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Effect of the input parameters on the spatial variability of landslide suscepti-
bility maps derived by statistical methods. Case study of the Valtellina valley
(Italian Central Alps).

This study is aimed at assessing different spatial patterns of predicted values of
landslide susceptibility maps with almost similar success and prediction rate
curves, Qur approach is applied to an alpine environment (Italian Central Alps)
where debris flows represent a frequent damaging phenomenon. The Weights of
Evidence modelling technique (a data driven Bayesian method) was applied using
ArcSDM (Arc Spatial Data Modeler) an ArcGIS extension. The output prediction
maps were reclassified in the same way to compare the predicted results: a rela-
tive classification, based on the proportion of the area classified as susceptible,
was made. The thresholds among different susceptibility classes were put at each
10 % of the study area, classified decreasingly from the highest to the lowest sus-
ceptibility values. After applying Kappa Statistic, Cluster Analysis, and Principal
Component Analysis (PCA), we analysed the spatial variability of the predicted
maps. The results have shown great differences within the output spatial patterns
of the predicted maps, and also within the highest susceptibility classes.

Key words: landslide susceptibility mapping, Weights of Evidence. spatial vari-
ability, Kappa Statistic, Cluster Analysis, Principal Component Analysis

INTRODUCTION

Landslide susceptibility assessment is based on analysis of terrain conditions
in those sites where previous landslides happened (Carrara et al. 1995). Slope
instabilities are among the most significant natural damaging events; they are
one of the primary causes of injury to life and property damage, resulting in
enormous casualties and huge economic losses (Schuster 1996). Susceptibility
assessment has shown significant improvements in recent years by using indi-
rect statistically-based methods implemented within GIS (Aleotti and Chowd-
hury 1999). Statistical methods are being widely used to analyse landslide prone
areas mainly in Europe, for example Paudits et al. (2005) analysed the territory
of the Liptovskd kotlina basin in Slovakia and Klime§ (2002) examined land-
slide susceptibility in the Vsetin district in Czechia. Although spatial data analy-
sis techniques are now widely adopted as effective tools for independent valida-
tion of predicted results in post-processing operations (Begueria 2006), poor at-
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tention is often paid to the evaluation of the spatial variability of the predicted
results.

The relationships between past events and predisposing factors may give us
information on the likely spatial distribution of future occurrences. However, it
seems that the quality of predicted results does not automatically increase with
the number of predisposing factors used in the modelling procedures, and the
significance of such conditioning factors is frequently not thoroughly evaluated.
In our study we focus on the different spatial patterns of susceptibility maps de-
rived by the same statistical method, but with different combinations of predis-
posing factor maps (geology, land use, slope, aspect, etc.). To achieve this goal
the same methodology for generation of landslide susceptibility maps was ap-
plied, using different combinations of factor maps classified in the same way.
After that we compared the obtained maps using Kappa Statistic, Cluster Analy-
sis and Principal Component Analysis.

STUDY AREA

The study was done in Valtellina valley (Fig. 1). Valtellina is a typical Ital-
ian alpine valley lying in northern Italy (Lombardy Region). The axis of the val-
ley is formed by the Adda River, flowing through Bormio, Tirano and Sondrio

N

Fig. 1. Location of the study area
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to Lake Como. The valley has prevalently an E-W orientation from Dubino to
Teglio, where it takes an N-E turn for few kilometres, and then turns almost to
N around Sondalo. The orientation is determined by the tectonic setting. Valley
is superimposed on a regional fault that sharply separates the proper Alps
(Austroalpine, Penninic and Helvetic nappes) to the north from the Variscan
basement of the Southern Alps to the south. The Periadriatic Fault (or so called
Insubric Line or Tonale Fault) runs on the northern slopes of Valtellina, some
500 m above the Adda river floodplain, then goes on towards the NE to the
Tonale Pass to Merano and Mules near Vipiteno, where it turns back to the E-W
direction, running along Val Pusteria up to Klagenfurt and beyond. The bedrock
is mainly composed of metamorphic rocks (gneiss, mica schist, phyllite and
quartzite) and intrusive rock units, with subordinate sedimentary rocks. Due to
the proximity of the tectonic lineament, cataclastic and mylonitic zones are pre-
sent.

Valtellina has a U-shaped valley profile derived from Quaternary glacial ac-
tivity. The lower part of the valley flanks are covered with glacial, fluvio-
glacial, and colluvial deposits of variable thickness. The alluvial plain of the
Adda River is up to 3 km wide and alluvial fans at the outlet of tributary valleys
can reach a considerable size, with a longitudinal length up to 3 km.

The study area about 450 km” lies in a Mountain Consortium of Municipali-
ties in Valtellina di Tirano (Fig. 2). The territory is subdivided among 12 mu-
nicipalities and it has about 29,000 inhabitants (mostly living on the bottom of
the valley). The elevation of the study area ranges from 350 m a.s.l. — San Gia-
como di Teglio, up to 3,370 m a.s.l. — Cima Viola.

Valtellina has an unenviable history of intense and diffused landsliding. Sta-
tistical analysis (Crosta et al. 2003) shows that a large percentage of landslides
is represented by rainfall-induced, small size and thickness slides (up to 1.5 m)
with volumes ranging from a few up to some hundreds of cubic metres. Field
surveys mapped mainly shallow soil slips and/or soil slips — debris flows and
slumps affecting Quaternary covers. These phenomena remove portions of cul-
tivated areas (one of the most important source of sustenance for people), cause
the interruption of transportation corridors and disruptions in inhabited areas,
and sometimes require the temporary evacuation of people. The study area suf-
fered from intense rainfall and consequent landslides several times in the past.
The major events occurred in 1983, 1987 and 2000. The flood and landslides in
1987 caused a lot of fatalities, many of them by fast moving soil slips — debris
flows.

METHODOLOGY

The methodology applied consists of several steps. Firstly a database of ex-
planatory variables (factor maps) and training points (debris flow scarp areas)
was prepared. To predict the locations of future landslides and to evaluate these
predictions we used the 1,478 debris-flows scarp areas from the National Italian
Landslide Inventory (IFFI 2008). These scarp areas were than used to prepare a
statistical model of landslide susceptibility comparing the scarp areas with
seven geo-referenced explanatory variables: geology (7 classes), land use
(7 classes), and topography — input as five separate data layers: slope gradient
(8 classes), slope aspect (4 classes), internal relief (7 classes, Ah/625 m”), slope
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Fig. 2. Mountain Consortium of Municipalities in Valtellina di Tirano: the debris flow
scarps are represented by dots
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planar (3 classes) and profile curvature (3 classes) obtained from a digital eleva-
tion model (DEM) of 5 meter resolution. A single value was assigned to each
pixel in each data layer.

In the next step a random subdivision of the scarp areas in two mutually ex-
clusive subsets (training and evaluation subsets) was made by a random spatial
criterion. One group (training subset) was used to prepare the susceptibility
meodel comparing locations of the training points with explanatory variables.
The second (evaluation) subset was used to evaluate the predictive power of the
created susceptibility maps.

Thirdly the Weights of Evidence modelling technique was applied to assess
the debris flow susceptibility. This statistical method was firstly used in medi-
cine (Spiegelhater and Kill-Jones 1984) and then applied in mineral resources
prospecting (Bonham-Carter et al. 1988 and 1990, Agterberg et al. 1989). In the
1990’s this method started to be used in landslide susceptibility evaluation (Van
Westen 1993, Van Westen et al. 2003, Siizen and Doyuran 2004). The Weights
of Evidence (WofE) modelling technique utilizes a combination of different
spatial datasets (evidential themes or factor maps) in order to analyse and de-
scribe their interactions and generates predictive models (Bonham-Carter 1994,
Raines et al. 2000). WofE is a data-driven process that uses known occurrences
(training points or response variables) as model training sites to produce predic-
tive probability maps (response theme) from multiple weighted evidence
(Raines 1999). Training points are used in WofE to calculate prior probability,
weights of each evidential theme, and posterior probabilities of the response
theme. The WofE model uses a log-linear form of the Bayesian probability
model. The prior probability Py, that an event {D}could occur per unit area is
calculated as the total number of events over the total area (1). This initial esti-
mate can be later increased or diminished in different areas by the use of avail-
able explanatory variables {B}(2,3). The method is based on the calculation of
positive and negative weights by which the degree of spatial association among
events and explanatory variables may be modelled (4,5).
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The over bar sign represents the absence of an event and/or explanatory
variable. The ratio of the probability of D presence to that of D absence is called
odds (Bonham-Carter 1994). The WofE for all Ds is combined using the natural
logarithm of the odds (logit), in order to estimate the conditional probability of
landslide occurrence. When several Ds are combined, areas with high or low
weights correspond to high or low probabilities of the presence of the D
(Thierry et al. 2007). Other statistics could be automatically calculated by SDM
extension — Spatial Data Modeller (Sawatzky et al. 2008) as a useful measure of
the spatial correlation between explanatory variables and the occurrence of an
event (Bonham-Carter 1994). This modelling technique was applied eleven
times changing the number and combination of the explanatory variables — fac-
tor maps in each experiment. So each final map depends on a different combi-
nation of factor maps.

As a next step the goodness-of-fit was assessed using success rate curves —
SRC (Van Westen et al. 2003). SRC were built by plotting on the X axis the cu-
mulative percentage of susceptible areas (starting from the highest susceptibility
values to the lowest ones) and on the Y axis the cumulative percentage of train-
ing points. The steeper was the curve, the better was the capability of the model
to describe the distribution of landslides. This step was aimed at analysing how
well the model fits the occurrences of 739 mapped debris-flow scarps (training
subset) in terms of the explanatory variables used in each experiment. The de-
gree of fit does not express how well the predictions locate future landslides be-
cause the landslides in the training subset were used to construct the prediction
map.

The fifth step was aimed to evaluate the predictive power of the maps using
a predictive subset: prediction rate curve method — PRC (Chung and Fabbri
2003) to strengthen the model prediction power. The PRC were built in a same
way as the SRC, but instead of using training subset, we used a prediction sub-
set of debris-flow scarps that did not enter into the model calculation. A count
of landslides in the predictive subset that fall into the susceptibility classes of
the prediction map yields prediction rates, which are used here to estimate the
reliability and power of the map generated for predicting locations of future
landslides.

After obtaining 11 susceptibility maps and evaluating their success and pre-
diction rates, a reclassification of the predictive maps into 10 classes was made
(Fig. 3) in order to spatially compare the resulting maps by using Kappa Statis-
tic, Cluster Analysis, and Principal Component Analysis. A 10-classes equal
area classification was applied so that the set of susceptibility classes has the
characteristics as follows: 1) all 10 classes include the same number of pixels
and therefore each class covers the same area on the ground (one tenth of the
entire study area (about 45 km?), 2) the 1st class is the lesq susceptible, and 3) it
is relatively simple to compare the spatial distribution of the susceptibility
classes.
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Finally Kappa Statistic, Cluster Analysis and Principal Component Analysis
were applied to the 11 susceptibility maps classified into 10 classes. X is a sta-
tistical measure of inter-class reliability. It is generally considered a more robust
measure than simple percent agreement calculation (6), since K takes into ac-
count the agreement occurring by chance. Cohen’s Kappa measures the agree-
ment between two rates, each one classifying N items into C mutually exclusive
classes (Rossiter 2004):

- P@-Pe)

6
1- P(e) (6)

Where P(a) is the relative observed agreement among rates, and P(e) is the
probability that the agreement is due to chance. If the rates are in complete
agreement then K = 1. In case there is no agreement among these rates other
than what would be expected by chance, then K < 0 (Tab. 1).

Tab. 1. Relative agreement between rates used by Kappa Statistic (after Rossiter

2004)
K Interpretation i
0 No agreement
0-02 Very low agreement
0.2-04 Low agreement
04-0.6 Moderate agreement
0.6—038 High agreement
08-1 Very high agreement

After applying Kappa Statistic we used Cluster Analysis and Principal Com-
ponent Analysis to strengthen and to visualize the results obtained from Kappa
Statistic. PCA can be used for a dimensionality reduction of the dataset by re-
taining those characteristics of the dataset that contribute most to its variance,
by keeping lower-order principal components and ignoring higher-order ones. It
is also useful as it can provide a simple way to plot complex multivariate data
structures.

RESULTS AND DISCUSSION

The performance of eleven susceptibility maps, obtained by different combi-
nations of factor maps, was assessed with standard evaluation and validation
techniques by the computation of the area under SRC and PRC (AUC)
(Begueria 2006).

According to AUC under SRC, the best working model was represented by
map R 08 {84.04%). This map was calculated using a combination of geology,
land use, slope, planar and profile curvature factor maps. The second best work-
ing model was model R_09 (83.98%) composed of these factor maps: geology,
land use, slope and planar curvature. The third best working model was model
n. 6 (83.34%) built with a combination of geology, land use, slope, internal re-
lief, profile curvature and planar curvature factor maps. The difference of
AUC among these maps is almost negligible.
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Fig. 3. Four of the eleven predicted maps calculated by the WofE

Susceptibility classes are represented by a grey scale ramp ranging from light grey (low suscepti-
bility) to dark grey tones (high susceptibility). On each map, the debris flows scarp areas of the
predictive subset are superimposed. R_01, R_05, R_09 and R_11 are the model numbers.
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In relation to AUC for PRC, again the best performing map was R_09
(83.65%). This map was, as mentioned before, composed of geology, land use,
slope and planar curvature factor maps. The second and third best performing
maps were R_08 (83.57%) and R_11 (82.89%). Map R_08 was made by combi-
nation of geology, land use, slope, planar and profile curvature; while map
R_11 was made from geology, land use, slope, internal relief and planar curva-
ture.

The other maps have very similar results in SRC and PRC (Tab. 2), except
map R_05 that was made by combining only the geology and slope factor maps
(Fig. 4 and 5). This result has lower SRC and PRC and shows that the land use
factor map has great added information value to the model. The difference be-
tween the AUC of all the produced maps is 6.32% in SRC and 5.96% in PRC.

100 -

5 —_—_1
P o =
i R_3
i 0. | —R 4
3 —S
- —- R
.. eR7

it —_—n

2 - RO

— - R0

o= = R

Fig. 4. SRC for the 11 susceptibility maps. Ten models show almost similar results and
make individual curves hard to distinguish. Only model R_5 shows much lower values

For assessment of spatial variability among susceptibility maps, we calcu-
lated the K values. The results are shown in Fig. 6 and 7 where the K-values of
whole susceptibility maps and the highest susceptibility classes are compared.
To easily interpret the results from Kappa statistic we performed a Cluster
Analysis that shows the proximity between different maps. The analysis shows
that only 6 maps have a reliable class consistency (with K-values above 0.6).
This feature is most striking when compared with the results from SRC and
PRC. Excluding map R 05, the other maps (all with almost similar success and
prediction rate values) show levels of proximity really variable (many situations
are characterized by low level of inter-class correlation). This means that maps
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Fig. 5. PRC for the 11 susceptibility maps. Ten models show almost similar results and
make individual curves hard to distinguish. Only model R_5 shows much lower values.

Tab. 2. Results of the success and prediction rate capabilities for the eleven models

AUC SRC AUCPRC

Factor maps

slope, geology, land use, aspect, internal relief, planar, profile

slope, geology, land use, aspect, internal relief

slope, geology, land use, internal relief, planar, profile

slope, geology, land use, planar curvature, profile curvature

Model (%) (%)

R_01 83.30 s

R_02 82.07 81.44

R_03 82.70 82.01 slope, geology, land use, aspect

R_04 82.68 81.99  slope. geology, land use

R_05 77.72 77.70  slope, geology

R_06 83.34 82.81  rvature

R 07 82.09 81.43 slope, geology, land use, internal relief

R_08 84.04 83.57

R_09 83.98 83.65  slope, geology, land use, planar curvature

R_10 82.76 81.99  slope, geology, land use, profile curvature
83.32 82.89

R 11

slope, geology, land use, internal relief, planar curvature
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with similar prediction rates could have a different spatial class distribution. In-
ter-class accuracy increases when only the most susceptible areas are taken into
account, as shown in Fig. 7. This could be seen as a positive result given that a
high accuracy for the higher susceptible classes avoids the problem of false
negatives, Anyway the inter-map accuracy is still low for many combinations.
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Fig. 6. Classification agreement among the susceptibility maps (all classes)
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Fig. 7. Classification agreement among the highest susceptibility class
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A Principal Component Analysis was also performed to strength the results
mentioned above. The result from the PCA shows us two main clusters in com-
paring whole map variability (Fig. 8). Their difference is due to the presence
and absence of the internal relief factor map. This result is very important be-
cause the effect of the presence and absence of one single factor map could
have very strong influence on the results. Moreover the map R_05 seems to be
completely different from the two main clusters. When assessing only the high-
est susceptibility classes the results from PCA seem to be much more diffused

(Fig 9).
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Fig. 8. PCA results of class variability among the susceptibility maps

The results from our analysis have serious implications for which combina-
tion of factor maps to choose, if the results from standard evaluation procedures
are very similar but the spatial pattern of these maps is very different. The proc-
ess of the correct reclassification of the factor maps also plays an important role
in the susceptibility assessment. The maps calculated using an inappropriate se-
lection of factor maps could show results quite far from reality. On the other
hand with a good selection of factor maps reliable susceptibility maps could be
obtained.
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Fig. 9. PCA results of class variability among the highest susceptibility class

CONCLUSIONS

Landslide susceptibility maps are essential tools for spatial planning and
contributions to public safety worldwide (Guzzetti et al. 1999, Glade et al.
2005). Predictive methods can be based on sophisticated mathematical models
operating on complex databases with advanced software and hardware tech-
nologies. Potential users may face some problems of interpretation of the pre-
dicted information. Some effective approaches to testing the accuracy of the
spatial predictions by cross-validation techniques are now available. In our
opinion when we transpose predicted values from a map to a graph (for evaluat-
ing the predictive power of that map) we loose the spatial location of those val-
ues. So, two predictive maps with similar predictive power may not have the
same meaning. To achieve this aim, the same approach was applied several
times changing the combination of factor maps. As we can observe, success-rate
curves and prediction-rate curves (excluding the experiment R_05) show very
similar results, testifying to similarities in susceptibility maps. Application of
Kappa Statistics, Cluster Analysis, and Principal Component Analysis calls for
a really different situation. A careful evaluation of automatically obtained sus-
ceptibility maps with the real conditions in the study area and other available
information is essential. Moreover cautious selection of relevant factor maps
seems to be the most crucial step in the susceptibility assessment on a regional
scale using statistically based methods.

Despite its limitations, statistically based landslide susceptibility maps are a
useful tool to analyse large areas where usually limited geotechnical knowledge
is available to perform physically based modelling.
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Jan Blahut Simone Sterlacchini, Cristiano Ballabio

PRIESTOROVA VARIABILITA MAP NACHYLNOST] UZEMI
NA VZNIK ZOSUVOV. PRIKLADOVA STUDIA UDOLIA
VALTELLINA (TALIANSKE CENTRALNE ALPY)

Hodnotenie nachylnosti tizemi na vznik svahovych pohybov pomocou pravdepodob-
nostno-3tatistickych metéd implementovanych do prostredia GIS sa v poslednych ro-
koch vyznamne zdokonalilo. Napriek tomu, Ze sa v su¢asnosti analyza priestorovych dat
pri spracovavani vysledkov Siroko vyuziva ako efektivny nastroj na nezavisli kontrolu a
validaciu, pomemne mala pozornost’ sa venuje hodnoteniu priestorovej variability ziska-
nych vysledkov. Su¢asné modelovanie vychadza z premisy vzt'ahu medzi minulymi
svahovymi pohybmi a predispozi¢nymi faktormi, ktoré sa pouZivaji na modelovanie
budiceho vyskytu zosuvov. Potvrdilo sa, Ze kvalita predpovedanych vysledkov nerastie
automaticky s mnozstvom vstupnych informécii (geologické pomery, sklon a orientacia
svahu, land use atd’.) a vyznam jednotlivych faktorov nie je vidy spravne vyhodnoteny.
Predlozend &tudia VyhOdﬂO(.UJL rozdielny priestorovy vzorec (pattern) predpovedanych
hodnét réznych map nachylnosti na vznmk mur s takmer zhodnymi krivkami predpove-
danych hodnot.

Studovana oblast’ lezi v adoli Valtellina v talianskych Centralnych Alpach, na Gzemi

2 obci s rozlohou priblizne 450 km”. Udolie Valtellina mnohokrat zasiahli silné a vy-
tn ale zrazky, ktoré spdsobili povodne a mnozZstvo zosuvov. Asi najznamejsia je udalost’
z jula 1987, ked’ pocas troch dni spadlo az 511 mm zrazok a doslo k rozsiahlym zapla-
vam a vyskytu mur. K dal$ich vyznamnym zrazkovym udalostiam, po ktorych nasledo-
vali hlinito-kamenité prudy, doslo v rokoch 1983 a 2000.
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Na vyhodnotenie nachylnosti terénu na vznik hlinito-kamenitych prudov bola pouzi-
ta metoda Weights of Evidence (Bayesianska pravdepodobnostnd metoda), ktord je im-
plementovana v prostredi ArcGIS pomocou extenzie SDM (Sawatzky et al. 2008). Vy-
sledné mapy nachylnosti terénu, ktoré vznikli réznou kombinaciou predispozi¢nych fak-
torov, boli klasifikované rovnakym spdscbom. Prahy medzi jednotlivymi triedami na-
chylnosti terénu boli umiestnené kazdych 10 % Studovaného uzemia zoradeného od naj-
vaé§mi po najmenej nachylné. Na takto klasifikovanych mapach nachylnosti bola analy-
zovana priestorova variabilita rozloZenia jednotlivych tried nachylnosti pomocou Kappa
itatistiky, zhlukovej analyzy a analyzy hlavnych komponentov. Vysledky ukazuju vel-
ké rozdiely v rozlozeni vSetkych tried nachylnosti jednotlivych map aj v ramci najna-
chylnejsej triedy.

Mapy nachylnosti terénu na vznik zosuvov st nevyhnutnym ndstrojom uzemného
planovania a prispievaju k bezpeénosti obyvatel'stva na celom svete (Guzetti et al. 1999,
Glade et al. 2005). Metody predpovedania nachylnosti mdzu byt’ zaloZené na sofistiko-
vanych matematickych a $tatistickych modeloch pracujucich s rozsiahlymi a komplex-
nymi databazami pri pouiti modernych hardvérovych a softvérovych technolégii. Po-
tencialni uzivatelia tychto map sa viak mozu stretavat’ s problémom spravnej interpreta-
cie predpovedanych informacii. V sii¢asnosti st k dispozicii efektivne pristupy k vyhod-
nocovaniu presnosti priestorovych predpovedi. Problémom je, Ze transponovanim prie-
storovych informécii (predpovedanych hodndt) do grafu stricame priestorova zlozku
informécie. Dve mapy predpovedajiice nachylnost’ tak mézu vykazovat' zhodné hodnoty
kriviek predpovedanych hodndt, ale mézu mat’ vel'mi odlisny vyznam. Na analyzu tejto
problematiky sa pouzili rovnaké vstupné udaje (faktorové mapy, subor odluénych oblas-
ti), nasledne boli vytvorené rézne kombinacie jednotlivych faktorovych map. Mapy na-
chylnosti boli potom zhodne klasifikované. Ako vyplyva z vysledkov pri jednotlivych
modeloch, sit SRC a PRC (ckrem modelu ¢. 5) takmer totozné. Pokial' sa vysledky po-
sudzujii $tandardnymi technikami, jednotlivé modely sa zhoduju. Aplikaciou Kappa sta-
tistiky, zhlukovej analyzy a analyzy hlavnych komponentov viak prideme k tplne odlis-
nému vysledku. Z tohto dévodu je ddleZité opatrne pristupovat’ k vysledkom automatic-
ky vypoéitanych modelov. Nevyhnutné je overovat’ ich a porovnavat’ so skuto¢nou situ-
aciou v teréne a vyuzivat' ostatné mozné zdroje informacii.

Naprick svojim obmedzeniam zostavaju §tatistické metédy hodnotenia nachylnosti
izemi na zosuvy délezitym nastrojom na analyzu rozsiahlych oblasti, pre ktoré nie su
k dispozicii dostatoéne presné geotechnické informacie, umoziujice fyzikalne zalozenu
analyzu nachylnosti na zosuvy.
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