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ABSTRACT. In the paper, the authors apply Faà di Bruno formula, some prop-
erties of the Bell polynomials of the second kind, the inversion formulas of bi-
nomial numbers and the Stirling numbers of the first and the second kind, to
significantly simplify coefficients in two families of ordinary differential equations
associated with the higher order Frobenius–Euler numbers.

1. Motivations

In [4, Theorem 2.2], it was inductively and recursively established that the
family of differential equations

F (n)(t) =

[
n∑

i=0

ai(n)
( u

et − u

)i
]
F (t) (1)

for n ≥ 0, r ∈ N, and u ∈ C � {1} has a solution

F (t) = F (t; r, u) =
( 1

et − u

)r

, (2)

where a0(n) = (−r)n,
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ai(n) = (−1)n(r+i−1)i

n−i∑
ki=0

n−i−ki∑
ki−1=0

. . .

n−i−ki−···k2∑
k1=0

rn−i−∑i
�=1 k�

i∏
�=1

(r+�)k� (3)

for 1 ≤ i ≤ n, and

(x)n =

n−1∏
�=0

(x+ �) =

{
x(x+ 1)(x+ 2) · · · (x+ n− 1), n ≥ 1

1, n = 0

is the rising factorial. Hereafter, the following results were deduced.

(1) For k, n ≥ 0, we have

H
(r)
k+n(u) =

n∑
i=0

ai(n)
( u

1− u

)i

H
(r+i)
k (u),

where H
(r)
k , which can be generated by( 1− u

et − u

)r

=

∞∑
k=0

H
(r)
k (u)

tk

k!
,

stand for the Frobenius-Euler numbers of order r. See [4, Theorem 2.3].

(2) For k, n ≥ 0, we have

E
(r)
k+n=

n∑
i=0

(
−1

2

)i

ai(n)E
(r+i)
k ,

where E
(r)
k , which can be generated by( 2

et + 1

)r

=

∞∑
k=0

E
(r)
k

tk

k!
,

stand for the Euler numbers of order r. See [4, Corollary 2.5].

(3) When 0 ≤ k ≤ r − 1 and k ≥ r + n,

B
(r)
k =

1

(k − r)n

n∑
i=max{n−k,0}

ai(n)B
(r+i)
k+i−n(k)n−i;

when r ≤ k ≤ r − 1 + n,
n∑

i=max{n−k,0}
ai(n)B

(r+i)
k+i−n(k)n−i = 0;

where B
(r)
k , which can be generated by( t

et − 1

)r

=

∞∑
k=0

B
(r)
k

tk

k!
,

stand for the Bernoulli numbers of order r. See [4, Theorem 2.7].
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In [5, Theorem 2.1], it was inductively and recursively proved that the family
of differential equations

(−1)n−1(r)n

( u

et − u

)n

F (t) =

n∑
i=0

bi(n)F
(i)(t) (4)

for u∈C and r∈N has a solution F (t) defined in (2), where b0(n)=−〈r+n−1〉n,

bi(n) = −
n−i∑
ki=0

n−i−ki∑
ki−1=0

· · ·
n−i−ki−···−k2∑

k1=0

i∏
�=1

〈
r + n− i− 1−

i∑
j=�+1

kj + �

〉
k�

×
〈
r + n− i− 1−

i∑
j=1

kj

〉
n−i−∑

i
j=1 kj

, 1 ≤ i ≤ n,

(5)

and

〈x〉n =

n−1∏
�=0

(x− �) =

{
x(x− 1)(x− 2) . . . (x− n+ 1), n ≥ 1

1, n = 0

is the falling factorial of x ∈ R for n ∈ {0} ∪ N. Hereafter, the following conclu-
sions were derived:

(1) For k, n ≥ 0, we have

(−1)n−1(r)n

( u

1− u

)n

H
(r+n)
k (u) =

n∑
i=0

bi(n)H
(r)
k+i(u). (6)

See [5, Theorem 3.1]. In particular, taking u = −1 in (6) leads to

(−1)n−1(r)n

(
−1

2

)n

E
(r+n)
k =

n∑
i=0

bi(n)E
(r)
k+i.

See [5, Corollary 3.3].

(2) When 0 ≤ k ≤ n+ r − 1, we have

B
(r+n)
k = (−1)n−1 1

(r)n

min{r+n−1−k,n}∑
i=max{n−k,0}

bi(n)B
(r)
k+i−n

〈k + i− n− r〉ik!
(k + i− n)!

;

when k ≥ n+ r, we have

B
(r+n)
k = (−1)n−1 1

(r)n

n∑
i=0

bi(n)B
(r)
k+i−n

〈k + i− n− r〉ik!
(k + i− n)!

.

See [5, Theorem 3.4].

69



F. QI — D.-W. NIU — B.-N. GUO

(3) The matrices
(
ai(j)

)
0≤i,j≤n

and
(

bi(j)
(−1)j−1(r)j

)
0≤i,j≤n

are inverse to each

other for all n. See [5, Remark 3.2].

It is easy to see that expressions (3) and (5) of the quantities ai(n) and bi(n)
are too complicated to be computed by hand and computer software. Therefore,
can one find simple, meaningful, and significant expressions for the quantities
ai(n) and bi(n) in (3) and (5)?

2. Lemmas

For answering the above question and proving our main results, we need the
following lemmas.

����� 1 ([1, p. 134, Theorem A] and [1, p. 139, Theorem C])� For n ≥ k ≥ 0,
the Bell polynomials of the second kind, or say, partial Bell polynomials, denoted
by Bn,k(x1, x2, . . . , xn−k+1), are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
�i∈{0}∪N

∑n−k+1
i=1 i�i=n

∑n−k+1
i=1 �i=k

n!∏n−k+1
i=1 �i!

n−k+1∏
i=1

(xi

i!

)�i
.

The Faà di Bruno formula can be described in terms of the Bell polynomials
of the second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)
(
h(t)

)
Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (7)

����� 2 ([1, p. 135])� For n ≥ k ≥ 0, we have

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1) (8)

and
Bn,k(1, 1, . . . , 1) = S(n, k), (9)

where a and b are any complex numbers and S(n, k) for n ≥ k ≥ 0, which can
be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
,

stand for the Stirling numbers of the second kind.

70



COEFFICIENTS IN DIFFERENTIAL EQUATIONS

����� 3 ([27, p. 171, Theorem 12.1])� If bα and ak are a collection of constants
independent of n, then

an =

n∑
α=0

S(n, α)bα if and only if bn =

n∑
k=0

s(n, k)ak,

where s(n, k) for n ≥ k ≥ 0, which can be generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1,

stand for the Stirling numbers of the first kind.

����� 4 ( [27, p. 83, Eq. (7.12)])� If ak and bk for k ≥ 0 are a collection
of constants independent of n, then

a(n) =

n∑
k=0

(−1)k
(
n

k

)
b(k) if and only if b(n) =

n∑
k=0

(−1)k
(
n

k

)
a(k).

3. Main results and their proofs

Now we are able to answer the above question and to state and prove our
main results.

����	�� 1� For n ≥ 0, r ∈ R, and u ∈ C, the function F (t) defined by (2)
satisfies

F (n)(t) =

n∑
�=0

[
n∑

k=�

(
k

�

)
S(n, k)〈−r〉k

]( u

et − u

)�

F (t) (10)

and
n∑

k=0

[
n∑

�=k

(−1)�
(
n

�

)
s(�, k)

〈−r〉�

]
F (k)(t) = (−1)n

( u

et − u

)n

F (t). (11)

P r o o f. Let

F (t) =
1

wr
and w = w(t) = w(t;u) = et − u.

Then, by the Faà di Bruno formula (7) and the identities (8) and (9) in sequence,

F (n)(t) =

n∑
k=0

( 1

wr

)(k)

Bn,k(e
t, et, . . . , et)

=

n∑
k=0

〈−r〉k
wr+k

ekt Bn,k(1, 1, . . . , 1)
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=

n∑
k=0

〈−r〉k
(et − u)r+k

ektS(n, k)

=
1

(et − u)r

n∑
k=0

〈−r〉k
(et − u)k

ektS(n, k)

= F (t)

n∑
k=0

〈−r〉kS(n, k)
( et

et − u

)k

= F (t)

n∑
k=0

〈−r〉kS(n, k)
(
1 +

u

et − u

)k

= F (t)

n∑
k=0

〈−r〉kS(n, k)
k∑

�=0

(
k

�

)( u

et − u

)�

= F (t)

n∑
�=0

[ n∑
k=�

〈−r〉kS(n, k)
(
k

�

)]( u

et − u

)�

.

Therefore, the identity (10) follows immediately.

From the above proof of the identity (10), it can be deduced that

F (n)(t) = F (t)

n∑
k=0

S(n, k)〈−r〉k
k∑

�=0

(
k

�

)( u

et − u

)�

, n ≥ 0.

Utilizing Lemma 3 we obtain

F (t)〈−r〉n
n∑

�=0

(
n

�

)( u

et − u

)�

=

n∑
k=0

s(n, k)F (k)(t), n ≥ 0

which can be rearranged as
n∑

�=0

(−1)�
(
n

�

)(
− u

et − u

)�

=
1

F (t)〈−r〉n
n∑

k=0

s(n, k)F (k)(t), n ≥ 0.

Further use of Lemma 4 derives
n∑

�=0

(−1)�
(
n

�

)
1

F (t)〈−r〉�
�∑

k=0

s(�, k)F (k)(t) =
(
− u

et − u

)n

, n ≥ 0

which can be rewritten as (11). The required proof is complete. �
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4. Remarks

In this section, we give several remarks and some explanation about our main
results.

Remark 1� Theorem 1 extends the range of r from N to R.

Remark 2� Comparing (1) with (10) one reveals that

ai(n) =

n∑
k=i

(
k

i

)
S(n, k)〈−r〉k, 0 ≤ i ≤ n. (12)

This implies that the identity (10) is more meaningful, more significant, more
computable than the one (1).

Remark 3� It is not difficult to see that

a0(n) =

n∑
k=0

S(n, k)〈−r〉k = (−r)n, n ≥ 0.

Then it is natural to ask a question: Is the finite sum

ai(n) =

n∑
k=i

(
k

i

)
S(n, k)〈−r〉k, 1 ≤ i ≤ n

summarizable?

Remark 4� Comparing (4) with (11) one obtains

bi(n) = (r)n

n∑
�=i

(−1)�+1

(
n

�

)
s(�, i)

〈−r〉� , n ≥ i ≥ 0. (13)

This means that the identity (11) is more meaningful, more significant, more
computable than (4).

Remark 5� By virtue of the expressions (12) and (13), all the above mentioned
results in the papers [4,5] can be reformulated simpler, more meaningfully, and
more significantly. For the sake of saving the space and shortening the length
of this paper, we do not rewrite them in detail here.

Remark 6� Till now we can see that the method used in this paper is simpler,
shorter, nicer, more meaningful, and more significant than the inductive and
recursive method used in [4,5] and closely related references therein.

Remark 7� In the papers and preprints [2, 3, 6–20, 22–26, 28], there are similar
ideas, methods, techniques, and purposes to this paper.

Remark 8� This paper is a slightly revised version of the preprint [21].
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