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ON AN APPLICATION

OFA HIGHER ORDER INVERSION THEOREM

TO CERTAIN INTEGRAL EQUATIONS AND

BOUNDARY VALUE PROBLEMS

Piotr Fija�lkowski

ABSTRACT. In this paper, we consider examples of the application of a cer-
tain higher order inversion theorem to demonstrate the existence of a solution
of a certain class of integral equations and a class of boundary value problems
equivalent to these equations.

1. Introduction

The classical result on the local invertibility of a mapping between Banach
spaces is the following well-known Local Inversion Theorem:

������� 1� Let X, Y be Banach spaces. Assume T : X ⊃ U→Y is a C1-map-
ping from an open neighbourhood U of a point x0 ∈ X into Y.

If the Fréchet derivative T ′(x0) : X → Y of T in x0 is an invertible mapping
from X onto Y, then T is a local diffeomorphism in a neighbourhood of x0, this
means, there exist neighbourhoods V ⊂ U of x0 and W of T (x0) such that the
mapping T |V is a diffeomorphism V onto W.

If T is a Ck-mapping in a certain neighbourhood of x0, then the inverse
mapping is of the Ck-class in a certain neighbourhood of T (x0).

The classical result on the global invertibility of a mapping between Banach
spaces is the following Hadamard-Levy’s theorem (see [7] and [11] for example):

������� 2� Let X and Y be Banach spaces and T : X → Y a C1-mapping.
Suppose that, for any x ∈ X, T ′(x) is an isomorphism X onto Y and

sup
x∈X

∥∥(T ′(x)
)−1∥∥ < ∞.

Then the mapping T is a diffeomorphism X onto Y.

c© 2017 Mathematical Institute, Slovak Academy of Sciences.
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Because of the importance of the topic, the global invertibility was considered
by many authors. For example, in [2], there are described sufficient conditions
for a locally Lipschitz mapping f : Rn → R

n to be invertible. In [8], there are
given some sufficient conditions for a mapping from the Banach space to the
Hilbert space to be a diffeomorphism. As well, the homeomorphism between
Banach spaces is considered in [3], [9] and [13].

There are many examples of application of local and global inversion theo-
rems to demonstrate solutions of differential equations, including the initial and
boundary value problems. Simple examples of this kind are Examples 1.4 and
1.5 in [1], pages 34–35, where Theorem 1 is applied. The same book contains
a more complicated example of demonstrating existence of solutions of Dirichlet
problems using a specific global inversion theorem ([1], pages 61–78).

As well, the papers [10] and [11] deal with an application of global inversion
theorem to differential equations.

In [4], [5] and [6], there is described a local and a global inversion theorem
for mappings with a singular point in which several derivatives vanish. We shall
apply them to integral equations and boundary value problems.

2. Local and global inversion theorems for a mapping
with a singular point

We use the following local inversion theorem proved in [4, Theorem 1]:

������� 3� Let X, Y be Banach spaces, and n a non-negative integer. Suppose
T : X ⊃ U → Y is a C2n+1-mapping from an open neighbourhood U of a point
x0 ∈ X into Y. Let, for 1 ≤ k ≤ 2n, the derivatives of order k satisfy the
condition

T (k)(x0) = 0.

Let, for x ∈ X,

f(x) := T (2n+1)(x0).x
(2n+1)/(2n+ 1)!

and suppose that f maps X onto Y and that, for a certain constant C > 0,

C‖x‖2n‖h‖ ≤ ‖f(x+ h)− f(x)‖ for x, h ∈ X. (1)

Then T is a local homeomorphism in a neighbourhood of x0, this means there
exist neighbourhoods V ⊂ U of x0 and W of T (x0) such that T |V is a homeo-
morphism V onto W .

The following theorem proved in [5, Theorem 1.6, p. 21] describes conditions
equivalent to those from the previous theorem.
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������� 4� Let X, Y be Banach spaces. Assume f̃ : X2n+1 → Y is continuous
(2n+ 1)-linear mapping. Let us consider the mapping f : X → Y,

f(x) := f̃(x, x, . . . , x).

If f satisfies condition (1) and f(X) = Y, then there exists a constant C1 > 0
such that

C1‖x‖2n‖h‖ ≤ ‖f ′(x).h‖ (2)

for x ∈ X and
f ′(x)X = Y for x 	= 0. (3)

A constant C1 satisfying the above condition may be chosen as

C1 = C, (4)

where C is a constant from condition (1).

If the mapping f is injective and satisfies conditions (2) and (3), then f is
invertible and satisfies condition (1) with a constant

C = 2−2n/(2n+1)(2n+ 1)−1C1C
2n/(2n+1)
2 C

−2n/(2n+1)
3 , (5)

where C2, C3 are positive constants in the estimations

C2‖x‖2n+1 ≤ ‖f(x)‖, x ∈ X, (6)
and

‖f(x)‖ ≤ C3‖x‖2n+1, x ∈ X. (7)

In [6, Theorem 4], there was proved the following global inversion theorem
for the mapping T : X → Y with a singular point of the type described above:

������� 5� Let X, Y be Banach spaces and x0 ∈ X. Suppose T : X → Y
is a C2n+1-mapping for a non-negative integer n satisfying all assumptions of
Theorem 3. Writing T (x) according to the Taylor’s formula as

T (x) = T (x0) + f(x− x0) + r(x− x0)
with

f(x) := T (2n+1)(x0).x
(2n+1)/(2n+ 1)!,

suppose that

sup
x∈X\{0}

‖r′(x)‖ ‖x‖−2n < C1C
2n/(2n+1)
2 C

−2n/(2n+1)
3 , (8)

where C1, C2 C3 are the constants from estimations (2), (6) and (7).

Then T is an homeomorphism between X and Y.

The proof of the theorem is based on the Theorems 2 and 3.

Strong assumptions of Theorem 5 make it difficult to find a non-trivial exam-
ple of mapping fulfilling them but we shall make it in the next section.
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3. Applications

In the first step, we demonstrate a class of mappings which satisfy the as-
sumptions of Theorem 3 for third order that means for n = 1 which seems to be
difficult in comparison with other works.

������� 6� Let G : [a; b]×[a; b]→R be a measurable function with the following
properties:

0 < K1 ≤ G(t, s) ≤ K2, for t, s ∈ [a; b] (a.e.) (9)

with
K1 > 2

(√
2− 1

)
K2 (10)

and
b∫

a

x(t)

⎛
⎝ b∫

a

G(t, s)x(s) ds

⎞
⎠dt ≥ 0, (11)

for any x ∈ L2
(
[a; b],R

)
.

Then the mapping

L2
(
[a; b],R

) � x → x

b∫
a

G(·, s)x2(s) ds+ o
(‖x‖3) ∈ L2

(
[a; b],R

)
(a.e.)

fulfills assumptions of Theorem 3 for x0 = 0 and

f(x) = x

b∫
a

G(·, s)x2(s) ds (a.e.).

Remark 1� Before proof, we observe that the restrictive assumption (11) is
fulfilled by a function of the form

G(t, s) =

k∑
i=1

aiH(t)H(s) (a.e.)

with a measurable and bounded (a.e.) function H and ai ≥ 0.

P r o o f. We have:

f ′(x).h = h

b∫
a

G(·, r)x2(r) dr + 2x

b∫
a

G(·, s)x(s)h(s) ds (a.e.)
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and

‖f ′(x).h‖2 =

b∫
a

h2(t)

⎛
⎝ b∫

a

G(t, r)x2(r) dr

⎞
⎠
2

dt

+ 4

b∫
a

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

b∫
a

G(t, s)x(s)h(s) ds

⎞
⎠dt

+

b∫
a

⎛
⎝2x(t)

b∫
a

G(t, s)x(s)h(s) ds

⎞
⎠
2

dt. (12)

We can estimate the first term in (12) as follows:

b∫
a

h2(t)

⎛
⎝ b∫

a

G(t, r)x2(r) dr

⎞
⎠
2

dt ≥
b∫

a

h2(t)

⎛
⎝ b∫

a

K1x
2(r) dr

⎞
⎠
2

dt = K1‖x‖4‖h‖2

(13)
and the third one simply as

b∫
a

⎛
⎝2x(t)

b∫
a

G(t, s)x(s)h(s) ds

⎞
⎠
2

dt ≥ 0. (14)

For the certain estimation of the second component of the sum in (12), we set
(with the accuracy to zero measure):

A =
{
t ∈ [a; b] : x(t)h(t) > 0

}
and

B =
{
t ∈ [a; b] : x(t)h(t) ≤ 0

}
.

Using (9) and the Schwarz inequality, we obtain

4

b∫
a

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

b∫
a

G(t, s)x(s)h(s) ds

⎞
⎠dt

= 4

∫
A

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

∫
A

G(t, s)x(s)h(s ) ds

⎞
⎠dt

+ 4

∫
B

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

∫
B

G(t, s)x(s)h(s) ds

⎞
⎠dt
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+ 4

∫
A

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

∫
B

G(t, s)x(s)h(s) ds

⎞
⎠dt

+ 4

∫
B

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

∫
A

G(t, s)x(s)h(s) ds

⎞
⎠dt

≥ 4K1‖x‖2
∫
A

⎛
⎝h(t)x(t)

∫
A

G(t, s)x(s)h(s) ds

⎞
⎠dt

+ 4K1‖x‖2
∫
B

⎛
⎝h(t)x(t)

∫
B

G(t, s)x(s)h(s) ds

⎞
⎠dt

+ 4K2‖x‖2
∫
A

⎛
⎝h(t)x(t)

∫
B

G(t, s)x(s)h(s) ds

⎞
⎠dt

+ 4K2‖x‖2
∫
B

⎛
⎝h(t)x(t)

∫
A

G(t, s)x(s)h(s) ds

⎞
⎠dt

≥ 4K1‖x‖2
b∫

a

⎛
⎝h(t)x(t)

b∫
a

G(t, s)x(s)h(s) ds

⎞
⎠dt

+ 4(K2 −K1)‖x‖2
⎛
⎝∫

A

⎛
⎝h(t)x(t)

∫
B

G(t, s)x(s)h(s) ds

⎞
⎠dt

+

∫
B

⎛
⎝h(t)x(t)

∫
A

G(t, s)x(s)h(s) ds

⎞
⎠dt

⎞
⎠

≥ 4(K1 −K2)‖x‖2
b∫

a

⎛
⎝|h(t)| |x(t)|

b∫
a

G(t, s)|x(s)| |h(s)| ds
⎞
⎠dt

≥ 4(K1 −K2)K2‖x‖4‖h‖2 =
(
4K1K2 − 4K2

2

)‖x‖4‖h‖2,
hence

4

b∫
a

⎛
⎝h(t)x(t)

b∫
a

G(t, r)x2(r) dr

b∫
a

G(t, s)x(s)h(s) ds

⎞
⎠dt

≥ 4(K1 −K2)K2‖x‖4‖h‖2

= (4K1K2 − 4K2
2 )‖x‖4‖h‖2. (15)
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From (12), (13), (14) and (15), we obtain

‖f ′(x).h‖2 ≥ (
K2

1 + 4K1K2 − 4K2
2

)‖x‖4‖h‖2.
Solving the quadratic inequality K2

1 + 4K1K2 − 4K2
2 > 0 with respect to the

positive K1, we obtain (10).

Now, we demonstrate that

f ′(x)L
(
[a; b],R

)
= L

(
[a; b],R

)
for x 	= 0.

The set f ′(x)L
(
[a; b],R

)
is a closed subspace of L

(
[a; b],R

)
. Supposing that

f ′(x)L
(
[a; b],R

) 	= L
(
[a; b],R

)
, we choose a non-zero y ∈ L

(
[a; b],R

)
which is

orthogonal to f ′(x)L
(
[a; b],R

)
. In particular, y is orthogonal to f ′(x).y. But,

because of (11),

0 = 〈y; f ′(x).y〉

=

b∫
a

y2(t)

⎛
⎝ b∫

a

G(t, r)x2(r) dr

⎞
⎠dt

+ 2

b∫
a

y(t)x(t)

⎛
⎝ b∫

a

G(t, s)x(s)y(s) ds

⎞
⎠dt > 0.

The obtained contradiction proves that f ′(x)L
(
[a; b],R

)
= L

(
[a; b],R

)
.

At the end, we show, that the mapping f is injective. Suppose that f is not
injective. Then, for a certain x, h ∈ L

(
[a; b],R

)
, h 	= 0, we have f(x) = f(x+h).

Let for a real τ

φ(τ) = 〈h; f(x+ τh)〉

=

b∫
a

h(t)
(
x(t) + τh(t)

)⎛⎝ b∫
a

G(t, s)
(
x(s) + τh(s)

)2
ds

⎞
⎠dt.

We have

φ(0) = 〈h; f(x)〉 = 〈h; f(x+ h)〉 = φ(1),

but, because of (11),

φ′(τ) =

b∫
a

h2(t)

⎛
⎝ b∫

a

G(t, s)
(
x(s) + τh(s)

)2
ds

⎞
⎠ dt

+ 2

b∫
a

h(t)
(
x(t) + τh(t)

)⎛⎝ b∫
a

G(t, s)h(s)
(
x(s) + τh(s)

)
ds

⎞
⎠dt ≥ 0
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and φ′(τ) > 0 for a certain subinterval of [0; 1], which implies that φ(0) 	= φ(1).
This contradiction shows that the map f is injective.

The map f fulfills the assumptions of Theorem 5 for n = 1 with the following
constants from estimations (2), (6) and (7):

C1 =
√
K2

1 + 4K1K2 − 4K2
2 ,

C2 = K1,

C3 = K2. �

Applying Theorem 6 for the map described above, we obtain the following.

Example 1. Suppose that a mapping G fulfills assumptions of Theorem 6 and
that

r : L2
(
[a; b],R

) → L2
(
[a; b],R

)
is a C3-mapping, for which

r(x) = o(‖x‖3),
and

sup
x∈X\{0}

‖r′(x)‖ ‖x‖−2 <
√

K2
1 +K1K2 − 4K2

2 K
2/3
1 K

−2/3
2 .

(An example of such a mapping may be defined as

r(x) = ‖x‖4e−‖x‖2

g

for g ∈ L2([a; b],R) with sufficiently small norm.)

Then the mapping

L2
(
[a; b],R

) � x → x

b∫
a

G(·, s)x2(s) ds+ r(x) ∈ L2
(
[a; b],R

)
(a.e.)

is a homeomorphism between L2
(
[a; b],R

)
and L2

(
[a; b],R

)
.

Consequently, for any fixed y ∈ L2
(
[a; b],R

)
, there is the unique solution

x ∈ L2
(
[a; b],R

)
of the equation

x

b∫
a

G(·, s)x2(s) ds+ r(x) = y (a.e.).

Let us consider a specific example. It is going to be interesting even with
r = 0.

Example 2. We shall apply the general Example 1 to particular one with the
concrete mapping G defined as the Green function for the following bounded
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value problem (see, for example [12], where the construction of the Green func-
tion is described):

u′′ −K2u = y, y ∈ L2
(
[0; 1],R

)
, Ku(0)− u′(0) = 0, Ku(1)− u′(1) = 0,

where

K <
1

2
ln

√
2 + 1

2
.

We have

G(t, s) =

{
eK(t−s)

2K for 0 ≤ t ≤ s ≤ 1,

eK(s−t)

2K for 0 ≤ s < t ≤ 1,

and G defines the positive integral operator in the sense of (11). It is clear that,
for t, s ∈ [0; 1],

K1 ≤ G(t, s) ≤ K2

with

K1 =
e−K

2K
and K2 =

eK

2K
.

It is obvious that the mapping G fulfills assumptions of Theorem 6.

For any fixed y ∈ L2
(
[0; 1],R

)
, let us consider the equation

x

1∫
0

G(·, s)x2(s) ds = y (a.e.)

with x ∈ L2
(
[0; 1],R

)
. Suppose that y is nonnegative, consequently the solution x

is nonnegative as well.

Let 1∫
0

G(·, s)x2(s) ds = u (a.e.).

Then u is a solution of the boundary value problem

u′′ −K2u = x2, Ku(0)− u′(0) = 0, Ku(1)− u′(1) = 0,

so we have constructed a solution of the boundary value problem of the following
form: √

u′′ −K2u u = y, Ku(0)− u′(0) = 0, Ku(1)− u′(1) = 0.

It is possible to describe more examples of the above type considering Green
functions of other boundary value problems.
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