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MULTIDIMENSIONAL COPULA MODELS

FOR PARALLEL DEVELOPMENT

OF THE US BOND MARKET INDICES

Jozef Komorńık — Magdaléna Komorńıková –

– Tomáš Bacigál — Cuong Nguyen

ABSTRACT. Stock and bond markets co–movements have been studied by many
researchers. The object of our investigation is the development of three U.S. in-
vestment grade corporate bond indices. We concluded that the optimal 3D as well
as partial pairwise 2D models are in the Student class with 2 degrees of freedom

(and thus very heavy tails) and exhibit very high values of tail dependence coef-
ficients. Hence the considered bond indices do not represent suitable components
of a well-diversified investment portfolio. On the other hand, they could make
good candidates for underlying assets of derivative instruments.

1. Introduction

In this paper, we apply 2- and 3-dimensional copula models to the triple
of time series of returns of indices of US financial markets (using daily data
from Bloomberg). The triple of indices (US CBI) contains the Bank of America
Merrill Lynch US Corporate Bond Index (ML), the Barclays US Corporate &
Investment Grade Index (BAR), Dow Jones Corporate Bond Index (DJ) from
the time period from January 1997 to May 2014. Our results show high values of
Kendalls correlation coefficients as well as tail dependencies between all couples
of this triple of indices.

The paper is organized as follows. The second section is devoted to a brief over-
view of the theory of copulas. In the third section we present the utilized method-
ology of copula fitting to two- and three-dimensional time series. The fourth
section contains application to real data modeling. Finally, some conclusions are
presented.
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2. Copulas

Copula represents a multivariate distribution that captures the dependence
structure among random variables. It is a great tool for building flexible multi-
variate stochastic models. Copula offers the choice of an appropriate model for
the dependence between random variables independently from the selection of
marginal distributions. This concept was introduced in the late 50’s and became
popular in several fields beyond statistics and probability theory, such as finance,
actuarial science, fuzzy set theory, hydrology, civil engineering, etc.

Due to [11]
F (x1, . . . , xn) = C

[
F1(x1), . . . , Fn(xn)

]
,

where F is joint cumulative distribution function of random vector (X1, . . . , Xn),
Fi, i = 1, . . . , n is marginal cumulative distribution function of Xi, and C :
[0, 1]n → [0, 1] is a copula which is n-increasing function with 1 as neutral
element and 0 as annihilator, see, e.g., [8].

Besides three fundamental copulas

M (x1, . . . , xn) = min{x1, . . . , xn}, W (x1, x2) = max{x1 + x2 − 1, 0},

Π(x1, . . . , xn) =

n∏
i=1

xi

which model perfect positive dependence, perfect negative dependence (not ap-
plicable for n > 2) and independence, respectively, there exist numerous para-
metric classes, such as Archimedean, Extreme-Value and elliptical copulas. With-
in the last there belong such important parametric families as Gaussian copulas

CG(x1, . . . , xn) = Φ
[
Φ−1

1 (x1), . . . ,Φ
−1
n (xn)

]
(1)

and Student t-copulas

Ct(x1, . . . , xn) = t
[
t−1
1 (x1), . . . , t

−1
n (xn)

]
(2)

(where Φ and t are joint distribution functions of multivariate normal and Stu-
dent t distributions, similarly Φ−1

i and t−1
i are univariate quantile functions

related to Xi), able to flexibly describe dependence in multidimensional random
vector.

The Archimedean class [5]

CA(x1, . . . , xn) = φ(−1)
[
φ(x1) + · · ·+ φ(xn)

]
(3)

(with generator φ : [0, 1] → [0,∞] and its pseudo-inverse φ(−1)) is much easier
to handle, yet it is reasonably useful only in two-dimensional case.
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Tail dependencies are functions that describe the dependence structure of
multi-dimensional distributions in the tail and are defined (for bivariate case)
as follows [8].

Let X1 and X2 be continuous random variables with distributions functions
F1 and F2 and with copula C, then the lower tail dependence coefficient is
defined by

λL = lim
u→0+

Pr
(
X1 ≤ F−1

1 (u) | X2 ≤ F−1
2 (u)

)
= lim

u→0+

C(u, u)

u
, (4)

and the upper tail dependence coefficient by

λU = lim
u→1−

Pr
(
X1 > F−1

1 (u) | X2 > F−1
2 (u)

)
= lim

u→1−

1− 2u+ C(u, u)

1− u
. (5)

(provided that the above limits exist).

Note that in the above formulas (4) and (5), the role of X1 and X2 are
exchangeable.

Analogically for a n-dimensional copula C(x1, . . . , xn) we define [3]

λL,i = lim
u→0+

Pr
(
Xi ≤ F−1

i (u) | F−1
j (u) ≤ u for all j �= i

)
(6)

and

λU,i = lim
u→1−

Pr
(
Xi ≥ F−1

i (u) | F−1
j (u) ≥ u for all j �= i

)
. (7)

Since the role of the variables for Archimedean copulas is exchangeable, the
above formulas (6) and (7) of λL,i and λU,i do not depend on i for them.

Archimedean copulas can capture different tail dependencies, i.e., λL �= λU .
However, their exchangeability property can cause problems for their utilization
for modeling data in higher dimensions. The Gaussian copulas do not have lower
and upper tail dependencies. The t copula has upper tail dependencies λU,i (and
because of radial symmetry) equal lower tail dependence λL,i for i = 1, . . . , n.

3. Fitting of copulas

Given m observations {Xj,i}i=1,...,m of j-th random variable Xj , the param-
eters θ of all copulas under consideration were estimated by maximizing the
likelihood function

L(θ) =

m∑
i=1

cθ(U1,i, U2,i, U3,i), (8)

where cθ denotes density of a parametric copula family Cθ, and

Uj,i =
1

m+ 1

m∑
k=1

1(Xj,k ≤ Xj,i), i = 1, . . . ,m, (9)
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are so-called pseudo-observations. Goodness-of-fit was performed by a test pro-
posed by [6] and based on empirical copula process using Cramer-von Misses
test statistic

SCM =

m∑
i=1

[
Cθ(U1,i, U2,i, U3,i)− Cm(U1,i, U2,i, U3,i)

]2
(10)

with empirical copula

Cm(x) =
1

m

m∑
i=1

3∏
j=1

1(Xj,i ≤ xj)

and indicator function 1(A) = 1 whenever A is true, otherwise 1(A) = 0.

For selection of the optimal copula for a given couple, we utilized the scoring
criteria based on Vuong and Clarke Tests [1].

The test proposed by C l a r k e (2007) [2] allows to compare non-nested mod-
els with copulas having densities c1 and c2 with estimated parameter sets θ1
and θ2. The null hypothesis of statistical indistinguishability of the two mod-
els is

H0 : Pr(ki > 0) = 0.5 for all i = 1, . . . ,m, (11)

where

ki = log

[
c1(ui|θ1)
c2(ui|θ2)

]

for observations ui, i = 1, . . . ,m.

Since under statistical equivalence of the two models the log likelihood ratios
of the single observations are uniformly distributed around zero and in expecta-
tion 50% of the log likelihood ratios greater than zero, the test statistic

B =

m∑
i=1

1(0 ≤ ki ≤ ∞), (12)

where 1 is the indicator function, has the binomial distribution with parameters
m and p = 0.5. Model 1 is interpreted as statistically equivalent to model 2 if B
is not significantly different from the expected value mp = m/2.

The likelihood-ratio based test proposed by V u o n g (1989) [12] can be used
for comparing non-nested models. For this let c1 and c2 be two densities of copu-
las with estimated parameter sets θ1 and θ2. We then compute the standardized
sum ν of the log differences of their pointwise likelihoods

ki = log

[
c1(ui|θ1)
c2(ui|θ2)

]

for observations ui ∈ [0, 1], i = 1, . . . ,m, i.e., statistic

ν =
1

m

∑m
i=1 ki√∑m

i=1(ki − k̄)2
with k̄ =

1

m

m∑
i=1

ki. (13)
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Vu o n g (1989) [12] shows that ν is asymptotically standard normal. According
to the null-hypothesis

H0 : E[ki] = 0 for all i = 1, . . . ,m, (14)

we hence prefer model 1 to model 2 at level α if

ν > Φ−1(1− α/2),

where Φ−1 denotes the inverse of the standard normal distribution function. If

ν <−Φ−1(1− α/2),

we choose model 2. If, however,

|ν| ≤ Φ−1(1− α/2),

no decision among the models is possible.

4. Modeling results

All calculations were done in R [9] with the help of packages [7] and [10].

In package [10] several bivariate copula families are included for bivariate
analysis as well as for multivariate analysis. It provides elliptical (Gaussian and
Student-t) as well as Archimedean (Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7
and BB8) copulas. For any copula families rotated versions

C90(x1, x2) = x2 − C(1 − x1, x2),

C180(x1, x2) = x1 + x2 − 1 + C(1− x1, 1− x2) survival copula,

C270(x1, x2) = x1 − C(x1, 1− x2),

are included to cover negative dependence, too. For more and detailed informa-
tion about copula families see [8].

The Vuong as well as the Clarke test compare two models against each other
allow for a decision among several models. In B e l g o r o d s k i [1] this is used
for bivariate copula selection. It compares a model 0 to all other possible models
under consideration. If model 0 is favored over another model, a score of +1
is assigned and similarly a score of -1 if the other model is determined to be
superior. No score is assigned, if the respective test cannot discriminate between
two models.

The models compared here are bivariate parametric copulas and we would like
to determine which family fits the data better than the other families. The family
with the highest score should be selected. For more and detailed information
about the goodness-of-fit test see B e l g o r o d s k i [1].

65
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We can see the graphs of considered triple of time series in the Figure 1.
We see that the Merrill Lynch US Corporate Bond Index (ML) mostly leads the
remaining two in the considered triple (with deeper losses in the crisis period).

Figure 1. US Corporate Bond indices.

Before further analyses, we filtered all considered time series by ARMA-
-GARCH filters [4]. Results of the introductory standard analysis of the residuals
are presented in Table 1 and Figure 2. We see that the values of the Kendall’s
correlation coefficients are fairly high (contained in the interval [0.825, 0.836]) for
all 3 considered couples of residuals. Their strong dependencies are illustrated
in Figure 2.

Table 1. Values of the Kendall’s correlation coefficient for all couples of
the (filtered) returns of US CBI.

bar dj ml

bar 1 0.825 0.826

dj 0.825 1 0.836
ml 0.826 0.836 1

Figure 2. Scatter plot for all couples of the (filtered) returns of US CBI.
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We prolonged our analyses by examining developments of the Kendalls corre-
lations. We have chosen annuals frequency of calculations of Kendalls correlation
coefficients over the intervals of 24 months overlapping by 12 months with the
intervals for calculation of the neighboring values of Kendalls correlation coef-
ficient. Altogether, we have calculated a sequence of 17 such values. The last
of them was calculated from the interval of 17 months. We can see (Figure 3)
that all three correlation coefficients exhibit extremely parallel development and
their values are contained in the interval [0.7, 0.95] of high values and by far
do not approach the rejection limits for tests of their zero value (that equals
0.029).

Figure 3. Evolution of Kendall’s τ for all couples of the (filtered) returns
of US CBI.

Table 2. GoF test for 3D copulas, based on the Cramer–von–Mises method.

Copula par1 par2 par3 CvM

Clayton 5.847 x x 5.236

Frank 21.470 x x 0.441

Gumbel 5.221 x x 0.772

Gauss 0.994 x x 0.801

Gauss1 0.928 0.957 0.947 0.765

t-copula 0.973 x x 0.088

t-copula1 0.967 0.977 0.973 0.082

Next we calculated global copula models for the triple of considered series
(see Table 2). We see that (among the considered copulas) the most competi-
tive models (by far) provide Student class copulas, where one with 3 parameters
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(that have very similar values) is closely followed by the best one-parameter
Student class model (with the parameter that is also close to the mentioned
3 parameters of the best 3-parametric model). The best copula with respect
to Cramer–von–Mises (CvM) test statistic is the trivariate t-copula with test
statistic SCM = 0.082 and parameters: and The best one–parameter Student
class copula (with Cramer–von–Mises test statistic SCM = 0.088) has parame-
ters: ρ = 0.973, λL = λU = 0.804 and degrees of freedom df = 2. A very low
value of the degree of freedom indicate heavy tails that also correspond to fairly
high values of the coefficients of tail dependence. Among the bivariate copula
models the best ranking according to the Vuong test was achieved (for all three
considered couples) by the models in the Student class quite closely followed by
the models in the BB1180 class. According to the scoring based on the Clarke
test, the results are slightly different. The models from the Student class are
the best for the couple bar & dj and dj & ml, while they share the best rating
with the BB1180 for the couple bar & ml (see Table 3, Table 4 and Table 5).
The optimal bivariate Student class copulas have 2 degrees of freedom for all
three couples. Their contour plots are presented in Figure 4.

Table 3. Results for Vuong–Clarke scoring test for couple bar & dj.

Copula θ1 θ2 λL λU Vuong Clarke

Normal 0.928 x 0 0 -5 0

t Copula 0.965 x 0.777 0.777 16 15

Clayton 5.507 x 0.802 0 -8 -4

Gumbel 4.897 x 0 0.848 7 6

Frank 20.602 x 0 0 8 14

Joe 5.944 x 0 0.876 -7 -8

BB1 0.736 3.619 0.771 0.789 12 9

BB6 1.001 4.717 0 0.842 -15 -15

BB7 4.312 3.761 0.832 0.826 2 2

BB8 5.000 0.963 0 0 -4 -12

rClayton 4.908 x 0 0.868 -10 -10

rGumbel 4.855 x 0.846 0 8 9

rJoe 6.044 x 0.878 0 -6 -2

rBB1 0.527 3.950 0.808 0.006 14 13

rBB6 1.001 4.852 0.847 0 -15 -15

rBB7 4.704 3.286 0.841 0.810 5 4

rBB8 6.000 0.970 0 0 -2 -6
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Figure 4. Contour plot of densities of t-copulas for couples bar & dj (left),
bar & ml (middle) and dj & ml (right).

Table 4. Results for Vuong–Clarke scoring test for couple bar & ml.

Copula θ1 θ2 λL λU Vuong Clarke

Normal 0.957 x 0 0 -7 0

t Copula 0.976 x 0.815 0.815 16 14

Clayton 7.455 x 0.911 0 -7 -4

Gumbel 6.069 x 0 0.879 4 4

Frank 25.580 x 0 0 2 11

Joe 7.380 x 0 0.901 -13 -11

BB1 0.987 4.205 0.846 0.821 12 10

BB6 1.001 5.902 0 0.876 4 2

BB7 5.000 5.949 0.890 0.851 0 -5

BB8 6.000 0.985 0 0 -14 -16

rClayton 6.374 x 0 0.897 -15 -12

rGumbel 6.240 x 0.882 0 9 11

rJoe 8.032 x 0.910 0 -5 -3

rBB1 0.483 5.143 0.856 0.001 14 14

rBB6 1.001 6.000 0.878 0 9 6

rBB7 5.000 4.563 0.851 0.859 0 -8

rBB8 6.000 0.993 0 0 -9 -13

Based on the above mentioned results (together with the dominance of the
Student class among the 3-dimensional models that is also providing a supporting
argument for optimality of the Student class bivariate copulas for all 3 pairs of
the considered indices) we can conclude that the investigated triple of investment
returns exhibit (pairwise) high values of tail dependencies.
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Table 5. Results for Vuong–Clarke scoring test for couple dj & ml.

Copula θ1 θ2 λL λU Vuong Clarke

Normal 0.947 x 0 0 -4 0

t Copula 0.972 x 0.788 0.788 16 15

Clayton 6.370 x 0.867 0 -12 -8

Gumbel 5.626 x 0 0.869 8 6

Frank 23.077 x 0 0 0 13

Joe 6.950 x 0 0.895 -10 -9

BB1 0.987 4.250 0.846 0.821 13 11

BB6 1.001 5.902 0 0.876 6 4

BB7 5.000 5.949 0.890 0.851 0 -3

BB8 6.000 0.985 0 0 -11 -15

rClayton 6.374 x 0 0.897 -12 -10

rGumbel 6.240 x 0.882 0 8 6

rJoe 8.032 x 0.910 0 -10 -7

rBB1 0.483 5.143 0.856 0.001 13 13

rBB6 1.001 6.000 0.878 0 6 4

rBB7 5.000 4.563 0.851 0.859 0 -5

rBB8 6.000 0.993 0 0 -11 -15

We also calculated locally best models on the system of 2-years’ intervals
mentioned above. Development of their rating scores based both on Vuong and
Clarke tests for all considered couples are presented in Figures 5, 6, 7. A clear
local dominance of the Student class models is demonstrated.

Figure 5. Evolution of scoring based on Vuong (left) and Clarke (right)
tests for couple bar & dj.
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Figure 6. Evolution of scoring based on Vuong (left) and Clarke (right)
tests for couple bar & ml.

Figure 7. Evolution of scoring based on Vuong (left) and Clarke (right)
tests for couple dj & ml.

Figure 8 contains graphs of development of the parameters and tail depen-
dence coefficients of the best Student local models.

Figure 8. Evolution of parameters (left) and tail dependence coefficients
(right) of local optimal Student class models.
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Finally, Figure 9 contains comparable graphs of the development of the pa-
rameters and tail dependence coefficients of the optimal one-parametric Student
3D models.

Figure 9. Evolution of parameters and tail dependence coefficients of the

optimal 1-parametric Student class 3D copula.

5. Concluding remarks

We concluded that the returns of the considered bond indices have very high
coefficients tail dependence and thus do not represent suitable components of
well diversified portfolios. On the other hand, their optimal models are in the
Student class with low degrees of freedom (only 2!) that implies high values of
quantile functions, hence they could be good candidates for underlying assets of
derivative instruments.

The results of our modeling are very impressive. The trends in development
of the outcomes of the local models are surprisingly parallel. The values of pair-
wise correlations between the considered inputs as well as of the calculated co-
efficients of tail dependence of local optimal partial pairwise 2D copulas and
one-parametric local 3D Student copulas exhibit extremely similar behavior.
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