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ABSTRACT. Our objective in this paper is to define and study the Rényi
entropy and the Rényi divergence in the intuitionistic fuzzy case. We define the
Rényi entropy of order of intuitionistic fuzzy experiments (which are modeled

by IF-partitions) and its conditional version and we examine their properties.
It is shown that the suggested concepts are consistent, in the case of the limit
of q going to 1, with the Shannon entropy of IF-partitions. In addition, we intro-
duce and study the concept of Rényi divergence in the intuitionistic fuzzy case.
Specifically, relationships between the Rényi divergence and Kullback-Leibler
divergence and between the Rényi divergence and the Rényi entropy in the

intuitionistic fuzzy case are studied. The results are illustrated with several
numerical examples.

1. Introduction

The Shannon entropy [31] and Kullback-Leibler divergence [22] are among
the most important quantities in information theory [17] and its applications.
Because of their success, many attempts have been made to generalize these
concepts. As is known, the Rényi entropy and Rényi divergence [26] represent
their significant generalizations. These quantities have important applications
in ecology, in statistics, and they are also important in quantum information.

If we consider a probability space (X,S, P ) and a finite measurable partition
A = {E1, . . . , En} of (X,S, P ) with probabilities pi = P (Ei), i = 1, 2, . . . , n, then
the Shannon entropy of A is defined as the number H(A) = −∑n

i=1 pi · log pi.
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If A = {E1, . . . , En} and B = {F1, . . . , Fm} are two finite measurable partitions
of (X,S, P ), then the conditional Shannon entropy of A assuming a realization
of B is defined as the number

H(A|B) = −
n∑

i=1

m∑
j=1

P (Ei ∩ Fj) · log P (Ei ∩ Fj)

P (Fj)
.

It is assumed in the definitions above that 0 · log 0
x = 0 if x ≥ 0. The Rényi

entropy of order q, where q > 0 and q �= 1, of A is defined as the number
Hq(A) =

1
1−q log

∑n
i=1 p

q
i . It can be shown that limq→1 Hq(A) =

∑n
i=1 pi · log 1

pi
,

thus the Shannon entropy is a limiting case of the Rényi entropy for q → 1.
It is known that there is no generally accepted definition of conditional Rényi
entropy. In [33], three definitions of conditional Rényi entropy are described,
which can be found in the literature. In [16], an overview of various approaches
to defining the conditional Rényi entropy can be found, and moreover, a new
definition of conditional Rényi entropy has been suggested. In [20], the authors
suggested a general type of conditional Rényi entropy that includes previously
defined conditional Rényi entropies as special cases. The suggested concepts
have been successfully used in time series analysis [21], in information theory [1]
and in cryptographic applications [25]. None of the proposed generalizations,
however, fulfills all the basic properties of Shannon conditional entropy, so the
choice of the definition depends on the purpose of use.

The present article is devoted to the study of Rényi entropy and Rényi diver-
gence in the intuitionistic fuzzy case. The intuitionistic fuzzy sets theory [2,3,5]
was introduced by A t a n a s s o v as an extension of the Zadeh fuzzy set theory
[34]. Recall that while a fuzzy set is a mapping fA : X → [0, 1] (where the con-
sidered fuzzy set is identified with its membership function fA), the Atanassov
intuitionistic fuzzy set (shortly IF-set) is a pair A = (fA, gA) : X → [0, 1]× [0, 1]
of fuzzy sets for which the condition fA(x) + gA(x) ≤ 1, for every x ∈ X, is
satisfied. The functions fA and gA define the degree of membership and the
degree of non-membership of the element x ∈ X to the considered IF-set A,
respectively. It is obvious that every fuzzy set fA : X → [0, 1] can be considered
as an IF-set A = (fA, 1 − fA). All results that apply to IF-sets are also valid in
the fuzzy case. Naturally, the opposite implication is not true; the intuitionis-
tic fuzzy sets theory is a nontrivial generalization of the fuzzy set theory. This
means that the IF-sets provide opportunities for modeling a larger class of real
situations. In the last three decades, many authors have dealt with the theory of
IF-sets, which has been successfully applied in various mathematical disciplines
and has also important practical applications. We refer the interested reader to
the article [19], which contains an overview of highly cited intuitionistic fuzzy
publications and provides their characteristics. Of course, many papers (see,
e.g., [7, 9, 10, 14, 15, 23, 24, 32, 35]) are devoted also to study of entropy in the
intuitionistic fuzzy case.
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In [24], we introduced the concepts of Shannon entropy and Kullback-Leibler
divergence in the intuitionistic fuzzy case. Instead of measurable partitions, we
considered so-called intuitionistic fuzzy partitions (IF-partitions, for brevity)
that can be useful for modeling experiments with inaccurate IF-information.
The aim of the present paper is to extend our study concerning the Shannon
entropy and Kullback-Leibler divergence in the intuitionistic fuzzy case to the
case of Rényi entropy and Rényi divergence.

The rest of the paper is structured as follows. In the following section we
provide basic definitions, notations and facts used in the article. Our main results
are discussed in Sections 3–5. In Section 3, we define the Rényi entropy of an IF-
partition and examine its properties. It is shown that for q → 1 the Rényi entropy
of order q converges to the Shannon entropy of an IF-partition. In Section 4, we
introduce the concept of Rényi conditional entropy of IF-partitions and study
its properties. It is shown that the suggested definition of the conditional Rényi
entropy is consistent, in the case of the limit of q going to 1, with the conditional
Shannon entropy of IF-partitions, and it satisfies the property of monotonicity
and a weak chain rule. Section 5 is devoted to the study of Rényi divergence
in the intuitionistic fuzzy case. The results are explained with several examples
to illustrate the theory developed in the article. The final section provides a brief
summary.

2. Preliminaries

In this section, we provide basic definitions, notations and facts used in the
paper.

���������� 1� Let X be a non–empty set. By an intuitionistic fuzzy set (IF-set
for short) we will understand a pair A = (fA, gA) of functions fA, gA : X → [0, 1]
such that fA + gA ≤ 1 for every x ∈ X.

Analogously as in the fuzzy set theory, there are many possibilities to de-
fine operations over intuitionistic fuzzy sets (cf. [4, 6, 13, 29, 30]). We will use
the partial binary operation ⊕ and the binary operation · defined as follows.
If A = (fA, gA), and B = (fB, gB) are two IF-sets, then we define

A⊕B = (fA + fB , gA + gB − 1X) and A ·B = (fA · fB , gA + gB − gA · gB).
Here, 1X denotes the constant function with the value 1; similarly, 0X denotes
the constant function with the value 0. It is evident that if A,B are two IF-sets,
then A⊕ B is an IF-set if and only if fA + fB ≤ 1X and gA + gB ≥ 1X . In the
case that A⊕B is an IF set, we will say that A⊕B exists. Put

1 = (1X , 0X), 0 = (0X , 1X).
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BELOSLAV RIEČAN †—DAGMAR MARKECHOVÁ

It can be verified that for any IF-sets A,B,C, the following conditions are sat-
isfied:

(F1) A · 1 = A, A⊕ 0 = A;

(F2) A · B = B · A; if A ⊕ B exists, then B ⊕ A exists, and A ⊕ B = B ⊕ A
(commutativity);

(F3) (A · B) · C = A · (B · C); if (A ⊕ B) ⊕ C exists, then A ⊕ (B ⊕ C) exists
and (A⊕B)⊕ C = A⊕ (B ⊕ C) (associativity);

(F4) if A⊕ B exists then C · A⊕ C · B exists and C · (A⊕B) = C ·A⊕ C · B
(distributivity).

In the class of all IF-sets we define the partial order relation ≤ in the following
way: if A = (fA, gA) and B = (fB , gB) are two IF-sets, then A ≤ B if and only if
fA ≤ fB and gA ≥ gB. It is easy to see that 0 ≤ A ≤ 1 for any IF-set A. In [18]
G u t i e r r e z G a r c i a and R o d a b a u g h have proved that intuitionistic fuzzy
sets ordering and topology are reduced to the ordering and topology of fuzzy
sets. Another situation is in measure theory where the intuitionistic fuzzy case
cannot be reduced to the fuzzy one (cf. [8]). We note that a probability theory
for the intuitionistic fuzzy case was developed in [28], see also [12].

Example 1. As already mentioned in Introduction, any fuzzy set fA : X → [0, 1]
can be regarded as an IF-set, if we put A = (fA, 1X − fA). If fA = IA where
IA is the indicator function of a set A ⊂ X, then the corresponding IF-set has
the form A = (IA, 1X − IA) = (IA, IAc). Here, Ac denotes the complement of a
set A ⊂ X. In this case, A⊕B corresponds to the union of sets A,B ⊂ X with
empty intersection, A · B to the intersection of sets A,B ⊂ X and the relation
≤ to the inclusion of sets A,B ⊂ X.

In what follows we shall denote by the symbol F any family of IF-sets satis-
fying the following two conditions:

(F5) 0 ∈ F , 1 ∈ F ;

(F6) if A,B ∈ F , then A ·B ∈ F .

Any IF-set from the family F is interpreted as an intuitionistic fuzzy event. The
IF-set 0 = (0X , 1X) is considered as an impossible event; the IF-set 1 = (1X , 0X)
as a certain event. In an analogous way as in [23], we define the state on the
family F . It plays the role of a probability measure on the family F of IF-events.

���������� 2� A mapping s : F → [0, 1] is called a state if the following two
conditions are satisfied:

(i) s(1) = 1;

(ii) if A,B ∈ F such that A⊕B ∈ F then s(A⊕B) = s(A) + s(B).
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Notice that the disjointness of IF-sets A = (fA, gA) and B = (fB , gB) of F is
expressed in Definition 2 by the condition that fA+ fB ≤ 1X and gA+ gB ≥ 1X
(or equivalently by the condition that fA ≤ 1X − fB and gA ≥ 1X − gB).

���������� 3 ( [23])� By a measurable IF-partition of (1X , 0X) with respect
to a state s : F → [0, 1], we will mean an n-tuple α = (A1, . . . , An) of (not
necessarily different) members of F such that ⊕n

i=1Ai ∈ F and s (⊕n
i=1Ai) = 1.

Example 2. Let us consider a classical probability space (X,S, P ) and put
F = {(IE , 1X − IE);E ∈ S}. Then the mapping s : F → [0, 1] defined by
s
(
(IE , 1X − IE)

)
= P (E), e ∈ S, is a state. A measurable partition (E1, . . . , En)

of (X,S, P ) can be regarded as an IF-partition, if we consider (IEi
, 1X − IEi

)
instead of Ei.

For two finite tuples α = (A1, . . . , Ak) and β = (B1, . . . , B�) of elements of F
we define α∨β as an r-tuple (where r = k ·�) consisting of the elements (Ai ·Bj),
i = 1, 2, . . . , k, j = 1, 2, . . . , �. If α = (A1, . . . , Ak) and β = (B1, . . . , B�) are two
measurable IF-partitions of (1X , 0X), then it can be shown that the r-tuple α∨β
is also a measurable IF-partition of (1X , 0X). The proof can be found in [23].
Let s : F → [0, 1] be a state. Two measurable IF-partitions α = (A1, . . . , Ak),
β = (B1, . . . , B�) of (1X , 0X) are called statistically independent with respect
to s if s(Ai · Bj) = s(Ai) · s(Bj) for i = 1, . . . , k, j = 1, . . . , �. We will say that
the IF-partition β is a refinement of α and write α ≺ β if for each Ai ∈ α there
exists a subset I(i) ⊂ {1, . . . , �} such that Ai = ⊕j∈I(i)Bj , where I(i)∩ I(j) = ∅
whenever i �= j, and

⋂k
i=1 I(i) = {1, . . . , �}. It can be proved that for arbitrary

measurable IF-partitions α, β of (1X , 0X), it holds α ≺ α ∨ β and β ≺ α ∨ β.

���������� 4 ([24])� We define the entropy of a measurable IF-partition
α = (A1, A2, . . . , An) of (1X , 0X) with respect to s by the formula

Hs(α) = −
n∑

i=1

s(Ai) log s(Ai). (1)

���������� 5 ([24])� If α = (A1, A2, . . . , Ak) and β = (B1, b2, . . . , B�) are
two measurable IF-partitions of (1X , 0X) with respect to s, then we define the
conditional Shannon entropy of α given Bj ∈ β by

Hs(α|Bj) = −
k∑

i=1

s(Ai|Bj) log s(Ai|Bj),

where

s(Ai|Bj) =

{
s(Ai·Bj)
s(Bj)

if s(Bj) > 0;

0 if s(Bj) = 0.

81
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The conditional entropy of α assuming a realization of experiment β is defined
by the formula

Hs(α|β) =
�∑

j=1

s(Bj)Hs(α|Bj). (2)

Evidently, formula (2) may be written in the following equivalent form:

Hs(α|β) = −
k∑

i=1

�∑
j=1

s(Ai ·Bj) log
s(Ai ·Bj)

s(Bj)
. (3)

It is assumed (based on continuity arguments) that 0 · log 0
x = 0 if x ≥ 0. The

base of the logarithm can be any positive number, but as a rule one takes loga-
rithms to the base 2. The entropy is then expressed in bits. It can be shown that
the Shannon entropy of IF-partitions satisfies the properties analogous to prop-
erties of Shannon entropy of classical measurable partitions.

Example 3. Let (X,S, P ) be a probability space. Consider the family F of all
S-measurable IF-sets, i.e., the family

F = {A = (fA, gA); fA, gA : X → [0, 1] are S-measurable with fA + gA ≤ 1X}.
Let c ∈ [0, 1]. Then it can be verified that the mapping s : F → [0, 1] defined,
for any element A = (fA, gA) of F by the formula

s(A) =

∫
X

fA dP + c

(
1−

∫
X

(fA + gA)dP

)
, (4)

is a state.

Remark 1� We note that any continuous state s defined on the family F of all
S-measurable IF-events (i.e., a state s : F → [0, 1] satisfying the condition
An ↗ A ⇒ s(An) ↗ s(A)) has the form (4); for more details, see [11, 27].
The entropy theory of Shannon type for the case of the class F of all
S-measurable IF-events was constructed by Ď u r i c a in [14]. We remark that
while an IF-partition considered by Ďurica is a set α = {A1, . . . , An} of S-
-measurable IF-events such that ⊕n

i=1Ai = 1, the model studied in [23, 24] as
well as the model studied in this paper is more general.

In [24], the concept of Kullback-Leibler divergence for the intuitionistic fuzzy
case was introduced as follows.

���������� 6� Let s, t be two states on F and α = (A1, . . . , An) be a measurable
IF-partition of (1X , 0X) with respect to s and t. Then we define the Kullback-
Leibler divergence dα(s‖t) as the number

dα(s‖t) =
n∑

i=1

s(Ai) · log s(Ai)

t(Ai)
. (5)
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In the succeeding sections we will use the known Jensen inequality: for a real
convex function F real numbers x1, x2, . . . , xn in its domain and nonnegative

real numbers a1, a2, . . . , an such that
∑n

i=1 ai = 1 it holds

f

(
n∑

i=1

aixi

)
≤

n∑
i=1

aiF (si)

and the inequality is reversed if F is a real concave function. The equality applies
if and only if x1 = · · · = xn or F is a linear function.

Further, we recall the following notions.

���������� 7� Let D be an arbitrary non-empty set and f : D → R be a real
function defined on it. Then the support of f is defined by

supp(f) = {x ∈ D; f(x) �= 0}.
���������� 8� Let f : D → R be a real function on a non-empty set D.
We define the q-norm, for a ≤ q < ∞, or q-quasinorm, for 0 < q < 1, of f as

‖f‖q =
(∑

x∈D

|f(x)|q
)1

q

.

3. The Rényi entropy of IF-partitions

In this section we define the Rényi entropy of IF-partitions and examine its
properties. In the following, we assume that s : F → [0, 1] is a state.

���������� 9� Let α=(A1, A2, . . . , An) be a measurable IF-partition of (1X, 0X)
with respect to s. Then we define the Rényi entropy of order q, where q > 0,
q �= 1, of α by the formula

Hs
q (α) =

1

1− q
log

n∑
i=1

s(Ai)
q. (6)

Remark 2� In accordance with the classical theory the log is to the base 2 and
the Rényi entropy is expressed in bits. For simplicity, we write s(Ai)

q instead

of
(
s(Ai)

)q
and log

∑n
i=1 s(Ai)

q instead of log (
∑n

i=1 s(Ai)
q) .

Let α = (A1, A2, . . . , An) be a measurable IF-partition of (1X , 0X) with re-
spect to s. If we consider the function sα : α → R, defined by sα(Ai) = s(Ai)
for every Ai ∈ α then we have

‖sα‖q =
(

n∑
i=1

s(Ai)
q

) 1
q

,

and formula (6) can be expressed in the following equivalent form

Hs
q (α) =

q

1− q
log(‖sα‖q). (7)
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Remark 3� Let α = (A1, . . . , An) be a measurable IF-partition of (1X , 0X)
with respect to a state s. Let us assume that the state s is uniform over α, i.e.,
s(Ai) =

1
n for i = 1, 2, . . . , n. Then

H2
q (α) =

1

1− q
logn1−q = logn.

Example 4. Let us consider the IF-partition α0 = {1} representing an experi-
ment resulting in a certain event. It is easy to see that Hs

q (α0) = 0.

Remark 4� It can be verified that the Rényi entropy Hs
q (α) is always non-

negative. Namely, for 0 < q < 1 and i = 1, 2, . . . , n, it holds s(Ai)
q ≥ s(Ai),

hence
n∑

i=1

s(Ai)
q ≥

n∑
i=1

s(Ai) = s (⊕n
i=1Ai) = 1.

It follows that Hq
s (α) =

1
1−q log

∑n
i=1 s(Ai)

q ≥ 0. On the other hand, for q > 1

and i = 1, 2, . . . , n, it holds s(Ai)
q≤s(Ai), hence

∑n
i=1 s(Ai)

q≤∑n
i=1 s(Ai)=1.

In this case we have 1
1−q < 0, therefore, Hs

q (α) =
1

1−q log
∑n

i=1 s(Ai)
q ≥ 0.

Example 5. Consider a family F of IF-events and a state s defined on F .
Let α = (A1, A2) be a measurable IF-partition of (1X , 0X) with s(Ai) = p, where
p ∈ (0, 1). Then s(A2) = 1 − p, and the Rényi entropy Hs

q (α) of order q = 1
2 is

Hs
q (α) = 2 log

(√
p+

√
1− p

)
. If we put p = 1

3 , then we have Hs
q (α)

.
= 0.958 bit.

In the following theorem it is proved that Hs
q (α) is monotonically decreasing

in q.

	
����� 1� Let α = (A1, A2, . . . , An) be a measurable IF-partition of (1X , 0X)
with respect to s and q1, q2 be positive real numbers, q1 �= 1, q2 �= 1. Then q1 ≥ q2
implies Hs

q1
(α) ≤ Hs

q2
(α).

P r o o f. Suppose that q1, q2 ∈ (1,∞). Then the claim is evident to the inequality

(
n∑

i=1

s(Ai)
q1

) 1
q1−1

≥
(

n∑
i=1

s(Ai)
q2

) 1
q2−1

.

This inequality follows by applying the Jensen inequality to the function F

defined by F (x) = x
q2−1
q1−1 , for every x ∈ [0,∞), and putting αi = s(Ai),

xi = s(Ai)
q1−1, i = 1, 2, . . . , n. The assumption q1 ≥ q2 implies q2−1

q1−1 ≤ 1,

hence, the function F is concave.
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Therefore, we get(
n∑

i=1

s(Ai)
q
i

) 1
q1−1

=

(
n∑

i=1

s(Ai)s(Ai)
q1−1

) q2−1
(q1−1)(q2−1)

=

⎛
⎝( n∑

i=1

s(Ai)s(Ai)
q1−1

)q2−1
q1−1

⎞
⎠

1
q2−1

≥
(

n∑
i=1

s(Ai)s(Ai)
q2−1

) 1
q2−1

=

(
n∑

i=1

s(Ai)
q2

) 1
q2−1

.

The case of q1, q2 ∈ (0, 1) is obtained by similar arguments. Finally, the case
q1 ∈ (1,∞) and q2 ∈ (0, 1) follows by transitivity. �
Example 6. Consider the following family F of Borel measurable IF-events:
F = {A = (fA, gA); fA, gA : [0, 1] → [0, 1] are Borel measurable with the prop-
erty fA + gA ≤ 1X}. Further, define a state s : F → [0, 1] by the formula

s(A) =

1∫
0

fA dx+ 1−
1∫

0

(fA + gA) dx

for any element A = (fA, gA) of F . We put A1 =
(
I[0, 13 ], I(

1
3 ,1]

)
, and A2 =(

I( 1
3 ]
, I[0, 13 ]

)
. Since A1 ⊕ A2 =

(
I[0, 23 ], 0

)
(and hence A1 ⊕ A2 ∈ F), and

s(A1 ⊕A2) = 1, the pair α = (A1, A2) is a measurable IF-partition of (1X , 0X).
Simple calculation will show that s(A1) =

1
3 and s(A2) =

2
3 . The Rényi entropy

Hs
q1(α) of order q1 = 1

2 is Hs
q1(α) = 2 log

(√
1
3 +

√
2
3

) .
= 0.9758144 bit, and the

Rényi entropy Hs
q2(α) of order q2 = 1

3 is Hs
q2(α)

.
= 0.971927 bit. So, it holds

Hs
1
2

(α) < Hs
1
3

(α), which is consistent with the claim of Theorem 1.

At q = 1 the value of the quantity Hs
q (α) is undefined as it generates the

form 0
0 . In the following theorem it is shown that for q → 1 the Rényi en-

tropy Hs
q (α) converges to the Shannon entropy of an IF-partition defined by for-

mula (1).

	
����� 2� Let α = (A1, A2, . . . , An) be a measurable IF-partition of (1X , 0X)
with respect to s. Then

lim
q→1

Hs
q (α) = −

n∑
i=1

s(Ai) log s(Ai).

P r o o f. In the proof we use L’Hôpital’s rule limq→1
f(q)
g(q) = limq→1

f ′(q)
g′(q) .

We put f(q) = log
∑n

i=1 s(Ai)
q, and g(q) = 1 − q, for every q ∈ (0,∞).
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Then, for every q ∈ (0, 1)∪ (1,∞), we have Hs
q (α) =

f(q)
g(q) , and the functions f, g

are differentiable. Evidently, limq→1 g(q) = 0, and we have also

lim
q→1

f(q) = log
n∑

i=1

s(Ai) = log s (⊕n
i=1Ai) = log 1 = 0.

It holds d
dq g(q) = −1, and

d

dq
f(q) =

1
n∑

i=1

s(Ai)q · ln 2

n∑
i=1

d

dq
s(Ai)

q =
1

n∑
i=1

s(Ai)q

n∑
i=1

s(Ai)
q log s(Ai).

Using L’Hôpital’s rule, this yields lim
q→1

Hs
q (α) = lim

q→1

f ′(q)
g′(q) , under the assumption

that the right-hand side exists. Therefore, we have

lim
q→1

Hs
q (α) = lim

q→1

1

1− q
log

n∑
i=1

s(Ai)
q

= lim
q→1

−1
n∑

i=1

s(Ai)q

n∑
i=1

s(Ai)
q log s(Ai) = −

n∑
i=1

s(Ai) log s(Ai),

which is the Shannon entropy of α defined by formula (1). �

	
����� 3� Let α and β be measurable IF-partitions of (1X , 0X) with respect
to s such that α ≺ β. Then Hs

q (α) ≤ Hs
q (β).

P r o o f. Assume that α = (A1, . . . , An), β = (B1, . . . , Bm), α0 ≺ β. Then there
exists a partition {I(1), . . . , I(n)} of the set {1, 2, . . . ,m} such that it holds
Ai = ⊕j∈I(i)Bj , for i = 1, 2, . . . , n. Hence,

s(Ai) = s
(⊕j∈I(i)Bj

)
=
∑

j∈I(i)

s(Bj), for i = 1, 2, . . . , n.

Consider the case of q > 1. Then s(Ai)
q =

(∑
j∈I(i) s(Bj)

)q ≥∑j∈I(i) s(Bj)
q,

for i = 1, 2, . . . , n, and consequently,

n∑
i=1

s(Ai)
q ≥

n∑
i=1

∑
j∈I(i)

s(Bj)
q =

m∑
j=1

s(Bj)
q.
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Therefore, we get

log

n∑
i=1

s(Ai)
q ≥ log

m∑
j=1

s(Bj)
q.

In this case 1
1−q < 0, hence, we obtain

Hs
q (α) =

1

1− q
log

n∑
i=1

s(Ai)
q ≤ 1

1− q
log

m∑
j=1

s(Bj)
q = Hs

q (β).

Consider the case when 0 < q < 1. Then

s(Ai)
q =

⎛
⎝ ∑

j∈I(i)

s(Bj)

⎞
⎠

q

≤
∑

j∈I(i)

s(Bj)
q, for i = 1, 2, . . . , n,

and consequently,
n∑

i=1

s(Ai)
q ≤

n∑
i=1

∑
j∈I(i)

s(Bj)
q =

m∑
j=1

s(Bj)
q.

Therefore, we get

log

n∑
i=1

s(Ai)
q ≤ log

m∑
j=1

s(Bj)
q.

In this case 1
1−q > 0, hence, we obtain

Hs
q (α) =

1

1− q
log

n∑
i=1

s(Ai)
q ≤ 1

1− q
log

m∑
j=1

s(Bj)
q = Hs

q (β).

�

�������� 1� Let α and β be measurable IF-partitions of (1X , 0X) with respect
to s. Then

Hs
q (α ∨ β) ≥ max

(
Hs

q (α), H
s
q (β)

)
.

	
����� 4� If measurable IF-partitions α and β are statistically independent
with the respect to s, then

Hs
q (α ∨ β) = Hs

q (α) +Hs
q (β).

P r o o f. Assume that α = (A1, . . . , An) and β = (B1, . . . , Bm). Let us calculate

Hs
q (α ∨ β) =

1

1− q
log

n∑
i=1

m∑
j=1

s(Ai ·Bj)
q =

1

1− q
log

⎛
⎝ n∑

i=1

s(Ai)
q ·

m∑
j=1

s(Bj)
q

⎞
⎠

=
1

1− q
log

n∑
i=1

s(Ai)
q +

1

1− q
log

m∑
j=1

s(Bj)
q = Hs

q (α) +Hs
q (β). �
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����� 5� Let α = (A1, . . . , An) be a measurable IF-partition of (1X , 0X)
with respect to s. If we denote

a = max

{
1

s(Ai)
; ai ∈ supp(s), i = 1, . . . , n

}
, then Hs

q (α) ≤ log a.

P r o o f. Put δ = {i; s(Ai) > 0}.
Let 0 < q < 1. Then

n∑
i=1

s(Ai)
q =

∑
i∈δ

(
1

s(Ai)

)1−q

· s(Ai)

≤
∑
i∈δ

a1−q · s(Ai) = a1−q
n∑

i=1

s(Ai) = a1−q,

and consequently,

log

n∑
i=1

s(Ai)
q ≤ log a1−q = (1− q) log a.

Therefore, we have

Hq(α) =
1

1− q
log

n∑
i=1

s(Ai)
q ≤ 1

1− q
(1− q) log a = log a.

Suppose that q > 1. Then

n∑
i=1

s(Ai)
q =

∑
i∈δ

(
1

s(Ai)

)1−q

· s(Ai)

≥
∑
i∈δ

a1−q · s(Ai) = a1−q,

and consequently

log

n∑
i=1

s(Ai)
q ≥ log a1−q = (1− q) log a.

Hence, we get

Hq(α) =
1

1− q
log

n∑
i=1

s(Ai)
q ≤ 1

1− q
(1− q) log a = log a.

�
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4. The conditional Rényi entropy of IF-partitions

In this section, we introduce the concept of conditional Rényi entropy of IF-
-partitions and examine its properties. Let

α = (A1, . . . , An), and β = (B1, . . . , Bm)

be IF-partitions of F . If we consider the function sα|Bj
: α → R, defined by

sα|Bj
(Ai) = s(Ai|Bj), for every Ai ∈ α, then we have

‖sα|Bj
‖q =

(
n∑

i=1

s(Ai|Bj)
q

)1
q

.

���������� 10� Let α = (A1, . . . , An) and β = (B1, . . . , Bm) be measurable
IF-partitions of (1X , 0X) with respect to s. We define the conditional Rényi
entropy of order q, where q > 0, q �= 1, of α given β by the formula

Hs
q (α|β) =

q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠ .

Remark 5� In the same way as in the unconditional case of Rényi entropy
Hs

q (α), it can be verified that the conditional Rényi entropy Hs
q (α|β) is always

nonnegative. Let α = (A1, . . . , An) be any IF-partition with respect to s and let
α0 = {1} be the IF-partition representing the experiment resulting in a certain
event. Since s(Ai|1) = s(Ai), for i = 1, 2, . . . , n, it holds ‖sα|1‖q = ‖sα‖q, and
consequently,

Hs
q (α|α0) =

q

1− q
log
(
s(1)‖sα|1‖q

)
=

q

1− q
log (‖sα‖q) = Hs

q (α).

����������� 1� Let α = (A1, . . . , An) be a measurable IF-partition of (1X , 0X)
with respect to s. Then

(i):
∑n

i=1 s(Ai · B) = s(B), for any B ∈ F ;

(ii):
∑n

i=1 s(Ai|B) = 1, for any B ∈ F such that s(B) > 0.

P r o o f. The claim (i) is proved in [23]. If B ∈ F such that s(B) > 0, then using
the previous equality, we get

n∑
i=1

s(Ai|B) =

n∑
i=1

s(Ai · B)

S(B)
=

s(B)

s(B)
= 1. �
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����� 6� Let α = (A1, . . . , An) and β = (B1, . . . , Bm) be measurable IF-
-partitions of (1X , 0X) with respect to s. Then

lim
q→1

Hs
q (α|β) = −

n∑
i=1

m∑
j=1

s(Ai ·Bj) log
s(Ai ·Bj)

s(Bj)
.

P r o o f. We can write

Hs
q (α|β) =

q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠

= − 1

1− 1
q

log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠ = −f(q)

g(q)
,

where f a g are continuous functions defined, for every q ∈ (0,∞), in the follow-
ing way: f(q) = log

(∑m
j=1 s(Bj)‖sα|Bj

‖q
)
, g(q) = 1− 1

q . The functions f and g

are differentiable and limq→1 g(q) = 0. If we put δ = {j; s(Bj) > 0} then, using
Proposition 1, we get

lim
q→1

f(q) = log

⎛
⎝ m∑

j=1

s(Bj)

n∑
i=1

s(Ai|Bj)

⎞
⎠

= log

⎛
⎝ m∑

j∈δ

s(Bj)

n∑
i=1

s(Ai · Bj)

s(Bj)

⎞
⎠ = log

(∑
i∈δ

n∑
i=1

s(Ai · Bj)

)

= log

(∑
i∈δ

s(Bj)

)
= log

⎛
⎝ m∑

j=1

s(Bj)

⎞
⎠ = log 1 = 0.

We have d
dq q(q) =

1
q2 and d

dq f(q) =
h′(q)

h(q) ln 2 , where h is the continuous function

defined, for every q ∈ (0,∞), by the formula

h(q) =

m∑
j=1

s(Bj)‖sα|Bj
‖q,

with continuous derivative h′ for which we have

h′(q) =
m∑
j=1

s(Bj)‖sα|Bj
‖q ·

⎛
⎜⎜⎝−

ln
n∑

i=1

s(Ai|Bj)
q

q2
+

ln
n∑

i=1

s(Ai|Bj)
q ln s(Ai|Bj)

q
n∑

i=1

s(Ai|Bj)q

⎞
⎟⎟⎠ .
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From this we see that

lim
q→1

f ′(q) = −
m∑
j=1

s(Bj)

n∑
i=1

s(Ai|Bj) log s(Ai|Bj).

Using L’Hopital’s rule, we get that limq→1 H
s
q (α|β) = − limq→1

f ′(q)
g′(q) , under the

assumption that the right-hand side exists. It follows

lim
q→1

Hs
q (α|β) = lim

q→1
f ′(q)

= −
m∑
j=1

s(Bj)

n∑
i=1

s(Ai|Bj) log s(Ai|Bj)

= −
m∑
j=1

∑
s(Ai ·Bj) log

s(Ai ·Bj)

s(Bj)

which is the conditional Shannon entropy of α given β defined by Equation (3).
�

	
����� 7 (monotonicity)� Let α and β be measurable IF-partitions of (1X , 0X)
with respect to s. Then Hs

q (α|β) ≤ Hs
q (α).

P r o o f. Let α = (A1, . . . , An), β = (B1, . . . , Bm). Then by Proposition 1,

we have s(Ai) =
∑m

j=1 s(Ai · Bj), for i = 1, 2, . . . , n. Suppose that q > 1.
Then using the triangle inequality of q-norm, we get

n∑
i=1

s(Ai)
q =

n∑
i=1

⎛
⎝ m∑

j=1

s(Ai · Bj)

⎞
⎠
q

=

⎛
⎜⎝
⎛
⎝ n∑

i=1

( m∑
j=1

s(Ai · Bj)

)q⎞⎠
1
q

⎞
⎟⎠
q

=

⎛
⎝
∥∥∥∥∥∥

m∑
j=1

sα∨{Bj}

∥∥∥∥∥∥
q

⎞
⎠
q

≤
⎛
⎝ m∑

j=1

∥∥sα∨{Bj}
∥∥
q

⎞
⎠
q

=

⎛
⎝ m∑

j=1

s(Bj)
∥∥sα∨{Bj}

∥∥
q

⎞
⎠
q

.

It follows that

log

n∑
i=1

s(Ai)
q ≤ log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj

⎞
⎠
q

,
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and consequently,

Hs
q (α) =

1

1− q
log

n∑
i=1

s(Ai)
q

≥ q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠

= Hs
q (α|β).

For the case where 0 < q < 1, we put r = 1
q . By writing the Rényi entropy

in terms of the 1
q -norm and using the triangle inequality for the 1

q -norm, we get

Hs
q (α) =

1

1− q
log

n∑
i=1

s(Ai)
q =

r

r − 1
log

n∑
i=1

s(Ai)
1
r

=
r

r − 1
log

n∑
i=1

⎛
⎝ m∑

j=1

s(Ai · Bj)

⎞
⎠

1
r

=
r

r − 1
log

n∑
i=1

∥∥∥s 1
r

{Ai}∨β

∥∥∥
r
≥ r

r − 1
log

∥∥∥∥∥
n∑

i=1

s
1
r

{Ai}∨β

∥∥∥∥∥
r

=
r

r − 1
log

⎛
⎝ m∑

j=1

(
n∑

i=1

s(Ai · Bj)
1
r

)r⎞⎠
1
r

=
r

r − 1
log

⎛
⎝ m∑

j=1

s(Bj)

(
n∑

i=1

s(Ai|Bj)
1
r

)r⎞⎠
1
r

=
1

r − 1
log

⎛
⎝ m∑

j=1

s(Bj)

(
n∑

i=1

s(Ai|Bj)
1
r

)r⎞⎠

=
q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠

= Hs
q (α|β). �

	
����� 8� If IF-partitions α and β are statistically independent with respect
to s, then

Hs
q (α|β) = Hs

q (α).
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P r o o f. Let α = (A1, . . . , An), β = (B1, . . . , Bm). Put δ = {j; s(Bj) > 0}.
Since ∑

j∈δ

s(Bj) =

m∑
j=1

s(Bj) = 1,

we have

Hs
q (α|β) =

q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)

(
n∑

i=1

s(Ai|Bj)
q

)1
q

⎞
⎠

=
q

1− q
log

⎛
⎝∑

j∈δ

s(Bj)

(
n∑

i=1

s(Ai)
qs(Bj)

q

s(Bj)q

)1
q

⎞
⎠

=
q

1− q
log

⎛
⎝∑

j∈δ

s(Bj)

(
n∑

i=1

s(Ai)
q

)1
q

⎞
⎠

=
q

1− q
log

n∑
i=1

s(Ai)
q

= Hs
q (α). �

	
����� 9� Let α and β be measurable IF-partitions of (1X , 0X) with respect
to s and q1, q2 be two positive real numbers, q1 �= 1, q2 �= 1. Then q1 ≥ q2 implies

Hs
q1
(α|β) ≤ Hs

q2
(α|β).

P r o o f. Assume that α = (A1, . . . , An), β = (B1, . . . , Bm). Let q1, q2 ∈ (1,∞).
Then the claim is equivalent to the inequality

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q1

⎞
⎠

q1
q1−1

≥
⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q2

⎞
⎠

q2
q2−1

.

We prove this inequality by applying twice the Jensen inequality for concave
functions. First, we apply the Jensen inequality for the function F1 defined by

F1(x) = x
q1(q2−1)
q2(q1−1) ,

for every x ∈ [0,∞), where aj = s(Bj), xj = ‖sα|Bj
‖q1 , j = 1, 2, . . . ,m. The

assumption q1 ≥ q2 implies that q1(q2−1)
q2(q1−1) ≤ 1, hence, the function F1 is concave.

93
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We obtain ⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q1

⎞
⎠

q1
q1−1

=

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q1

⎞
⎠

q2(q2−1)q1
(q1−1)q2(q2−1)

=

⎛
⎜⎝
⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q1

⎞
⎠

q1(q2−1)
q2(q1−1)

⎞
⎟⎠

q2
q2−1

≥
⎛
⎝ m∑

j=1

s(Bj)
(‖sα|Bj

‖q1
) q1(q2−1)

q2(q1−1)

⎞
⎠

q2
q2−1

=

⎛
⎝∑

j=1

s(Bj)

(
n∑

i=1

s(Ai|Bj)s(Ai|Bj)
q1−1

) q2−1
q2(q1−1)

⎞
⎠

q2
q2−1

.

Now, we apply the Jensen inequality for the function F2 defined by

F2(x) = x
q2−1
q1−1 ,

for x ∈ [0,∞), where ai = s(Ai|Bj), xi = s(Ai|Bj)
q1−1, i = 1, 2, . . . , n.

Note that
∑n

i=1 ai = 1 according to Proposition 1. The assumption q1 ≥ q2
implies q2−1

q1−1 ≤ 1, hence, the function F2 is concave. We get

⎛
⎝ m∑

j=1

s(Bj)

(
n∑

i=1

s(Ai|Bj)s(Ai|Bj)
q1−1

) q2−1
q2(q1−1)

⎞
⎠

q2
q2−1

≥
⎛
⎝ m∑

j=1

s(Bj)

(
n∑

i=1

s(Ai|Bj)
q2

)1
q2

⎞
⎠

q2
q2−1

=

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q2

⎞
⎠

q2
q2−1

.

By combining the previous results, we obtain the required inequality. Analo-
gously, we can prove the case where and q1, q2 ∈ (0, 1). Finally, the case where
q1 ∈ (1,∞) and q2 ∈ (0, 1) follows by transitivity. �
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In the following theorem, a weak chain rule for Rényi entropy of IF-partitions
is given.

	
����� 10� Let α = (A1, . . . , An), β = (B1, . . . , Bm) be measurable IF-
-partitions of (1X , 0X) with respect to s. If we denote

b = max

{
1

s(Bj)
;Bj ∈ supp(s), j = 1, . . . ,m

}
,

then

Hs
q (α ∨ β) ≤ Hs

q (α|β) + log b.

P r o o f. The assertion follows by applying the Jensen inequality to the function
F defined by F (x) = xq, x ∈ [0,∞), and putting ai = s(Bj), xj = ‖sα|Bj

‖q,
for j = 1, 2, . . . ,m.

Let 0 < q < 1. Then the function F is concave, and therefore, we get⎛
⎝ m∑

j=1

s(Bj)‖aα|Bj
‖q
⎞
⎠

q

≥
m∑
j=1

s(Bj)

n∑
i=1

s(Ai|Bj)
q

=
∑
j∈δ

(
1

s(Bj)

)q1−1 n∑
i=1

s(Ai ·Bj)
q

≥
∑
j∈δ

bq−1
n∑

i=1

s(Ai · Bj)
q.

It follows

Hs
q (α|β) =

q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠

≥ 1

1− q
log

⎛
⎝bq−1

∑
j∈δ

n∑
i=1

s(Ai · Bj)
q

⎞
⎠

= − log b+
1

1− q
log

m∑
j=1

n∑
i=1

s(Ai ·Bj)
q

= − log b+Hs
q (α ∨ β).
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Consider now the case where q > 1. The function F is in this case convex,
and therefore, we have⎛

⎝ m∑
j=1

s(Bj)‖aα|Bj
‖q
⎞
⎠
q

≤
m∑
j=1

s(Bj)
(‖sα|Bj

‖q
)q

=

m∑
j=1

s(Bj)

n∑
i=1

s(Ai|Bj)
q

=
∑
j∈δ

(
1

s(Bj)

)q−1 n∑
i=1

s(Ai|Bj)
q

≤
∑
j∈δ

bq−1
n∑

i=1

s(Ai|Bj)
q.

Thus

q log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj
‖q
⎞
⎠ ≤ (q − 1) log b+ log

m∑
j=1

n∑
i=1

s(Ai ·Bj)
q.

Since 1− q < 0, we get

Hs
q (α|β) =

q

1− q
log

⎛
⎝ m∑

j=1

s(Bj)‖sα|Bj‖q

⎞
⎠

≥ q − 1

1− q
log b+

1

1− q
log

m∑
j=1

n∑
i=1

s(Ai|Bj)
q

= − log b+Hs
q (α ∨ β). �

Remark 6� Let α = (A1, . . . , An), β = (B1, . . . , Bm) be measurable IF-par-
titions of (1X , 0X) with respect to s. Since α ∨ β = β ∨ α, it holds also the
inequality

Hs
q (α ∨ β) ≤ Hs

q (β|α) + log a,

where

a = max

{
1

s(Ai)
;Ai ∈ supp(s), i = 1, 2, . . . , n

}
.

	
����� 11� Let α = (A1, . . . , An), β = (B1, . . . , Bm) be measurable IF-
-partitions of (1X , 0X) with respect to s. If we denote

b = max

{
1

s(Bj)
;Bj ∈ supp(s), j = 1, . . . ,m

}
,

then
Hs

q (α ∨ β) ≤ Hq(α) + log b.

P r o o f. The claim is a direct consequence of Theorems 6 and 8. �
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5. The Rényi divergence in the intuitionistic fuzzy case

In this section, we define the concept of the Rényi divergence in the intu-
itionistic fuzzy case. We will prove basic properties of this quantity, and for
illustration, we provide some numerical examples.

���������� 11� Let s, t be two states on F and let α = (A1, . . . , An) be a
measurable IF-partition of (1X , 0X) with respect to s and t such that t(Ai) > 0,
for i = 1, . . . , n. Then we define the Rényi divergence of order q where q > 0,
q �= 1, of the state s from the state t with respect to α as the number

Dα
q (s‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q. (8)

Remark 7� It is easy to see that, for any measurable IF partition α of (1X , 0X),
we have Dα

q (s‖s) = 0.

The following theorem states that the Rényi entropy Hq(α) can be expressed
in terms of the Rényi divergence Dα

q (s|t) of a state s from a state t that is
uniform over α = (A1, . . . , An).

	
����� 12� Let s, t be two states on F and α = (A1, . . . , An) be a measurable
IF-partition of (1X , 0X) with respect to s and t. If the state t is uniform over α,
i.e., t(Ai) =

1
n , for i = 1, 2, . . . , n, then

Hs
q (α) = Ht

q(α)−Dα
q (s‖t).

P r o o f. Let us calculate:

Dα
q (s‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q

=
1

q − 1
log

n∑
i=1

s(Ai)
q

(
1

n

)1−q

=
1

q − 1
log

(
1

n

)1−q

+
1

q − 1
log

n∑
i=1

s(Ai)
q

= Ht
q(α)−

1

q − 1
log

n∑
i=1

s(Ai)
q = logn−Hs

q (α).

From this follows the claim. �
Example 7. Consider a family F of IF-events and a state s defined on F .
In Example 5 we dealt with the IF-partition α = (A1, A2) of (1X , 0X) with
s(A1) =

1
3 , s(A2) =

2
3 , and we calculated that the Rényi entropy

Hs
q (α) of order q =

1

2
is Hs

q (α)
.
= 0.9581 bit.
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Let t be a state defined on F that is uniform over α, i.e., t(A1) = t(A2) =
1
2 . Then

the Rényi divergence of order q = 1
2 is Dα

1
2

(s‖t) = −2 log
(√

1
3

√
1
2 +

√
2
3

√
1
2

) .
=

0.04186 bit, and we get bit

Ht
1
2
(α)−Dα

1
2
(s‖t) = log 2−Dα

1
2
(s‖t) .

= 1− 0.04186
.
= 0.9581.

It can be verified that the equality Hs
1
2
(α) = log 2−Dα

1
2
(s‖t) holds.

	
����� 13� Let s, t be two states on F and α = (A1, . . . , An) be a measurable
IF-partition of (1X , 0X) with respect to s and t such that s(Ai) > 0 and t(Ai) > 0,
for i = 1, 2, . . . , n. Then Dα

q (s‖t) ≥ 0 with the equality if and only if

s(Ai) = t(Ai) for i = 1, 2, . . . , n.

P r o o f. The inequality follows by applying the Jensen inequality for the func-
tions F defined by F (x) = x1−q, x ∈ [0,∞), and putting

ai = s(Ai), xi =

(
t(Ai)

s(Ai)

)1−q

, i = 1, 2, . . . , n.

Let us consider the case q > 1. Then 1 − q < 0, therefore, the function F is
convex. By the Jensen inequality we obtain

1 =

(
n∑

i=1

t(Ai)

)1−q

=

(
n∑

i=1

s(Ai)
t(Ai)

s(A− i)

)1−q

≤
n∑

i=1

s(Ai)

(
t(Ai)

s(Ai)

)1−q

=

n∑
i=1

s(Ai)
qt(Ai)

1−q, (9)

and consequently,

log

n∑
i=1

s(Ai)
qt(Ai)

1−q ≥ log 1 = 0.

Since 1
q−1 > 0 for q > 1, it follows that

Dα
q (a‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q ≥ 0.

Let 0 < q < 1. Then the function F is concave, therefore, we get
n∑

i=1

s(Ai)
qt(Ai)

1−q ≤ 1,

and consequently,

log

n∑
i=1

s(Ai)
qt(Ai)

1−q ≤ log 1 = 0.
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Since 1
q−1 < 0 for 0 < q < 1, it follows that

Dα
q (a‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q ≥ 0.

The equality in (9) holds if and only if t(Ai)
s(Ai)

is constant, for i = 1, 2, . . . , n,

i.e., if and only if t(Ai) = c · s(Ai), for i = 1, 2, . . . , n. By summing over

i = 1, 2, . . . , n, we get
∑n

i=1 t(Ai) = c ·∑n
i=1 s(Ai), which implies that c = 1.

Hence s(Ai) = t(Ai), for i = 1, 2, . . . , n. Therefore, we conclude thatDα
q (a‖t) = 0

if and only if s(Ai) = t(Ai), for i = 1, 2, . . . , n. �

�������� 2� Let α = (A1, . . . , An) be a measurable IF-partition of (1X , 0X)
with respect to a state s defined on F such that s(Ai) > 0, for i = 1, 2, . . . , n.
Then

Hs
q (α) ≤ log n

with the equality if and only if the state s is uniform over α.

P r o o f. Let t : F → [0, 1] be a state uniform over α, i.e., t(Ai) = 1
n for i =

1, 2, . . . , n. Then according to Theorems 12 and 13, it holds

0 ≤ Dα
q (s‖t) = logn−Hs

q (α),

which implies that Hs
q (α) ≤ logn. Since the equality Dα

q (s‖t) = 0 applies if and
only if s(Ai) = t(Ai), for i = 1, 2, . . . , n, the equality Hs

q (α) = logn holds if and
only if s is a state uniform over α. �

Example 8. Consider an arbitrary family F of IF-events and states s1, s2, s3
defined on it. Let α = (A1, A2) be a measurable IF-partition of (1X , 0X) with
respect to states s1, s2, s3 with s1(A1) = p1, s2(A1) = p2, s3(A1) = p3, where
p1, p2, p3 ∈ (0, 1). Then s1(A2) = 1 − p1, s2(A2) = 1 − p2, s3(A2) = 1 − p3.
Putting p1 = 1

2 , p2 = 1
3 , p3 = 1

4 and q = 2, we obtain:

Dα
2 (s1‖s2) = log

2∑
i=1

s1(Ai)
2s2(Ai)

−1 .
= 0.169925 bit;

Dα
2 (s1‖s3) = log

2∑
i=1

s1(Ai)
2s3(Ai)

−1 .
= 0.415037 bit;

Dα
2 (s2‖s3) = log

2∑
i=1

s2(Ai)
2s3(Ai)

−1 .
= 0.052467 bit.

Evidently, Dα
2 (s1‖s3) > Dα

2 (s1‖s2)+Dα
2 (s2‖s3). If we put q = 1

2 , then by simple

calculations we get: Dα
q (s1‖s2) .

= 0.04186 bit, Dα
q (s1‖s3) .

= 0.1 bit, Dα
q (s2‖s3) .

=

0.0122 bit. In this case also applies that Dα
1
2
(s1‖s3) > Dα

1
2
(s1‖s2) +Dα

1
2
(s2‖s3).
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This means that the triangle inequality for the Rényi divergence Dα
q (s‖t) gen-

erally does not apply. In the same way it can be shown that the equality
Dα

q (s‖t) = Dα
q (t‖s) is not necessarily true, thus the Rényi divergence Dα

q (s‖t)
is not symmetric. The result means that it is not a metric in a true sense.

The following theorem states that for q → 1 the Rényi divergence Dα
q (s‖t)

converges to the Kullback-Leibler divergence dα(s‖t) defined by formula (5).

	
����� 14� Let s, t be two states on F and α = (A1, . . . , An) be a mea-
surable IF-partition of (1X , 0X) with respect to s and t such that t(Ai) > 0,
for i = 1, . . . , n. Then

lim
q→1

Dα
q (s‖t) =

n∑
i=1

s(Ai) · log s(Ai)

t(Ai)
.

P r o o f. For every q ∈ (0, 1) ∪ (1,∞), we can write:

Dα
q (s‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q =
f(q)

g(q)
,

where f, g are continuous functions defined, for every q ∈ (0,∞), in the following
way

f(q) = log

n∑
i=1

s(Ai)
qt(Ai)

1−q, g(q) = q − 1.

By continuity of the functions f, g, we have lim
q→1

g(q) = g(1) = 0, and

lim
q→1

f(q) = f(1) = log

n∑
i=1

s(Ai)t(Ai)
0 = log 1 = 0.

Using L’Hôspital’s rule, we get that limq→1 D
α
q (s‖t) = limq→1

f ′(q)
g′(q) , under the

assumption that the right-hand side exists. Since

g′(q) = 1 and f ′(q) =
h′(q)

h(q) ln 2
,

where

h(q)=

n∑
i=1

s(Ai)
qt(Ai)

1−q, and h′(q)=
n∑

i=1

s(Ai)
qt(Ai)

1−q
(
ln s(Ai)− ln t(Ai)

)
,

we obtain

lim
q→1

Dα
q (s‖t) = lim

q→1
f ′(q) =

1

ln 2

n∑
i=1

s(Ai)
(
ln s(Ai)− ln t(Ai)

)

=

n∑
i=1

s(Ai) · log s(Ai)

t(Ai)
.

�
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����� 15� Let s, t be two states on F and α = (A1, . . . , An) be a measurable
IF-partition of (1X , 0X) with respect to s and t such that

s(Ai) > 0, and t(Ai) > 0, for i = 1, 2, . . . , n.

Then

(i): 0 < q < 1 implies Dα
q (a‖t) ≤ dα(s‖t);

(ii): q > 1 implies Dα
q (s‖t) ≥ dα(s‖t),

where

dα(s‖t) =
∑
i=1

s(Ai) · log s(Ai)

t(Ai)
.

P r o o f. By using the Jensen inequality for the concave function F defined

by F (x) = log x, for x ∈ (0,∞), and putting ai = s(Ai), xi =
(

s(Ai)
t(Ai)

)q−1

,

for i = 1, 2, . . . , n, we get

log

n∑
i=1

s(Ai)
qt(Ai)

1−q = log

n∑
i=1

s(Ai)

(
s(Ai)

t(Ai)

)q−1

≥
n∑

i=1

s(Ai) log

(
s(Ai)

t(Ai)

)q−1

= (q − 1)

n∑
i=1

s(Ai) log
s(Ai)

t(Ai)
.

Let 0 < q < 1. Then 1
q−1

< 0, and therefore, we have

Dα
q (s‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q

≤
n∑

i=1

s(Ai) log
s(Ai)

t(Ai)
= dα(s‖t).

Let us consider the case of q > 1. Since 1
1−q > 0 for q > 1, we get

Dα
q (s‖t) =

1

q − 1
log

n∑
i=1

s(Ai)
qt(Ai)

1−q

≥
n∑

i=1

s(Ai) log
s(Ai)

t(Ai)
= dα(s‖t).

�
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Example 9. Consider the states s1, s2, s3 and the IF-partition α = (A1, A2)
from Example 8. It can be calculated that the Kullback-Leibler divergences

dα(s1‖s2) .
= 0.084963 bit,

dα(s1‖s3) .
= 0.207518 bit,

and
dα(s2‖s3) .

= 0.025062 bit.

Based on the previous results, we have:

Dα
2 (s1‖s2) .

= 0.169925 bit,

Dα
2 (s1‖s3) .

= 0.415037 bit,

Dα
2 (s2‖s3) .

= 0.052467 bit.

Evidently, the obtained results correspond to the claim (ii) of Theorem 15. For
q = 1

2 we have:
Dα

q (s1‖s2) .
= 0.04186 bit,

Dα
q (s1‖s3) .

= 0.1 bit,

Dα
q (s2‖s3) .

= 0.0122 bit.

which corresponds to the claim (i) of Theorem 15.

6. Conclusion

The aim of this paper was to extend the study concerning the Shannon entropy
and Kullback-Leibler divergence in the intuitionistic fuzzy case to the case of
Rényi entropy and Rényi divergence. The results are contained in Sections 3–5.
In Section 3, we have introduced the concept of Rényi entropy of IF-partitions
and we examined properties of this entropy measure. Specifically, it was shown
that the Rényi entropy Hs

q (α) is monotonically decreasing in q. In Section 4, we
have defined the Rényi conditional entropy of IF-partitions. It was shown that
the suggested concepts are consistent with the Shannon entropy of IF-partitions
defined and studied by the authors in [24]. Section 5 was devoted to the study
of Rényi divergence in the intuitionistic fuzzy case. We have proved that the
Kullback-Leibler divergence of states on a family of IF-events can be derived
from their Rényi divergence as the limiting case for q going to 1. Theorem
13 enables the interpretation of Rényi divergence as a measure of the distance
between two states over the same IF-partition. In addition, we have investigated
the relationship between the Rényi divergence and the Rényi entropy of IF-
partitions (Theorem 12) as well as the relationship between the Rényi divergence
and Kullback-Leibler divergence in the intuitionistic fuzzy case (Theorem 15).
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In the proofs we used L’Hôpital’s rule, the triangle inequality of q-norm and
the Jensen inequality. To illustrate the results, we have provided several numer-
ical examples.
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RÉNYI ENTROPY AND RÉNYI DIVERGENCE IN THE INTUITIONISTIC FUZZY CASE

[31] SHANNON, C.E.: A Mathematical Theory of Communication, Bell Syst. Tech. J. 27

(1948), 379–423.

[32] SZMIDT, E.—KACPRZYK, J.: Entropy for intuitionistic fuzzy sets, Fuzzy Sets Syst.
118 (2001), 467–477.

[33] TEIXEIRA, A.—MATOS, A.—ANTUNES, L.: Conditional Rényi entropies, IEEE Trans.
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