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Objective. Ghrelin, a 28 amino acid peptide, has diverse effects in body organs. Erythropoietin 
is a key mediator in increasing the red blood cells during hypoxia. Previously, we have shown that 
ghrelin has a polycythemic effect. In the present study, we evaluated the effect of ghrelin on eryth-
ropoietin gene expression with the aim to find out the mechanism of its effect.

Methods. Thirty two adult male Wistar rats were divided randomly into four groups. The hypoxic 
condition was induced by placing the rats into the hypoxic chamber with 11% oxygen for two weeks. 
Saline- and ghrelin-treated control rats remained in room with a regular air conditions. Erythropoietin 
gene expression was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). 
Plasma erythropoietin was measured by enzyme linked immunosorbent assay (ELISA).

Results. After 2-weeks of hypoxia, erythropoietin transcripts and erythropoietin plasma levels were 
significantly increased in hypoxic animals compared with control animals. Ghrelin treatment decreased 
both plasma erythropoietin and erythropoietin gene expression only in the hypoxic rats.

Conclusions. Our data indicate that ghrelin might induce polycythemia through an erythropoie-
tin-independent manner. However, to confirm this hypothesis and to find out the precise mechanism 
of this phenomenon further investigations are needed.
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Ghrelin, first identified as a growth hormone releasing 
analogous, has diverse functions in different body parts 
(Van der Lely et al. 2004; Kojima and Kangava 2005). 
Among these actions, its cardiovascular effects, especially 
under conditions of hypoxia, are under investigation 
(Schwenke et al. 2008; Kishimoto et al. 2009; Alipour 
et al. 2011, 2012). Ghrelin receptors have been found in 
many organs including the kidneys (Mori et al. 2000; Dav-
enport et al. 2005). Erythropoietin (Epo) is an essential 
glycoprotein hormone involved in the regulation of red 
blood cells production (Jelkmann 1986). It is produced 
by liver and kidney in response to hypoxia (Jacobson et 

al. 1957; Beru et al. 1986). The regulation of Epo gene 
expression occurs primarily at the mRNA level and it 
is under the control of transcriptional factors in which 
hypoxia-inducible factors (HIF) are the main factors me-
diating the renal response to hypoxia (Schuster et al. 1989; 
Goldberg et al. 1991; Nangaku and Eckardt 2007; Paliege 
et al. 2011). The plasma levels of Epo finally influence 
the rate of production of new erythrocytes by the bone 
marrow. Failure to increase the amount of circulating Epo 
in response to hypoxic stress can lead to anemia (Erslev 
1991). Previously, we have shown that ghrelin has a potent 
polycythemic effect in hypoxic condition (Alipour et al. 
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2010). In the present study, we investigated the effect of 
ghrelin on erythropoietin production in the kidney to 
find out its assumed mechanism.

Materials and Methods

Animals and chronic hypoxia model design. All ex-
periments were conducted in accordance with the ethical 
standards of the faculty of medicine, Tabriz University of 
Medical Sciences, Iran. Adult male Wistar rats (200-250 g) 
were housed in cages in a temperature and light-controlled 
environment and provided with food and water ad libitum. 
Animals were randomly divided into 4 groups namely, 
control (C), control with ghrelin (CG), hypoxic with saline 
(HS), and hypoxic with ghrelin (HG). Each group con-
tains 8 rats. In (HS) and (HG) group of rats, hypoxia was 
induced by Environmental Chamber System GO2Altitude 
(Biomedtech Australia Pty. Ltd), which generates hypoxic 
air without any need to gas cylinder. HS and HG animals 
were placed into a ventilated chamber inflated with hy-
poxic air (11% O2), simulated heights of 5150 m above the 
sea level. An O2 sensor and controller were embedded into 
the chamber wall to monitor O2 concentration. Animals 
were kept in the chamber continuously for two weeks, 
except the time of daily injections.

Drug administration. Rats received a subcutaneous 
injection of either saline (0.1 ml) or ghrelin (150 µg/
kg/day in 0.1 ml) (Schwenke et al. 2008) and then were 
placed into the hypoxic chamber. HS, CG and HG rats 
continued to receive daily injections of either saline or 
ghrelin during the 2-weeks. Ghrelin was obtained from 
the Tocris Bioscience Co. (Bristol, UK) and adminis-
tered dissolved in saline serving as the vehicle.

RNA extraction and first-strand cDNA synthesis. 
For all animals, the right kidney was removed for RNA 
extraction under standard sterile surgical method. 
Total RNA was extracted from kidney using Trizol 
reagent (Invitrogen, USA) according to the manufac-
turer’s description and treated with RNase-free DNase 
to remove any residual genomic DNA. Single stranded 
cDNAs were synthesized by incubating total RNA 
(1 µg) with RevertAid H Minus M-MuL V Reverse 

transcriptase (200 U), oligo-[dT]18 primer (5 μM), 
Random Hexamer Primer (5 μM, dNTPs (1 mM), 
and RiboLock RNase-inhibitor (20 U) for 5 min at 
25°C followed by 60 min at 42°C in a final volume of 
20 µl. The reaction was terminated by heating at 70°C 
for 5 min.

Real-time relative quantitative RT-PCR. Quantita-
tive real-time RT-PCR was done using the Corbett Life 
Science (Rotor-Gene 6000) System using 2 μl of a 3-fold 
diluted cDNA in each PCR reaction in a final volume of 
20 μl. Each PCR reaction contained 5 pM of primers and 
1×FastStart SyBR Green Master (Roche). Sequences of 
primers are listed in Table 1. PCR amplifications were 
performed by the following three cycle programs: 1) 
denaturation of cDNA (1 cycle: 95°C for 10 min); 2) 
amplification (40 cycles: 95°C for 15 s, 57°C for 30 s, 60°C 
for 34 s); 3) melting curve analysis (1 cycle: 60 to 95°C 
with temperature transition rate 1°C/s). Serial cDNA 
dilutions of a mixture of all samples were used to generate 
standard curves. β-actin (Actb) mRNA expression levels 
were used to calculate relative expression levels. All data 
are presented as ratio of the target gene/Actb. The relative 
quantification was performed by 2[−ΔCt]: Expression of tar-
get genes/Actb = (1+E) -Ct target gene/(1+E) -Ct Actb. The 
specificity of the PCR reactions was verified by generation 
of a melting curve analysis followed by gel electrophoresis, 
visualized by ethidium bromide staining.

Plasma erythropoietin measurement. All measure-
ments were performed on blood samples from each 
animal separately and the acquired data are represented 
as mean ± SEM. Epo was measured by rat EPO ELISA 
kit (ref. DRE11406, Glory Science Co., Ltd, USA) using 
a reader (Statfax, Awareness, USA) at a wavelength of 
450 nm. The intra-assay and inter-assay were 11.2% and 
11.4%, respectively.

Hematocrit measurement. Hematocrit was meas-
ured using the standard microhematocrit method. 
Blood sampling was performed from tail of animals. 
Up to 2/3 the length of the microhematocrit tube (use 
2 tubes for each sample, plain blue-ringed tube for anti-
coagulated blood, heparinized red-ringed tube for finger 
stick) was filled with blood sample and then sealed one 

Table 1

Sequences of oligonucleotide primers

Gene Forward Primer Reverse Primer Product size [bp]
Epo GCT CCA ATC TTT GTG GCA TC ATC CAT GTC TTG CCC CCT A 66
β-actin TCCTCCTGAGCGCAAGTACTCT GCTCAGTAACAGTCCGCCTAGAA 153

Epo – Erythropoietin
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end with sealant of clay. Blood contained tubes were 
centrifuged at 12000xg for 5 min by a microhematocrit 
centrifuge. Finally, hematocrit was read in percent by 
using microhematocrit reader.

Statistical analysis. Expression of Epo was obtained 
through the Corbett Rotor-Gene 6000 and expressed 
as Ct (cycle threshold); ∆Ct (Ct of target gene – Ct of 
housekeeping gene). The collected data was analyzed 
by statistical SPSS software, version 16. Variables were 
reported as means and standard errors. Data were ana-
lyzed by ANOVA to test differences between groups. 
For multiple comparisons where statistical significance 
was reached, according to equality of variances, post 
hoc analyses were performed using the Tukey tests. The 
value p≤0.05 was determined as the level of significance 
for all statistical analysis.

Results

Hematocrit measurement. Average hematocrit of C, 
CG, HS and HG groups after two weeks are shown in Fig. 
1. A significant polycythemia occurred in HS compared 
with C group (p<0.0001). Furthermore, ghrelin treat-
ment in hypoxic animals lead to a significant elevation 
in hematocrit when compared with saline treated ones 
(p<0.0001). However, there was no a significant poly-
cythemia in CG group compared with normal animals.

Effect of hypoxia on Epo gene expression. After 
2-weeks hypoxia, Epo transcripts of hypoxic animals 

significantly increased compared with control animals 
(p<0.001) (Fig. 2.). Furthermore, data analysis showed 
that expression of Epo in kidney of HS animals increased 
about 2.42-fold compared with control group.

Effect of ghrelin on Epo gene expression during 
hypoxia. Ghrelin treatment did not change Epo gene 
expression in normal rats. However, during chronic hy-
poxia, ghrelin decreased Epo gene expression compared 
with saline-treated animals (p<0.001) (Fig. 2).

Plasma Epo measurements. In normal ghrelin-
treated animals, plasma Epo did not change compared 
with control animals. After 2-weeks hypoxia, plasma 
levels of Epo increased significantly compared with 
control animals (p<0.05). In HG animals, plasma Epo 
significantly decreased when compared with HS rats 
(p<0.001) (Fig. 3).

Discussion

The results of this study indicate that the polycythemic 
effect of ghrelin could not be under potentiation of Epo 
gene expression. Since there is no correlation between 
ghrelin treatment and the amount of Epo gene expres-
sion, it seems that ghrelin induces the polycythemia 
independent of Epo. To prove this claim, the following 
points are remarkable: 1) although mild elevation in 
hematocrit was seen in normal ghrelin-treated animals, 
but there was not a significant change in renal Epo gene 
expression or plasma alteration; 2) in hypoxic animals 

 

 
 
Fig. 1. Average hematocrit after two weeks in Control, Control with Ghrelin, Hypoxic with 
saline (HS), and Hypoxic with Ghrelin (HG) groups. Ghrelin was injected subcutaneously 
(150 µg/kg/day). Data are reported as mean ± SEM. 
*p<0.0001 compared with normoxia 
#p<0.0001 compared with HS 

Fig. 1. Average hematocrit after two weeks in Control, Control 
with Ghrelin, Hypoxic with saline (HS), and Hypoxic with 
Ghrelin (HG) groups. Ghrelin was injected subcutaneously 
(150 µg/kg/day). Data are reported as mean ± SEM.
*p<0.0001 compared with normoxia
#p<0.0001 compared with HS

 

 
 
Fig. 2. Relative quantitative RT-PCR of erythropoietin to β-actin (n=8). 
Data are presented as mean ± SEM. 
*p<0.001 compared with normoxia 
#p<0.001 significant difference between chronic hypoxic rats treated with saline vs. ghrelin 

Fig. 2. Relative quantitative RT-PCR of erythropoietin to 
β-actin (n=8).
Data are presented as mean ± SEM.
*p<0.001 compared with normoxia
#p<0.001 significant difference between chronic hypoxic rats 
treated with saline vs. ghrelin
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encountered a severe polycythemia, there was a signifi-
cant increment in Epo gene expression but the elevation 
of plasma Epo was not as vivid as gene expression. It 
would be better to point out that the regulation of Epo 
levels during hypoxia occurs primarily at the transcrip-
tional level. In response to hypoxia there would be an 
initial peak for plasma Epo and then it decreases but re-
mains above baseline (Eckardt et al. 1990; Klausen et al. 
1996). On the other hand, in hypoxic ghrelin-treated an-
imals, although a severe polycythemia was seen but Epo 
gene expression and plasma level declined significantly 
compared with hypoxic animals. Since we measured all 
the variables at the end of the second week of hypoxia, 
it seems that ghrelin accompanies Epo synergistically 
leading to a more severe polycythemia compared with 
hypoxia alone. Thereafter, this potent polycythemia 
suppresses Epo gene expression vigorously. Overall, the 
problem is the real mechanism by which ghrelin induces 
polycythemia in an Epo-independent manner. One 
must remember that ghrelin is a growth hormone (GH) 
secretagogue and a hematopoietic effect has been found 
for GH secretagogue (Koo et al. 2001). So a mediator 
role for GH might be expected to elucidate this action 
of ghrelin. Whether ghrelin can establish red blood cell 
production directly or not is our future hypothesis. In 
our new projects, we will focus on spleen and hemat-
opoietic stem cells, as probable targets for ghrelin, to find 

out the possible mechanisms of polycythemic effect of 
ghrelin especially during hypoxia.

It has been approved that tissue hypoxia results in the 
activation of a physiological stress response designed to 
increase erythropoiesis named as stress erythropoiesis 
(Socolovsky 2007). This phenomenon occurs in the 
adult spleen (Millot et al. 2010; Paulson et al. 2011). Fur-
thermore, stress erythropoiesis, especially in the acute 
phase, could be promoted even in the Epo absence (Zei-
gler et al. 2010). In a study by xia et al. (2004), it has been 
shown that ghrelin has a modulatory dose-dependent 
effect on proliferation of splenic T cells. Based on the 
present study in which we propose an Epo-independent 
erythropoiesis function for ghrelin, stress erythropoiesis 
in spleen is not unpredictable by ghrelin.

Suggesting splenic effect of ghrelin could be derived 
from literature data. Cytoplasmic protein Src homology-2 
domain containing phosphatase-1 (SHP-1), a protein tyro-
sine phosphatase (PTP), has been previously introduced as 
an inhibitor of activation-promoting signaling cascades in 
hematopoietic cells (Tonks 2006; Lorenz 2009). Revealing 
the regulatory role of SHPS-1 in hematopoeisis, Ishikawa-
Sekigami et al. (2006) indicated that it negatively regulates 
the phagocytosis of RBCs by splenic macrophages, thereby 
determining both the lifespan of individual RBCs and the 
number of circulating erythrocytes. It is notable that SHP-
1 is activated by phosphorylation in the C-terminal y536 
residue of SHP-1 (Zhang et al. 2003). Regarding the fact 
that SHP-1 phosphorylation reaches its maximal levels 
under ghrelin stimulation (Lodeiro et al. 2011), it could 
be proposed that ghrelin might be involved in survival of 
RBCs when passing through the spleen.

Finally, some research groups have revealed that gh-
relin interferes with stem cells differentiation and prolif-
eration (De Vriese et al. 2005; Dixit et al. 2007; Togliatto 
et al. 2010; yang et al. 2011). Based on the data of the 
present study, hematopoietic stem cells as a candidate 
target for ghrelin need to be further investigated.

In summary, it seems that ghrelin may induce 
polycythemia through an Epo-independent manner. 
However, understanding the precise mechanism of this 
phenomenon needs further investigations.
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Fig. 3. Average erythropoietin after two weeks in Control, Control with Ghrelin, Hypoxic 
with saline (HS), and Hypoxic with Ghrelin (HG) groups. Ghrelin was injected 
subcutaneously (150 µg/kg/day). Data are reported as mean ± SEM. 
*p<0.05 compared with control animals 
**p<0.001 significant difference between chronic hypoxic rats treated with saline vs. 
ghrelin. 
 

Fig. 3. Average erythropoietin after two weeks in Control, Con-
trol with Ghrelin, Hypoxic with saline (HS), and Hypoxic with 
Ghrelin (HG) groups. Ghrelin was injected subcutaneously 
(150 µg/kg/day). Data are reported as mean ± SEM.
*p<0.05 compared with control animals
**p<0.001 significant difference between chronic hypoxic rats 
treated with saline vs. ghrelin.
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