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EVOLUTIONARY COMPUTATION

IN CRYPTANALYSIS OF CLASSICAL CIPHERS

Eugen Antal — Martin Eliáš

ABSTRACT. Evolutionary computation have represented a very popular way of

problem solving in the recent years. This approach is also capable of effectively
solving historical cipher in a fully automated way. This paper deals with empirical
cryptanalysis of a monoalphabetic substitution using a genetic algorithm (GA)
and a parallel genetic algorithm (PGA). The key ingredient of our contribution
is the parameter analysis of GA and PGA. We focus on how these parameters
affect the success rate of solving the monoalphabetic substitution.

1. Introduction

Historical (also called classical) ciphers belong to historical part of cryptology.
They had been used until the expansion of computers and modern cryptosys-
tems. Under a classical cipher we can consider a standard cryptosystem based
on commonly used definition [6].

Comparing the main properties of classical ciphers to modern cryptosystems
(used nowadays) leads to major differences in their properties. Some selected
differences [5] are:

• The encryption algorithm of classical ciphers can be performed using paper
and pencil (or some mechanical device) easily.

• Classical ciphers are mostly used to encrypt text written in some natural
language.

• Classical ciphers are vulnerable to statistical analysis.
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In this paper we use the following notation:

• P — plain text;

• C — cipher text;

• AP — plain text alphabet;

• AC — cipher text alphabet;

• k — key (secret parameter of the cryptosystem);

• ek — encryption function parametrised with a key;

• dk — decryption function parametrised with a key.

2. Cryptanalysis of classical ciphers

Cryptanalysis of historical ciphers can be seen (in a simplified way) as an
effort to translate the encrypted text (also called cipher text, C) into a readable,
meaningful text (plain text, P ). The term cryptanalysis thus represents a method
aimed at the correct decryption of the C [6], [7]. According to the Kerckhoffs’
principle, we assume the knowledge of the cryptosystem, thus the aim of the
cryptanalysis is to find the correct key used to encrypt the given ciphertext1.

Based on the level of automatisation, the cryptanalysis can be: computer
assisted, partially automatic and automatic cryptanalysis [5], [6]. In the first
case, the computer serves only as a helper tool to perform some computation.
In the case of partially-automatic cryptanalysis the computer searches the solu-
tion space automatically, but some operation steps are controlled by a cryptan-
alyst. The automatic way works as a black-box, the cryptanalyst obtains only
the final solution.

The methods of automated cryptanalysis are mostly based on the following [5]
approaches:

(1) Brute force — the cryptanalysis is based on the full key space search.
This approach is applicable only in cases, when the key space is not too
large and its performance highly depends on the methods of key quality
evaluation. The efficiency of this method can be increased by negative tests
or fast scoring functions [5], [6].

(2) Specific methods based on cipher’s weaknesses — in some cases, it is pos-
sible to construct a special cryptanalysis method that uses some cipher
specific weaknesses2 [5].

1“A process of key recovery, or plain text recovery without the knowledge of the key” [7].
2The attack on the Zodiac Z408 homophonic cipher based on the cyclic repetition of symbols

can serve as an example [3].
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(3) Using meta-heuristics — an intelligent solution space search, where the
brute-force is not applicable. The main idea is to evaluate the quality of
keys using a fitness function, where the goal is to find the key with the
highest fitness value (the global optimum of the function) more efficiently
than in the case of brute-force [4], [5].

Meta-heuristics are based on iterative search of the solution space. One or
more solution candidates are examined in each iteration. The search process is
controlled by comparison of new solution candidates with candidates from the
previous iteration, where the candidates with better fitness values are favoured.
One of the most popular meta-heuristic methods is a genetic algorithm.

2.1. Genetic algorithm

The genetic algorithm (GA) is based (inspired) on the principle of natural
evolution by C h a r l e s D a r w i n. The core elements are genes, chromosomes
and population, where following genetic operations are performed on these ob-
jects: selection, mutation and crossover [8], [9].

• Gene is the basic building element of GA (low level encoded data). In most
cases genes are encoded numerically or binary.

• Chromosome consists of genes, and represents the parameters (or prop-
erties) of a given problem. In our case it represents a key of a cryptosystem.

• Population is a fixed size group of chromosomes.

• Generation represents a population in some computation phase (itera-
tion).

• Fitness function computes the fitness value (score) of a chromosome.
The goal is to find the maximal (or minimal) value of a fitness function.

• Fitness represents the quality of a solution candidate.

• Selection is a process of selecting chromosomes into a subpopulation based
on a selection strategy. This subpopulation serves as an input to a method,
where chromosomes are modified via genetic operations (crossover and mu-
tation). The main idea behind the selection is to investigate the chromo-
somes depending on their fitness value.

• Mutation means some small random change of genes in a chromosome.
The aim is to maintain the diversity of chromosomes.

• Crossover is an operation, where two or more chromosomes (parents) are
selected and new solutions are reproduced based on them. The crossover
creates new solution candidates (children) containing information from
both parents.
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Figure 1. Structure of GA (based on [8]).

A very important process is to specify the problem encoding (fitness function
parameters). In case of classical ciphers the chromosome represents the key,
thus the genes can be encoded as letters or numbers. The next step is to specify
the search space and the fitness function and then the population size and the
scheme.

The main principle of GA is visible on Figure 1:

(1) Init — Generates the initial population P0.

(2) Fitness — Evaluates the quality of the current population Pk using a
fitness function.

(3) End?— The termination criteria are tested. If the criteria are satisfied,
the best chromosomes from the population represent the solution.

(4) Selection — If the termination criteria are not satisfied, new subpopu-
lations are selected. One or more chromosomes with the best fitness are
selected (group A). These chromosomes ensure the convergence (achieving
at least as good solutions as in the previous generation). Another subpop-
ulation is moved into the crossover step (group B).

(5) Crossover — Parents from B are mated. Child chromosomes C are now
moved to the mutation process.

(6) Mutation — Small random changes are performed on input chromosomes
producing D.

(7) New population — Pk+1 is a union of groups A∪D. GA continues with
step 2.
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The presented scheme serves only as an example. A custom GA may differ in
any step. In this paper we investigate several different schemes.

2.2. Parallel genetic algorithm

The parallel genetic algorithm (PGA) can be seen as an additional organisa-
tion level of a genetic algorithm. The goal of PGA is to increase the performance
of GA. PGA offers some new benefits in comparison with GA: parallel search in a
large multimodal search space, better organisation, higher efficiency on the same
number of fitness function calls, higher probability of leaving local optimas [9].

The computation is performed on isolated and independent subpopulations
called islands3 [9]. Each island represents an instance of GA. The information
between islands is exchanged using a migration process [9]. The time and the
way of migration depends on the selected migration model. During the migration
process one or more chromosomes are selected in one island and replace the
same number of chromosomes in a different island. The most frequently used
strategy is selecting the best/random chromosomes from island A and replacing
the random/worst chromosomes in island B [9]. Topology describes how the
islands are connected together [9] (different topologies are shown on Figure 2).

Figure 2. Different topologies of PGA [9].

3In most cases 4 or more islands are used [9].
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3. GRID

One of our goals was to investigate the possibility of cryptanalysis of clas-
sical ciphers on a grid. Grid can be seen as a group or network of computers
connected via LAN or another network technology. The nodes can be separated
geographically. The goal of this network is to provide a large computation power.
We used a supercomputer IBM iDataPlex available in CVT STU4 [10], that con-
sists of 52 computational nodes. Each node has the following configuration:

• cpu: 2 x 6 cores Intel Xeon X5670 2.93GHz;

• ram: 48GB;

• hdd: 2TB 7200RPM SATA;

• gpu: 2 x NVIDIA Tesla M2050 448 cuda cores, 3GB ECC ram;

• operating system: Scientific Linux 6.4;

• network connection: 2 x 10Gb/s Ethernet.

In summary we have 624 cpus, 3584 cuda cores, 2,5TB ram with performance
of 6,76 TFLOPS (max. 40kW) [10].

4. Experiments with GA

Our first experiment deals with empirical solving of a monoalphabetic sub-
stitution using a genetic algorithm. We searched for those parameter settings
of GA, which can produce the best success rate. We used our own implementation
of GA, written in C++. We focused on parameters like: population size, number
of iterations of GA, combination of genetic operations (schemes), namely:

• Population size: 10, 20, 50 and 100 chromosomes.

• Iterations: 10000 and 50000.

• Schemes: presented in Table 1.

The first column in Table 1 is the name of the created scheme. The next
columns represents the chain of genetic operations. Row of a scheme represents
a chain of operations applicable to the actual population. As it can be seen on the
scheme J, the first operation in the first row is selection of the best chromosome
(elitism), this chromosome proceeds to the next generation without any changes.

4hpc.stuba.sk

184



EVOLUTIONARY COMPUTATION IN CRYPTANALYSIS OF CLASSICAL CIPHERS

The second row contains the same selection, where the chromosome is mutated
(1 x swapping two randomly selected genes in the chromosome). The third row

Table 1. Schemes of GA.

Scheme Selection Mutation Crossover Subpop.

A Tournament(n) Swap(1) - -

B Random(n) Swap(1) - -

C Tournament(n/2) Swap(1) - -

Tournament(n/2) - - -

D Tournament(n/2) Swap(1) - -

Random(n/2) - - -

E Elite(1) - - -

Elite(1) Swap(1) - -

(n-2) * Tournament(2) - Singlepoint(2)

F Elite(1) - - -

Elite(1) Swap(1) - -

(n-2) * Tournament(2) - Singlepoint(1) -

G Elite(1) - - -

Elite(1) Swap(1) - -
(
(n− 2)/2

)
* Tournament(2) - Singlepoint(2) Swap(1)

H Elite(1) - - -

Elite(1) Swap(1) - -

(n-2) * Random(2) - Singlepoint(1) -

I Elite(1) - - -

Elite(1) Swap(1) - -

(n-2)/2 * Random(2) - Singlepoint(2) -

J Elite(1) - - -

Elite(1) Swap(1) - -
(
(n− 2)/2

)
* Random(2) - Singlepoint(2) Swap(1)
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of scheme J contains a
(
(n − 2)/2

)
-time call of random selection (of two chro-

mosomes). These randomly chosen chromosomes are mated by a single point
crossover, and their children are additionally mutated.

The success rate of these schemes was empirically tested on generated cipher
texts of lengths {50, 100, 150, . . . , 2000}. We used 100 different texts for each
length (totally 4000). Each cipher text was created from a randomly selected5

plain text. Each plain text was encrypted with a randomly generated key (per-
mutation). After the execution of a GA, the best chromosome from the popula-
tion was used as an output. After decryption, the result was compared with the
correct plain text. In our experiments we used fitness functions based on Man-
hattan distance of 2-grams (also 3-grams) from their referential values. Analysis
of different fitness functions is out of scope of this work. Extensive analysis of
usable fitness functions is presented in work [2].

4.1. GA results

This experiment was performed on 96 computational nodes on hpc.stuba.sk.
320, 000 runs of GA were called for one fitness function.

Results for the smallest investigated settings (10000 iterations and 10 chro-
mosomes) are visible on Figure 3. Scheme B (random selection and swap as
mutation) produces the worst results, as expected. The random selection gives
too much diversity. Slightly better results can be obtained by schemes A and D.

The most surprising result is for scheme C. We expected that scheme without
elitism cannot perform very well. The best results can be obtained by using
schemes containing elitism, namely scheme E, F, G, H, I, J. Results for GA
with 50 chromosomes are visible on Figure 4. Increasing the population size
gives a low increase of success rate for schemes A and D and a higher increase
of success rate for scheme C. In case of other schemes we also obtained better
results. We obtained the best results for 50000 iterations and 100 chromosomes
(Figure 5). Increasing the population size and iterations count helps to find
better solutions for shorter text lengths.

5From the Open American National Corpus (AONC) [1]
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Figure 3. GA results for 10000 iterations and 10 chromosomes.
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Figure 4. GA results for 10000 iterations and 50 chromosomes.
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Figure 5. GA results for 50000 iterations and 100 chromosomes.

189



EUGEN ANTAL — MARTIN ELIÁŠ
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Figure 6. GA results for scheme C.
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Figure 7. GA results for scheme E.
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To summarise this experiment, it stems from our results that the missing se-
lection pressure (scheme B) does not allow the GA to converge to good results.
As visible for scheme E (Figure 7), the increase in the populations size and
iterations increases the success rate only slightly. As mentioned before, the most
surprising result is for scheme C (Figure 6), since it can produce notable re-
sults without elitism. Elitism is very important for GA to obtain usable results.
We recommend to use schemes C or E with minimum 50 chromosomes and with
10000 iterations.

5. Experiments with PGA

In the next experiment we deal with parallel genetic algorithm. We focused
on parameters topology, number of islands and migration time. We adapted
schemes C, E and F from the previous experiment to be used within the PGA.
We used topologies b, d, e, f from Figure 2 with 3, 5 and 11 islands. For 3 and 11
islands we correct some topologies, scheme b has a triangular shape in the case
of 3 islands, and an additional square was added to nodes 4 and 6 in the case of
11 islands. We selected 30000 GA iterations, with the following migration times:
30, 6 and 3 times (once per 1000, 5000 and 10000 iterations).

The experiment was performed on the same dataset. The final result was
the best chromosome selected from all populations (all islands) for topologies
b and d. In the case of topologies e and f, the best result was selected from the
island located on top of the topology.

5.1. PGA results

7, 884, 000 runs of GA were called for one fitness function in this experiment.

Result for topologies b a d are visible on Figures 8 and 9. We can state from the
results that the topology does not really influence the success rate in the case of
our problem. But the PGA obtains better results compared to GA. In the case
of schemes E and J we get 80% success rate for short texts of length 250/500
letters and almost 100% success rate for texts longer than 1000 letters.

All schemes have better results for PGA. As we can see on Figures 10 and 11
increasing the population size (also increasing the number of islands) increases
the success rate. Bigger difference can be seen between population 20 (Fig-
ure 10) and 50 (Figure 11), especially in the scheme C.
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Figure 8. Success rate depending on cipher text length (topology b/3, 10

chromosomes).
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Figure 9. Success rate depending on cipher text length (topology d/3, 10
chromosomes).
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Figure 10. Success rate depending on cipher text length (topology b/5,
20 chromosomes).
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Figure 11. Success rate depending on cipher text length (topology b/11,
50 chromosomes).
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Summary

In the first experiment we investigated different schemes of a genetic algo-
rithm. The goal was to find a suitable scheme producing the best results. This
experiment was performed on 96 nodes of grid. We were able to obtain 80%
success rate for seven schemes out of ten for texts of length 500 letters and more
than 90% for texts longer than 1000 letters. The best schemes were selected and
used in the next experiment with PGA. Four different topologies and three mi-
gration times were tested in these schemes6. From achieved results we can state,
that in our case (solving monoalphabetic substitution) the topology has almost
no effect on the result. The success rate depends on the size of populations and
on the number of islands. Using PGA we were able to achieve near 100% suc-
cess rate for texts of length 500 letters. We achieved very notable results also on
shorter text lengths.
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