψ(2d1)
≥ 1

2ψ(2c1)
> 1 > c1,

there exists a point a1 such that

m
(
[a1, d1]

)
2d1ψ(2d1)

= c1.

Let us consider the function

f1 : [a1, c1] 	 x �→
m
(
[a1, x]

)
2x ψ(2x)

.

It is a continuous function attaining the value c1. The set f
−1
1

(
{c1}

)
is closed in

natural topology and not empty. Let b1 = min f−1
1

(
{c1}

)
. Notice that for any

x ∈ (a1, b1),

m
(
[a1, x]

)
2x ψ(2x)

< c1 and
m
(
[a1, b1]

)
2b1 ψ(2b1)

= c1.

Let c2 be a point from (0, a1) such that

c2
2a1 ψ(2a1)

< c1.

In an analogous way we can find 0 < a2 < b2 < d2 < a1 such that

ψ(2x)

ψ
(
2f−1(x)

) > 1

c2
; for each x ∈ (0, d2],

m
(
[a2, b2]

)
2b2 ψ(2b2)

= c2 and
m
(
[a2, x]

)
2x ψ(2x)

< c2 for x ∈ (a2, b2).

By induction we construct the sequence of intervals
(
[an, bn]

)
n∈N

and the de-

creasing sequence (cn)n∈N which have the following properties:

(1) 0 < an < bn ≤ cn,

(2) m([an,bn])
2bn ψ(2bn)

= cn,
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(3) ψ(2bn)
ψ(2f−1(bn))

> 1
cn
,

(4) m([an,x])
2x ψ(2x) < cn for x ∈ (an, bn),

(5) cn+1

2an ψ(2an)
< cn.

The point 0 is a ψ-dispersion point of the set A =
⋃∞
n=1[an, bn]. Indeed, let

us take x ∈ (0, b1). There exists a natural number n such that x ∈ (bn+1, bn].
If x ∈ (bn+1, an], then

m
(
A ∩ [0, x]

)
2x ψ(2x)

=
m
(
A ∩ [0, bn+1]

)
2x ψ(2x)

≤
m
(
[an+1, bn+1]

)
2bn+1 ψ(2bn+1)

+
bn+2

2bn+1 ψ(2bn+1)
≤ 2cn+1.

If x ∈ (an, bn], then

m
(
A ∩ [0, x]

)
2x ψ(2x)

≤
bn+1 +m

(
[an, x]

)
2x ψ(2x)

≤ bn+1

2an ψ(2an)
+
m
(
[an, x]

)
2x ψ(2x)

< 2cn.

For n→ ∞ the sequence (cn)n∈N tends to zero, so 0 ∈ Φψ(A
′). For completeness

of the proof it remains to show that 0 is not a ψ-dispersion point of the set
f−1(A). Denote, for the simplicity, by α the number 1

τ and observe that

f−1(A) =

∞⋃
n=1

[
aαn, b

α
n

]
.

For any b > a > 0

bα − aα > bα − abα−1 = (b− a)bα−1.

Therefore, for any n ∈ N, we have

m
(
f−1(A) ∩ [0, bαn]

)
2bαnψ(2b

α
n)

≥ bαn − aαn
2bαnψ(2b

α
n)

>
bn − an

2bnψ(2bn)
· ψ(2bn)
ψ(2bαn)

= cn ·
ψ(2bn)

ψ
(
2f−1(bn)

) > 1.

�

�
����
� 16� Functions f(x) = xτ for τ ∈ (0, 1) are not ψ-continuous at
zero for ψ = id. In particular, the function f(x) = x2 is ψ-continuous and its
inverse function is not ψ-continuous for ψ = id.
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Remark 17� From Theorem 12 it follows that the function f(x) = xτ for
τ ∈ (0, 1) is ψ-continuous at zero if ψ satisfies (11). It is not ψ-continuous at
zero if ψ satisfies (14). A natural question arises whether such a function is

ψ-continuous at zero if ψ satisfies lim infx→0+
ψ(2x)

ψ(2f(x)) = 0. Another natural

question is if f(x) = xτ, where τ ≥ 1, is not ψ-continuous on
[
τ−1/(τ−1),∞

)
for ψ which does not satisfy the condition (2).
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POLAND

E-mail : malfil@math.uni.lodz.pl

Ma�lgorzata Terepeta

Center of Mathematics and Physics
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