

Tatra Mt. Math. Publ. **42** (2009), 199–210 DOI: 10.2478/v10127-009-0019-4

MOMENTS OF VECTOR-VALUED FUNCTIONS AND MEASURES

Miloslav Duchoň — Camille Debiève

ABSTRACT. There are investigated conditions under which the elements of a normed vector space are the moments of a vector-valued measure, and of a Bochner integrable function, respectively, both with values in a Banach space.

Introduction

If g is a real-valued function of bounded variation on the unit interval I of the real line, the numbers

$$a_k = \int_{0}^{1} t^k \mathrm{d}g(t)$$
 $(k = 0, 1, ...)$

are called the moments of g, g being, e.g., distribution of mass of particle, body, or electric charge. Hausdorff [H] has shown that for a sequence a_k of real numbers to be moment sequence of some non-decreasing g (the case of particular interest in some cases), it is necessary and sufficient that a_k be totally monotone. Recall that a sequence is called totally monotone if all its difference sequences are non-negative.

We shall search conditions under which, given a sequence a_n , n = 0, 1, 2, ... of complex numbers,

- (a) there exists a measure on [a, b] such that a_n are the moments of the measure, respectively,
- (b) there exists a function in $L_p([a,b]), 1 \leq p \leq \infty$, such that a_n are the moments of this function.

²⁰⁰⁰ Mathematics Subject Classification: 44A60, 28B99.

Keywords: Banach space, vector valued measure, Bochner integral, moments of measures and functions.

Supported by the Slovak grant agency VEGA, grant number 2/4137/07.

MILOSLAV DUCHOŇ — CAMILLE DEBIÈVE

Then, in Section 3, a_n are taken to be elements of a normed vector space and conditions are given under which a_n are the moments of (a) a vector-valued measure, and (b) of a Bochner integrable function, respectively.

1. Preliminaries

The Hausdorff moment problem [H, Lo, W] is the following: given a prescribed set of real numbers $\{a_n\}_0^\infty$, find a bounded non-decreasing function u(t) on the closed interval [0, 1] such that its moments are equal to the prescribed values, that is,

$$\int_{[0,1]} t^n \mathrm{d}u(t) = a_n, \qquad n = 0, 1, 2, \dots$$

The integral is a Riemann-Stieltjes integral. Equivalently, find a nonnegative measure μ on borelian subsets in [0, 1] with

$$\int_{[0,1]} t^n d\mu(t) = a_n, \qquad n = 0, 1, 2, \dots$$

We shall need the operator ∇^k (k = 0, 1, 2, ...) defined by

$$\nabla^0 a_n = a_n, \qquad \nabla^1 a_n = a_n - a_{n+1},$$
$$\nabla^k a_n = a_n - \binom{k}{1} a_{n+1} + \binom{k}{2} a_{n+2} - \dots + (-1)^k a_{n+k}, \qquad n = 1, 2, \dots$$

for any sequence of real or complex numbers $\{a_n\}_0^\infty$.

Remark that we confine ourselves to interval [0, 1] for simplicity, this is, however, no limitation of generality, for any bounded interval [a, b].

DEFINITION. For each $f \in L_1([0,1])$, the elements

$$a_n = \int_0^1 t^n f(t) \, \mathrm{d}t, \qquad n = 1, 2, \dots$$

are called the moments of f. For a measure μ on [0, 1], the elements

$$a_n = \int_0^1 t^n \mu(\mathrm{d}t), \qquad n = 0, 1, 2, \dots$$

are called the moments of μ .

MOMENTS OF VECTOR-VALUED FUNCTIONS AND MEASURES

For a given sequence $a = \{a_n\}_0^\infty$, put

$$l_{k,m} = \binom{k}{m} \nabla^{k-m} a_m, \qquad (k,m=0,1,2,\ldots).$$

Let us mention that this definition is slightly different from the definition of $\lambda_{k,m}$ given in [W], but we obtain similar results.

In order to remain in some reasonable frame in the following we shall suppose satisfied the

Condition A. There is a finite positive constant L such that

$$\sum_{k=0}^{N} |l_{N,k}| < L, \qquad N = 0, 1, 2, \dots$$

Following [W, p. 107] for the sequence $\{a_n\}$, define an operator $L_N(t)$ by

$$L_N(t) = (1+N)l_{N,([Nt])}, \qquad N = 1, 2, ...$$

[Nt] means the largest integer contained in Nt.

We have [W, p. 110] for p > 1,

$$\int_{0}^{1} |L_N(t)|^p \, \mathrm{d}t = \frac{(N+1)^p}{N} \sum_{m=0}^{N-1} |l_{N,m}|^p < 2L, \qquad N = 0, 1, 2, \dots$$

If f is in $L_p([0,1])$ and a_n are its moments, then [W, p. 111]

$$\lim_{N \to \infty} \int_{0}^{1} t^{n} L_{N}(t) \, \mathrm{d}t = a_{n}, \qquad n = 0, 1, \dots$$
 (1)

Hence for every continuous, and more generally, for every bounded measurable function g there exists

$$\lim_{N \to \infty} \int_0^1 g(t) L_N(t) \, \mathrm{d}t = A \, .$$

If a_n are moments of f, then for all $t \in [0, 1]$, we have

$$\int_{0}^{1} |L_N(s)| \, \mathrm{d}s \le \int_{0}^{1} K_N(t,s) |f(s)| \, \mathrm{d}s, \tag{2}$$

where

$$K_N(t,s) = (1+N) \binom{N}{[Nt]} s^{[Nt]} (1-s)^{N-[Nt]}, \quad (N=1,2\ldots; 0 \le s, \ t \le 1).$$

It is easy to prove the following lemma.

LEMMA 1. For every $t \in [0, 1]$

$$\int_{0}^{1} |K_N(t,s)| \, \mathrm{d}s \le \frac{N+1}{N} \sum_{m=0}^{N-1} \int_{0}^{1} \binom{N}{m} s^m (1-s)^{N-m} \, \mathrm{d}s \le M < \infty,$$

for $N = 1, 2, \dots$

2. Scalar-valued moments

At least the part of the following theorem is already known see [W, pp. 100– -114], where the L_p case (1 and (iii)–(iii)' are explicitly given). Recall $that <math>L_p$, $(1 \le p \le \infty)$, denotes the space of all measurable functions f such that $|f|^p$ is integrable on [0, 1].

THEOREM 2. Given a sequence $a_n, n = 0, 1, 2, ...,$ of complex numbers, there exists

- (i) a function $f \in L_1$ such that a_n are the moments of f;
- (ii) a function $f \in L_p, 1 , such that <math>a_n$ are the moments of f;
- (iii) a complex, regular Borel measure μ such that a_n are the moments of μ ;
- (iv) a nonegative regular Borel measure μ such that a_n are the moments of μ ;
- (v) a continuous function f such that a_n are the moments of fif and only if the functions $L_k(t)\{a_n\}$
- (i)' converge in the L_1 -norm;
- (ii)' are bounded in the L_p -norm;
- (iii)' are bounded in the L_1 -norm;
- (iv)' are nonnegative;
- (v)' converge uniformly.

For completeness, we give a little different and more compact proof of all parts using the following lemmas.

LEMMA 3. For each N, define the linear map $T_N: L_p \to L_p$ (for all $p, 1 \le p \le \infty$) by

$$(T_N g)(t) = \int_0^1 K_N(t, s)g(s) \,\mathrm{d}s, \qquad g \in L_p$$

Then each T_N is continuous for all $p, 1 \le p \le \infty$, and there exists a constant $D < \infty$ such that $||T_N|| \le D$ for all N.

Proof. When p = 1, we have, by Lemma l, for each $g \in L_1$,

$$\sup_{N} ||T_N g|| = \sup_{N} \int_{0}^{1} \left| \int_{0}^{1} K_N(t,s)g(s) \,\mathrm{d}s \right| \mathrm{d}t$$
$$\leq \sup_{N} \int_{0}^{1} \left(|g(s)| \int_{0}^{1} |K_N(t,s)| \mathrm{d}t \right) \mathrm{d}s \leq M ||g||.$$

Therefore $\sup ||T_N|| = D_1 < \infty$. When $p = \infty$, for each N,

$$||T_N|| = \sup_{||g||=1} \operatorname{ess\,sup}_t \left| \int_0^1 K_N(t,s)g(s) \,\mathrm{d}s \right|$$
$$\leq \sup_{||g||=1} \operatorname{ess\,sup}_t \int_0^1 |K_N(t,s)||g(s)| \,\mathrm{d}s = D_2 < \infty$$

Putting $D = \max(D_1, D_2)$, we have that, for each N, T_N is a linear mapping of each L_p space into itself $(1 \le p \le \infty)$ and T_N is continuous for p = 1 and $p = \infty$ with norm at most D. The result now follows from the Riesz convexity theorem [E, p. 526].

LEMMA 4. If f is in $L_p([0,1])$, $1 \le p < \infty$, then $T_N f$ converges to f in the L_p -norm.

Proof. Let $\epsilon > 0$ be given. Then there exists $\psi \in C([0, 1])$ such that $||f - \psi||_p < \epsilon$. So, for all sufficiently large N,

$$||T_N f - f|| \leq ||T_N (f - \psi)|| + ||T_N \psi - \psi|| + ||\psi - f||$$

$$\leq ||T_N||||f - \psi|| + \epsilon + \epsilon$$

$$< D\epsilon + 2\epsilon.$$

LEMMA 5. If f is in $L_{\infty}([0,1])$, then $T_N f$ is a bounded subset of $L_{\infty}([0,1])$ and so weak-star compact and (some subsequence of) $T_N f$ converges to f in the weak-star topology of L_{∞} .

Proof. For all f in $L_{\infty}([0,1])$ the sequence $(T_N f)$ is bounded in $L_{\infty}([0,1])$, and so weak-star compact.

Proof of Theorem 2. Suppose that f is in L_1 and a_n are the moments of f. Then $L_N = T_N f$ and so (i)' follows from Lemma 4. Also if f is in L_p , (ii)' follows from Lemma 4 ($1) and Lemma 5 (<math>p = \infty$).

MILOSLAV DUCHOŇ — CAMILLE DEBIÈVE

If the a_n are the moments of a complex measure μ , $a_n = \int_0^1 s^n \mu(ds)$ then, by Lemma 1

$$||L_N||_1 = \int_0^1 |L_N(t)| \, \mathrm{d}t = \frac{N+1}{N} \sum_{m=0}^{N-1} |\lambda_{N,m}|$$

$$\leq \frac{N+1}{N} \sum_{m=0}^N \binom{N}{m} \int_0^1 s^m (1-s)^{N-m} |\mu| (\mathrm{d}s)$$

$$\leq M|\mu| ([0,1]),$$

which shows that (iii)' follows from (iii).

We now show the converse implications. First, observe that, if n is fixed and N > n, then

$$\int_{0}^{1} t^{n} L_{N}(t) \, \mathrm{d}t \to a_{n}, \qquad (n = 0, 1, 2, \dots), \ N \to \infty.$$
(3)

If the L_N converge in the L_1 -norm, they converge to an integrable function f. So

$$\left| \int_{0}^{1} (f(t) - L_{N}(t)) t^{n} dt \right| \leq \int_{0}^{1} |f(t) - L_{N}(t)| |t^{n}| dt$$
$$\leq \sup_{t} |t^{n}| ||f - L_{N}||_{1}.$$

Therefore,

$$\lim_{N} \left| \int_{0}^{1} f(t)t^{n} \, \mathrm{d}t - \int_{0}^{1} L_{N}(t)t^{n} \, \mathrm{d}t \right| = 0.$$

Hence, by (3),

$$\int_{0}^{1} f(t)t^{n} \, \mathrm{d}t = a_{n}.$$

Suppose that L_N are bounded in L_p -norm, $1 . We may as well assume that <math>||L_N||_p \leq 1, N = 1, 2, ...$ Then the L_N lie in the unit ball of the conjugate space of L_q (where $p^{-1} + q^{-1} = 1$). Since this unit ball is weak-star compact, there is a function f in L_p with $||f||_p \leq 1$ such that every weak-star neighbourhood of f contains L_N for infinitely many values of N. In other words,

given any g in L_q , the numbers

$$\int_{0}^{1} L_N(t)g(t) \,\mathrm{d}t$$

are near $\int_0^1 f(t)g(t) dt$ for infinitely many values of N. But each t^n is in L_q and so, by (3)

$$\int_{0}^{1} f(t)t^{n} \,\mathrm{d}t = a_{n}.$$

Suppose that

$$\int_{0}^{1} |L_N(t)| \, \mathrm{d}t \le \alpha$$

for all N. Define, for each N, the scalar-valued map Φ_N on C([0,1]) by

$$\Phi_N(\psi) = \int_0^1 \psi(t) L_N(t) \,\mathrm{d}t, \qquad \psi \in C\big([0,1]\big).$$

Then, for all N, $||\Phi_N|| \leq \alpha$. That is, all the Φ_N are in the (weak-star compact) ball of radius α of the dual space of C([0, 1]). Hence there exists a regular Borel measure μ such that, for all $\epsilon > 0$ and all $\psi \in C([0, 1])$, there exists N such that

$$\left| \int_{0}^{1} \psi(t) L_N(t) \, \mathrm{d}t - \int_{0}^{1} \psi(t) \mu(\mathrm{d}t) \right| < \epsilon.$$

$$\tag{4}$$

Since each t^n is in C([0,1]), we have, by (3),

$$\int_{0}^{1} t^{n} \mu(\mathrm{d}t) = a_{n}.$$

Remark. By using $\lim_{N\to\infty} ||L_N - f||_1 = 0$, in conjunction with results in general integration theory referring to criteria for weak compactness for subsets of L_1 (see [DS, pp. 294–295] and [E, pp. 274–276]) the following characterization of L_1 moments can be established.

Recalling an operator $L_N(t)$ defined by

$$L_N(t) = (N+1)l_{N,[Nt]} \qquad (k = 1, 2, \dots; \ 0 \le t \le 1)$$

the following four conditions are equivalent:

(a) a subsequence $(L_{N_k})_{k=1}^{\infty}$ exists such that the set functions $E \to \int_E L_{N_k}(t) dt$ (k = 1, 2, ...) are uniformly (or equi-) absolutely continuous, that is, to each e > 0 there corresponds d > 0 such that

$$\sup_{k} \left| \int_{E} L_{N_{k}}(t) \, \mathrm{d}t \right| \le e$$

for all measurable sets E satisfying m(E) < d;

- (b) some subsequence $(L_{N_k})_{k=1}^{\infty}$ converges weakly in L^l ;
- (c) some subsequence $(L_{N_k})_{k=1}^{\infty}$ converges in L^1 ;
- (d) $(a_n)_{n \in \mathbb{Z}} \in Mo(\mathbb{Z})$, i.e., $a = Mof, f \in L^1$, Mo denotes the moment.

If any one of these conditions holds, and if $f = \lim_{k \to \infty} L_{N_k}$ weakly or strongly in L^1 , then a = Mof, $L_N = L_N f$, and so $\lim_{N \to \infty} ||L_N - f||_1 = 0$.

Remark. The uniform absolute continuity of the set functions can be expressed as uniform absolute continuity of the point functions

$$F_k(x) = \int_0^x L_{N_k}(t) \,\mathrm{d}t$$

the condition being precisely that to each e > 0 there corresponds a number d = d(e) > 0 such that

$$\sup_{k} \sum_{j=1}^{r} |F_k(b_j) - F_k(a_j)| \le e$$

for any finite sequence $((a_j, b_j))_{j=1}^r$ of disjoint open intervals (a_j, b_j) the sum of whose lengths does not exceed d. In this connection see, for example, [HS, Theorem (19.53) and its proof].

3. Vector-valued moments

Let X be a Banach space. Note that at some places, e.g., in Condition A the absolute value will be replaced by norm in X.

THEOREM 6. Given a sequence $a_n, n = 0, 1, 2, ...$ of elements of X, there exists a regular measure $\mu: \mathcal{B}([0,1]) \to X$ of finite total variation such that a_n are the moments of μ if and only if there exists a constant $0 < H < \infty$ such that

$$\int_{0}^{1} ||L_N(t)|| \, \mathrm{d}t \le H, \qquad N = 1, 2, \dots$$

Proof. Suppose that such a measure exists. Then, for each N, by (1)

$$\int_{0}^{1} ||L_{N}|| dt = \int_{0}^{1} \left\| \int_{0}^{1} K_{N}(t,s)\mu(ds) \right\| dt$$
$$\leq \int_{0}^{1} \int_{0}^{1} |K_{N}(t,s)| dt |\mu|(ds)$$
$$\leq M |\mu| ([0,1]).$$

Conversely, suppose that $\int_0^1 ||L_N|| dt \le H$ for all N. If we define

$$\Phi_N(\psi) = \int_0^1 \psi(t) L_N(t) \,\mathrm{d}t, \qquad \psi \in \mathcal{C}\big([0,1]\big),$$

then $||\Phi_N|| \leq H$ for all N. Since, for each n, $\lim_N \Phi_N(t^n) = a_n$, we have that $\lim_N \Phi_N(\psi)$ exists for all ψ which are linear combinations of the t^n and so, as $||\Phi_N|| \leq H$ for all N, we conclude that $\lim_N \Phi_N(\psi)$ exists for all $\psi \in C([0,1])$. Denote this limit by Φ . To obtain our required measure, we use the following lemma (see [D, § 19, pp. 380, 383]). For each subset A of [0,1], let C([0,1], A) denote the space of continuous functions on [0,1] vanishing outside A. If $F: C([0,1]) \to X$ is a linear mapping, define for each A,

$$|||F_A||| = \sup \sum ||F(\psi_i)||$$

where supremum is over all finite families ψ_i in C([0,1]) with $\sum |\psi_i(t)| \le \chi_A(t)$ for all $t \in [0,1]$.

LEMMA. If $F: C([0,1]) \to X$ is a linear mapping, then there exists a regular measure $\mu: \mathcal{B}([0,1]) \to X$ with finite variation such that

$$F(\psi) = \int_{0}^{1} \psi(t)\mu(\mathrm{d}t), \qquad \psi \in C\big([0,1]\big).$$

if and only if $|||F_A||| < \infty$ for all $A \in \mathcal{B}([0,1])$.

Let A be in $\mathcal{B}([0,1])$ and let $\{\psi_i; i = 1, 2, ..., n\}$ be a finite family of functions in C([0,1], A) with

$$\sum_{i=1}^{n} |\psi_i(t)| \le \chi_A(t), \qquad t \in [0,1].$$

Then for each N,

$$\sum_{i=1}^{n} |\psi_i(t)| \le \chi_A(t), \qquad t \in [0,1].$$

So for each N,

$$\sum_{i=1}^{n} ||\Phi_{N}(\psi_{i})|| = \sum_{i=1}^{n} \left\| \int_{0}^{1} \psi_{i}(t) L_{N}(t) dt \right\|$$
$$\leq \sum_{i=1}^{n} \int_{0}^{1} |\psi_{i}(t)|| |L_{N}(t)|| dt$$
$$\leq \int_{0}^{1} \chi_{A}(t) ||L_{N}(t)|| dt \leq H.$$

Hence $\sum_{1}^{n} ||\Phi(\psi_i)|| \leq H$ and so $|||\Phi_A||| \leq H$. Therefore, there exists a regular measure $\mu : \mathcal{B}([0,1]) \to X$ with finite variation such that

$$\Phi(\psi) = \int_{0}^{1} \psi(t)\mu(\mathrm{d}t), \qquad \psi \in C\big([0,1]\big).$$

But each t^n is in C([0,1]) and so,

$$a_n = \int_0^1 t^n \mu(\mathrm{d}t)$$

and thus theorem is proved.

Recall a definition of a Bochner integrable function. If $f: [a, b] \to X$ is simple, i.e., $f(s) = \sum_{i=1}^{n} \chi_{E_i}(s) x_i$, where χ_E denotes the indicator function of the set $E \subset [a, b], x_i \in X$, then for any $E \in B([a, b])$

$$\int_{E} f \mathrm{d}\lambda = \sum_{i=1}^{n} \lambda(E \cap E_i) x_i,$$

where λ is a probability measure on [a, b]. Such functions are λ -measurable. Any function $f: [a, b] \to X$ which is the λ -almost everywhere limit of a sequence of simple functions is (called) λ -measurable.

A λ -measurable function $f: [a, b] \to X$ is called Bochner integrable if there exists a sequence of simple functions (f_n) such that

$$\lim_{[a,b]} \int_{[a,b]} ||f_n(s) - f(s)|| \,\mathrm{d}\lambda(s) = 0.$$

In this case $\int_E f d\lambda$ is defined for each measurable set E in [a, b] by

$$\int_{E} f \mathrm{d}\lambda = \lim_{n} \int_{E} f_{n} \mathrm{d}\lambda$$

A λ -measurable function $f: [a, b] \to X$ is Bochner integrable if and only if $\int_{[a,b]} ||f|| \, d\lambda < \infty$.

The following theorem concerns moments of Bochner integrable function.

THEOREM 7. Given a sequence $a_n, n = 0, 1, 2, ...,$ of elements of X, there exists an X-valued Bochner integrable function f on [0, 1] such that a_n are the moments of f if and only if

$$\lim_{N,J\to\infty} \int_{0}^{1} ||L_N(t) - L_J(t)|| \, \mathrm{d}t = 0.$$

Proof. Suppose that f is Bochner integrable and a_n are the moments of f. Let $\{A_i\}_1^n$ be a finite family in $\mathcal{B}([0,1])$ and $\{\beta_i^n\}$ a finite family of vectors in X and define $g: [0,1] \to X$ by

$$g(t) = \sum_{i=1}^{n} \beta_i \chi_i(t).$$

Then

$$\int_{0}^{1} \left\| \int_{0}^{1} K_{N}(t,s)g(s) \, \mathrm{d}s - g(t) \right\| \, \mathrm{d}t = \int_{0}^{1} \left\| \sum_{i=1}^{n} \beta_{i} \left(\int_{0}^{1} K_{N}(t,s)\chi_{A_{i}}(s) \, \mathrm{d}s - \chi_{A_{i}}(t) \right) \right\| \, \mathrm{d}t$$
$$\leq \sum_{i=1}^{n} \left(\left| |\beta_{i}| \right| \int_{0}^{1} \left| \int_{0}^{1} K_{N}(t,s)\chi_{A_{i}}(s) \, \mathrm{d}s - \chi_{A_{i}}(t) \right| \, \mathrm{d}t \right)$$

which, by Lemma 4, tends to 0 as $N \to \infty$. Therefore, since the set of all such g is dense in the space of all Bochner integrable functions and as

$$L_N(t) = \int_0^1 K_N(t,s)f(s) \,\mathrm{d}s,$$

we have

$$\lim_{N} \int_{0}^{1} ||L_{N}(t) - f(t)|| \, \mathrm{d}t = 0.$$

Conversely, suppose that the sequence L_N is Cauchy in the norm of the space of all Bochner integrable functions. Since this space is Banach, L_N converges in the Bochner space norm to a Bochner integrable function f.

So, for each n,

$$\left\| \int_{0}^{1} (f(t) - L_{N}(t)) t^{n} dt \right\| \leq \int_{0}^{1} ||f(t) - L_{N}(t)|| |t^{n}| dt$$
$$\leq \sup_{t} |t^{n}| ||L_{N} - f||_{B} \to 0, \qquad N \to \infty.$$

Thus, by (3),

$$a_n = \int_0^1 t^n f(t) \, \mathrm{d}t.$$

So the theorem is proved.

REFERENCES

- [BDS] BARTLE, R.—DUNFORD, N.—SCHWARTZ, J. C.: Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289–305.
- [D] DINCULEANU, N.: Vector Measures. Pergamon Press, New York, 1967.
- [DS] DUNFORD, N.—SCHWARTZ, J. T.: Linear Operators. Part I, in: Pure Appl. Math. (N.Y.), Vol. 6, Wiley-Intersci., New York, 1958.
- [E] EDWARDS, R. E.: Functional Analysis: Theory and Applications. Holt Reinehart and Winston, Inc., New York, 1965.
- [H] HAUSDORFF, F.: Summations Methoden und Momentenfolgen II, Math. Z. 9 (1921), 280–299.
- [HS] HEWITT, E.—STROMBERG, K.: Real and Abstract Analysis. Springer-Verlag, Berlin, 1965.
- [Lo] LORENTZ, G. G.: Bernstein Polynomials. Toronto University Press, Toronto, 1953.
- [W] WIDDER, D. V.: The Laplace Transform. Princetom University Press, Princeton, N. J., 1946.

Received December 17, 2008

Miloslav Duchoň Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814-73 Bratislava SLOVAKIA E-mail: duchon@mat.savba.sk

Camille Debiève Université Catholique de Louvain Département de Mathématiques 2, Chemin du Cyclotron B-1348 Louvain-la-Neuve BELGIUM E-mail: camille.debieve@uclouvain.be