
�

�
�����������	 
��	�������

DOI: 10.2478/tmmp-2018-0027
Tatra Mt. Math. Publ. 72 (2018), 155–165

IS DIFFERENTIAL EVOLUTION

ROTATIONALLY INVARIANT?

Hana Zámečńıková — Daniela Einšpiglová — Radka Poláková

— Petr Bujok

University of Ostrava, Ostrava, CZECH REPUBLIC

ABSTRACT. In this paper, we study a problem of the control parameter settings
in Differential Evolution algorithm and test a novel variant of the algorithm cal-
led CoBiDE. Although Differential Evolution with basic setting (i.e., CR= 0.5;

F =0.5) works quite well, it starts to fail on rotated functions. In general, we want
to improve the convergence of algorithm primarily on rotated functions. It is
done by adapting crossover parameter CR whereas parameter F is fixed to 0.5.
There is a recommendation to set CR = 1 for rotated functions. It means that
trial vectors are essentially composed from mutant. However, it is not easy task

to set the parameters appropriately for solving optimization problem but it is
crucial for obtaining good results. Moreover, the quality of points produced in
evolution is highly affected by the coordinate system. In CoBiDE, the authors
proposed a new coordinate system based on the current distribution of points
in the population. We test these two approaches by running both algorithms on
six pairs of rotated and non-rotated functions from CEC 2013 benchmark set

in two levels of dimension space. This experimental study aims to reveal if such
algorithm’s setting is invariant under a rotation.

Introduction

Global optimization deals with an objective function

f : D → R, D ⊆ R
d.

We are searching for global minimum point x∗ ∈ D where f(x∗) ≤ f(x), ∀x ∈ D

c© 2018 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 68T20.
Keywords: global optimization, differential evolution, CEC2013 benchmark (set).
This work was supported by University of Ostrava from the internal grant projects

SGS01/UVAFM/2017 and SGS06/UVAFM/2018.

155



H. ZÁMEČŃIKOVÁ — D. EINŠPIGLOVÁ — R. POLÁKOVÁ — P. BUJOK

and D is continuous space with boundary constrains

D =

d∏
i=1

[ai, bi], ai < bi, i = 1, 2, . . . , d.

As it is well-known, global optimization is NP-hard issue therefore some
heuristic algorithm is often used for its solving. One of the most popular
optimization algorithm is Differential Evolution (DE) since it is simple algo-
rithm producing good results. During last years many authors tried to im-
prove DEby changing of parameters’ setting or they transformed its structure
and consequently its code. The researchers experimented with control param-
eters’ setting [5], diversity of population [3] or elimination of drift bias [4].
Moreover, successful DE variants were published such as EIG-L-SHADE [1] or
CoBiDE [9].

This paper is focused on discussing two proposed approaches that should
improve this algorithm and mainly make it more general-purpose. The paper
has two experimental parts both aimed on the problem of rotated functions on
which DE, as such as another heuristic algorithms, often fails. The first part is
focused on setting of the parameter CR according to recommendation in [5],
testing this setting and comparison with mainly used one. The second part
deals with improved version of DE proposed in [9]. It is enhanced by covariance
matrix learning and bimodal distribution parameter setting. The same exper-
iments and comparison were done on both version of DE, original [5], [8] and
enhanced [9].

1. Differential Evolution

Differential Evolution is population-based optimization algorithm that was
developed by R a i n e r S t o r n and K e n n e t h P r i c e in 1997 [8] and has
only few control parameters. It is simple stochastic evolutionary algorithm us-
ing heuristic search in continuous space in order to find global optimum of an
objective function. DE uses evolutionary operators, such as mutation, crossover,
and selection.

1.1. Creating a new generation

First of all, a population of N random points in a search space D is uni-
formly generated (xi, i = 1, 2, . . . , N). And then according to the pseudocode it
is proceeded, as below.

It is important to say that the number of steps is limited. Usually DE is
repeated until difference between the worst and the best function value is very
small, often 1 × 10−8 or the number of function evaluations is greater than
predefined fixed value.

156



IS DIFFERENTIAL EVOLUTION ROTATIONALLY INVARIANT?

Algorithm 1 Pseudocode of DE

1: evaluate f in each xi, i = 1, 2, . . . , N
2: while stopping condition not achieved do
3: Q = ∅
4: for i := 1 to N do
5: generate mutation vector ui

6: generate a new trial vector yi by crossover of ui and xi

7: evaluate f in yi

8: if f(yi) ≤ f(xi) then
9: insert yi into Q

10: else
11: insert xi into Q
12: end if
13: end for
14: P := Q
15: end while

1.2. Mutation

Generating vector u (a linear combination of several points from population)
represents the mutation in DE algorithm. There are several different types of mu-
tation. The most frequently used is rand/1/ type, which generates vector u from
three different points randomly selected from the population (r1, r2, and r3),
not equal to xi, as below.

u = r1 + F (r2 − r3), (1)

F > 0 is input parameter of mutation.

1.3. Crossover

The mutant vector u is one of the parental vectors for crossover. The second
parent is current xi from the actual generation. There are two types of crossover
in DE – binomial and exponential, in this paper we use only the binomial one.
In binomial crossover, new trial point y is created by mixing coordinates of both
parental vectors as follows

yj =

{
uj , Rj ≤ CR ∨ j = I,

xij , Rj > CR ∧ j 	= I,
(2)

where I is random integer from {1, 2, . . . , d}, CR ∈ [0, 1] is crossover constant
and Rj ∈ (0, 1) is chosen randomly and independently for each j ∈ {1, . . . , d}.
1.4. Selection

If the new point y is fulfilling the condition f(y) ≤ f(xi), then y proceeds to
the next generation and replaces the current vector xi. If not, then xi stays for
the next generation.

157



H. ZÁMEČŃIKOVÁ — D. EINŠPIGLOVÁ — R. POLÁKOVÁ — P. BUJOK

2. DE for rotated functions

Main goal of our paper is to explore the behavior of DE with setting recom-
mended by authors of the original paper [5] where version DE/rand/1/bin of DE

algorithm was used. Two settings of DE algorithm are compared here, most fre-
quently used CR = 0.5 and CR = 1 recommended by [5]. The assumption was,
that especially on rotated functions, CR = 1 should provide better solutions [5].

Benchmark test suite CEC 2013 was taken for this experiment, twelve func-
tions were chosen in two levels of dimension (d = 10, 30) and 51 repeated
runs for each function, dimension, and each of both versions of parameter CR
(CR = 1,CR = 0.5) were done. Population size in DE was always dependent on
dimension (N = 5d) and F was fixed on 0.5.

2.1. DE Results

The new setting of crossover parameter was proposed and implemented into
the mostly used version od DE/rand/1/bin and tested on 12 functions in two di-
mensions. Table 1 illustrates how the recommended setting of CR (CR = 1) lead
against to the classic one. Final comparison was done by Wilcoxon two-sample
test for each function and each dimension with significance level 0.05. Symbol
“+” means that setting CR = 1 was significantly better than that one with
CR = 0.5, analogously “−” means that CR = 1 was worse that the classic one

Table 1. Results of statistical comparison for DE with CR = 1 and DE
with CR = 0.5.

Number Function d = 10 d = 30

1 Rosenbrock’s Function − −
2 Rotated Rosenbrock’s Function ≈ −
3 Ackley’s Function − −
4 Rotated Ackley’s function − −
5 Griewank’s Function − −
6 Rotated Griewank’s Function ≈ −
7 Rastrigin’s Function − −
8 Rotated Rastrigin’s Function ≈ +

9 Schwefel’s Function − −
10 Rotated Schwefel’s Function ≈ ≈
11 Lunacek BiRastrigin Function − −
12 Rotated Lunacek BiRastrigin Function − −

158



IS DIFFERENTIAL EVOLUTION ROTATIONALLY INVARIANT?

(CR = 0.5), and on functions labeled with “≈”, both compared versions were not
significantly different. We got 24 pairs for comparison, but unfortunately posi-
tive effect is minimal, improvement occurs just for Rotated Rastrigin’s Function
in higher tested dimension (d = 30).

Results are not very satisfying, so it has been confirmed that rotated prob-
lems could not be solved satisfactory with the basic versions of DE algorithm.
Further possibility how to increase efficiency of DE in rotated problems is using
of CoBiDE.

3. CoBiDE

In 2014, Y o n g W a n g et al. [9] published a novel DE. In brief, it is DE em-
ploying covariance matrix learning and bimodal distribution parameter setting
named CoBiDE. Authors promise better performance of CoBiDE in comparison
with original algorithm. As the results of first part of our experiment showed,
to set DE parameters to appropriate fixed values is not an easy task but it is
crucial for obtaining good results. Moreover, the fact that the quality of points
produced in evolution is highly affected by the coordinate system is usually ig-
nored. Authors in [9] proposed two significant modifications in solving these
issues. Firstly, covariance matrix C of a part of population with less function
values is computed. The matrix C reflects current population diversity and in-
teractions among variables. Then by using eigenvector decomposition of C, the
new coordinate system for search space is established in which the trial vector
is generated. The crossover is done in the new coordinate system. From Fig. 1,
it is obvious that in the new coordinate system the trial vector y can be closer
to global minimum. All details including procedure of the covariance matrix
learning can be found in [9].

Second modification is bimodal distribution of DE parameters setting, com-
posed of Cauchy distributions as follows

F =

{
randcauchy(0.65, 0.1), rand(0, 1) < 0.5,

randcauchy(1.0, 0.1), otherwise,

CR =

{
randcauchy(0.1, 0.1), rand(0, 1) < 0.5,

randcauchy(0.95, 0.1), otherwise.

There are two new parameters ps and peig, both are real numbers from [0, 1].
The ps parameter determines proportion of population used for computing the
covariance matrix needed for the coordinate system transformation, whereas
the number peig is a probability of applying this approach to computing new
generation of population. See all the changes in pseudocode below.

159



H. ZÁMEČŃIKOVÁ — D. EINŠPIGLOVÁ — R. POLÁKOVÁ — P. BUJOK

Figure 1. Search space and possible trial points in old and new coordinate system.

Algorithm 2 Pseudocode of CoBiDE

1: Generate an initial population P, (xi, i = 1, 2, . . . , N).
2: Evaluate f in each xi, i = 1, 2, . . . , N .
3: Generate initial values of F and CR for each element of the population.
4: while stopping condition not achieved do
5: Q = ∅
6: for i := 1 to N do
7: apply the mutation operator to produce mutant vector ui for the target vector

xi

8: end for
9: if rand(0, 1) < peig then

10: for i := 1 to N do
11: implement the crossover operator according to covariance matrix learning

and produce trial vector yi

12: end for
13: else
14: for i := 1 to N do
15: implement the crossover operator according to original coordinate system

and produce yi

16: end for
17: end if
18: for i := 1 to N do
19: evaluate function f value of yi

20: if f(yi) ≤ f(xi) then
21: insert yi into Q
22: F and CR remain the same;
23: else
24: insert xi into Q
25: generate new F and CR
26: end if
27: end for
28: end while

160



IS DIFFERENTIAL EVOLUTION ROTATIONALLY INVARIANT?

4. CoBiDE results

CoBiDE was tested on the same 6 pairs of non-rotated and rotated functions
from CEC 2013 benchmark set as it was used in the first part of our experiment,
51 independent runs were performed for each dimension, problem, and parame-
ters’ setting. The setting was following: dimensions d = 10; 30, population size
N = 5d. Our goal was to test CoBiDE and its setting on rotated problems and
compare its results with results of original DE on these problems. At first, we set
up the parameters ps and peig according to values recommended in [9] ps = 0.5
and peig = 0.4. In order to explore the setting and possibilities of CoBiDE

more, we also tested extreme values of parameters ps and peig: 0.1 and 0.9.
We combined the extreme values with the recommended values and obtained
more permutations. All settings and results (medians of function value errors)
are shown in tables 2, 3, 4, and 5. It is necessary to add that errors smaller than
1 × 10−8 were replaced by 0. Tested functions are numbered according to Ta-
ble 1, non-rotated functions are labelled by odd numbers and rotated functions
by even numbers.

It seems that for functions 1–6 in dimension 10, the setting of ps and peig does
not change the performance whatsoever. Also, errors for non-rotated and rotated
version of the functions are very similar. It appears that CoBiDE is rotationally
invariant on two of these three pairs of functions (Rosenbrock’s and Ackley’s).

Table 2. Medians of results for dimension 10, functions 1–6.

Function number

ps peig 1 2 3 4 5 6

0.5 0.4 0 0 20.577 20.336 0 0.0369

0.5 0.1 0 0 20.477 20.364 3.91E-08 0.039

0.5 0.9 0 0 20.748 20.354 3.76E-08 0.027

0.1 0.1 0 0 20.524 20.362 3.872E-08 0.052

0.1 0.4 0 0 20.591 20.355 3.85E-08 0.043

0.1 0.9 0 0 20.743 20.337 3.814E-08 0.044

0.9 0.1 0 0 20.496 20.35 3.86E-08 0.0418

0.9 0.4 0 0 20.574 20.339 3.86E-08 0.032

0.9 0.9 0 0 20.68 20.349 3.728E-08 0.027

DE, CR = 1 8.25 31.241 20.477 17.539 0.598 0.154

DE, CR = 0.5 9.812 3.348 20.36 0 0.426 0

161



H. ZÁMEČŃIKOVÁ — D. EINŠPIGLOVÁ — R. POLÁKOVÁ — P. BUJOK

Table 3. Medians of results for dimension 10, functions 7–12.

Function number

ps peig 7 8 9 10 11 12

0.5 0.4 0 6.96 0 460.51 10.122 18.459

0.5 0.1 0 7.96 0 517.76 10.122 17.687

0.5 0.9 0 5.97 66.87 403.13 13.862 16.658

0.1 0.1 0 7.96 0 472.6 10.122 17.649

0.1 0.4 0 6.965 0 469.04 10.122 16.398

0.1 0.9 0 6.965 62.34 405.56 13.695 16.902

0.9 0.1 0 7.96 0 444.4 10.122 17.518

0.9 0.4 0 6.97 0 394.17 10.122 17.346

0.9 0.9 0 5.97 66.19 369.38 13.283 16.548

DE, CR = 1 21.101 21.569 1347.5 1416.01 39.166 37.389

DE, CR = 0.5 0 22.42 0.258 1355.35 10.122 33.636

Table 4. Results for dimension 30, functions 1–6.

Function number

ps peig 1 2 3 4 5 6

0.5 0.4 0.098 8.7681 21.096 20.951 3.5E-05 4.9E-05

0.5 0.1 0.109 12.254 21.06 20.963 5.02E-05 0.149

0.5 0.9 0.0758 6.302 21.14 20.944 3.16E-06 0

0.1 0.1 0.114 13.422 21.058 20.954 7.12E-05 0.342

0.1 0.4 0.107 12.711 21.087 20.945 1.09E-04 8.25E-03

0.1 0.9 0.0918 13.939 21.152 20.954 7.61E-05 7.41E-03

0.9 0.1 0.11 12.327 21.06 20.944 5.05E-05 0.136

0.9 0.4 0.0956 8.0909 21.075 20.948 2.66E-05 3.98E-05

0.9 0.9 0.0752 6.4325 21.17 20.96 1.07E-05 0

DE, CR = 1 117.67 126153 20.97 20.95 108.15 1.02

DE, CR = 0.5 16.213 21.711 20.939 20.51 8.723 0

162



IS DIFFERENTIAL EVOLUTION ROTATIONALLY INVARIANT?

Table 5. Results for dimension 30, functions 7–12.

Function number

ps peig 7 8 9 10 11 12

0.5 0.4 3.2826 102.81 519.24 5822.03 47.44 205.814

0.5 0.1 1.63E-04 119.98 135.612 5781.25 35.575 217.59

0.5 0.9 71.542 83.232 3593.72 5706.96 138.81 193.58

0.1 0.1 1.84E-04 114.842 138.446 5757.39 35.485 213.285

0.1 0.4 4.2195 105.644 509.678 5887.88 48.067 212.68

0.1 0.9 74.409 82.826 3682.78 5646.68 144.23 204.553

0.9 0.1 1.50E-04 115.4 133.56 5748.27 35.401 215.402

0.9 0.4 3.093 105.28 490.43 5811.19 48.154 210.28

0.9 0.9 71.399 91.549 3695.32 5703.98 141.29 192.62

DE, CR = 1 169.87 174.71 7080.64 7277.77 225.17 233.50

DE, CR = 0.5 107.26 193.69 4485.57 7337.83 141.525 223.7

However, in dimension 30 we can observe difference in results for Rosen-
brock’s function (no. 1) and its rotated version (no. 2). It also has slightly better
results for function no. 2 when the parameter peig = 0.9. Surprisingly, errors
for functions 3–6 in dimension 30 are not distinctively different from results in
dimension 10. There is a potential of algorithm’s stability in bigger dimensions
in this particular case.

Interesting observation is that the setting of ps and peig made some evident
changes in function errors for functions 7–12. For instance, in dimension 10,
the setting peig = 0.9 caused big errors in comparison with smaller peig for
Schwefel’s function. For Rotated Schwefel’s function (no. 9), this approach is
clearly unsuitable, although for its non-rotated function with proper setting it
can find global minimum. For dimension 30, the results are even more interesting.
See the best result for peig = 0.1 for non-rotated Rastrigin’s function (no. 7),
and the worst for Rotated Rastrigin’s function (no. 8). While in dimension 10
for Rastrigin’s function the error was always 0, in dimension 30 for peig = 0.9
there are distinct errors. The Rotated Rastrigin’s function has smaller but still
significant differences in errors. In similar way for the pair of Schwefel’s functions,
it is true that the worst setting peig = 0.9 for the non-rotated is the best for the
rotated even though here the errors are very similar. The Lunacek BiRastrigin
pair (no. 11, 12) has similar errors as the Schwefel’s functions. Clearly solution
of rotated problems requires individual approach and setting in this particular
method.

163



H. ZÁMEČŃIKOVÁ — D. EINŠPIGLOVÁ — R. POLÁKOVÁ — P. BUJOK

If we compare CoBiDE with simple DE, then CoBiDE has often better results.
For dimension 10, the errors of DE are obviously bigger, especially for setting
CR = 1, for instance, for Schwefel’s function, the error is 1347.5 whereas for
CoBiDE it is at most 66.87 and could be even 0. However, we cannot miss the
fact that for Ackley’s functions (no. 3, 4) all results are almost the same except for
DE with setting CR = 0.5 in dimension 10. This setting was the only successful
at least for the rotated Ackley’s function (no. 4). In dimension 30, the difference
between classical DE and its novel is even visible. CoBiDE is mostly able to
provide smaller errors than DE but it is clear that for some functions such as
Rotated Schwefel’s or Rotated Lunacek, it fails regardless the ps/peig setting.
To sum up the results, we observe that CoBiDE despite its better perfomance
than DE is not rotationally invariant since there are functions on which it fails.
However, the setting of parameters ps and peig promises positive changes in the
field of optimization and give a reason for further research.

5. Conclusion

Differential Evolution became popular during last years because it is efficient
and it has a simple code. In order to improve the performance of DE, many
authors attempted to transform the algorithm by particular control parameter’s
setting or by changing the code, e. g. CoBiDE. Our goal was to test anticipated
performance of modified algorithm according to [5] and [9]. Main motivation was
to find rotationally invariant setting of DE. Experiment was performed on six
pairs benchmark test functions developed for CEC 2013 competition.

First part of our experiment, where CR = 1, did not confirm our expectation.
Improvement occurred only on one function and on the other functions there was
no effect or the results were even worse. This suggestion is not rotationally invari-
ant therefore in the second part we tested several parameter settings of CoBiDE

algorithm in order to verify parameter sensitivity. In this case, the results were
visibly better, however, the algorithm is not rotationally invariant. CoBiDE

established new way how to solve optimization problems of rotated functions
since particular parameter setting provided promising results. Proper setting
and using of covariance-matrix-based crossover should be further studied.

Acknowledgement. The authors sincerely thank the reviewers for their con-
structive and very helpful comments and suggestions.

REFERENCES

[1] GUO, S.-M.—YANG, C.-C.— TSAI, J. S.-H.—HSU, P.-H.: A self-optimization approach
for L-SHADE incorporated with eigenvector-based crossover and successful framework
on CEC 2015 benchmark set. In: Proceedings of the IEEE Congress on Evolutionary

Computation—CEC ’15, Sendai, Japan, 2015, IEEE, New York, pp. 1003–1010.

164



IS DIFFERENTIAL EVOLUTION ROTATIONALLY INVARIANT?

[2] LIANG, J. J.—QU, B-Y.—SUGANTHAN, P. N.—HERNÁNDEZ-DÍAZ, A. G.: Prob-

lem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competi-
tion on Real-Parameter Optimization. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore, Tech. Rep. 2012, http://www.ntu.edu.sg/home/epnsugan/.

[3] POLÁKOVÁ, R.—TVRDÍK, J.—BUJOK, P.: Population-size adaptation through

diversity-control mechanism for differential evolution, MENDEL 2016, Brno University
of Technology, 2016. pp. 49–56.

[4] PRICE, K.: Eliminating drift bias from the differential evolution algorithm. In: Advances
in Differential Evolution, Studies in Computational Intelligence, Vol. 143, Springer-Verlag,
Berlin, 2008, pp. 33–88.

[5] How symmetry constrains evolutionary optimizers. In: Proc. of the IEEE Congress

on Evolutionary Computation—CEC ’17, Donostia-San Sebastián, Spain, 2017, IEEE,
New York, pp. 1712–1719.

[6] PRICE, K.—STORN, R. M.—LAMPINEN, J. A.: Differential evolution: a practical ap-
proach to global optimization. Springer Science & Business Media, 2006.

[7] STORN, R.: Differential evolution research—trends and open questions. In: Advances in
Differential Evolution, Springer-Verlag, Berlin, 2008, pp. 1–31.

[8] STORN, R.—PRICE, K.: Differential Evolution—A Simple and Efficient Heuristic for
global Optimization over Continuous Spaces. J. Global Optim. 11 (1997), 341–359.

[9] WANG, Y.—LI, H.-X.—HUANG, T.—LONG, L.: Differential evolution based on covari-
ance matrix learning and bimodal distribution parameter setting, Appl. Soft Comput. 18
(2014), 232–247.

Received December 5, 2017 Hana Zámečńıková ∗
Daniela Einšpiglová ∗∗
Department of Matematics

Faculty of Science
E-mail : p18113@student.osu.cz ∗

p18111@student.osu.cz ∗∗

Radka Poláková
Centre of Excellence IT4Innovations
Institute for Research and

Applications of Fuzzy Modeling
E-mail : radka.polakova@osu.cz

Petr Bujok
Department of Informatics and Computers
Faculty of Science
E-mail : petr.bujok@osu.cz

University of Ostrava
30. dubna 22

CZ–701-03 Ostrava
CZECH REPUBLIC

165

http://www.ntu.edu.sg/home/epnsugan/

	Introduction
	1. Differential Evolution
	1.1. Creating a new generation
	1.2. Mutation
	1.3. Crossover
	1.4. Selection

	2. DE for rotated functions
	2.1. DE Results 

	3. CoBiDE
	4. CoBiDE results 
	5. Conclusion
	REFERENCES

